
painless-maplecomsps

Ludovic Le Frioux∗†, Souheib Baarir∗†‡, Julien Sopena†, Fabrice Kordon†
∗LRDE, EPITA, Kremlin-Bicêctre, France

†Sorbonne Universités, UMPC Univ Paris 06, UMR 7606, LIP6, Paris, France
CNRS, UMR 7606, LIP6, Paris, France
‡Université Paris Nanterre, France

Abstract—This paper describes the
painless-maplecomsps solver submitted to the parallel
track of the SAT Competition in 2017. It is a parallel solver
instantiated with PArallel INstantiabLE Sat Solver (PaInleSS)
framework and using MapleCOMSPS as core sequential solver.

I. INTRODUCTION

painless-maplecomsps is a parallel SAT solver built
by instantiating components of the PaInleSS parallel frame-
work. It is a Portfolio based solver implementing a diversifi-
cation strategy, fine control of learnt clause exchanges, and
using MapleCOMSPS [1] as a core sequential solver.

Section II gives an overview on PaInleSS
framework. Section III details the implementation of
painless-maplecomsps using PaInleSS and
MapleCOMSPS.

II. DESCRIPTION OF PAINLESS

PaInleSS is a framework that aims at simplifying the im-
plementation and evaluation of parallel SAT solvers for many-
core environments. Thanks to its genericity and modularity, the
components of PaInleSS can be instantiated independently
to produce new complete solvers.

The main idea of the framework is to separate the technical
components (e.g., those dedicated to the management of
concurrent programming aspects) from those implementing
heuristics and optimizations embedded in a parallel SAT
solver. Hence, the developer of a (new) parallel solver concen-
trates his efforts on the functional aspects, namely paralleliza-
tion and sharing strategies, thus delegating implementation
issues (e.g., data concurrent access protection mechanisms)
to the framework.

Three main components arise when treating parallel SAT
solvers: Sequential Engines, Parallelization and Sharing.
These are depicted in Fig. 1, and form the global architecture
of PaInleSS.

A. Sequential Engines

The core element that we consider in our framework is a
sequential SAT solver (called sequential engine). This can be
any CDCL state-of-the art solver. Technically, these engines
are operated through a generic interface providing basics
of sequential solvers: solve, bump activities, interrupt, add
classes, etc.

Thus, to instantiate PaInleSS with a particular solver, one
needs to implement the interface according this engine.

Engines Instantiation

Parallelization

WorkingStrategy

SequentialWorker

1

*
3

Sequential
Engines

SolverInterface

1

*

1

2

Sharing

SharingStrategy

Sharer

1
4

component requiring an instantiation

component provided by PaInleSS

Fig. 1. Architecture of PaInleSS.

B. Parallelization

To built a parallel solver using the aforementioned engines,
one needs to define and implement a parallelization strategy.
Portfolio and Divide-and-Conquer are the basic known ones.
Also, they can be arbitrary composed to form new strategies.

In PaInleSS, a strategy is represented by a tree-structure
of arbitrary depth. The internal nodes of the tree rep-
resent parallelization strategies, and leaves are core en-
gines. Technically, the internal nodes are implemented using
WorkingStrategy component and the leaves are instances
of SequentialWorker component.

Hence, to develop its own parallelization strategy, the user
should create one or more strategies and build the required
tree-structure.

C. Sharing

In parallel SAT solving, the exchange of learnt clauses
warrants a particular focus. Indeed, beside the theoretical
aspects, a bad implementation of a good sharing strategy may
dramatically impact the solver’s efficiency.

In PaInleSS, solvers can export (import) clauses to (from)
the others during the resolution process. Technically, this is
done by using lockfree queues [2]. The sharing of these
learnt clauses is dedicated to particular components called
Sharers. Each Sharer in charge of sets of producers and
consumers and its behaviour reduces to a loop of sleeping and
exchange phases.

Hence, the only part requiring a particular implementation
is the exchange phase. That is user defined.

Sequential
Engines SharingParallelization

SW

SW

...

SW

SW

...

PF

...

...

L1 MapleCOMSPS

Lk MapleCOMSPS

V1 MapleCOMSPS

Vk MapleCOMSPS

Hordesat

Producers: L1

Consumers: All

Shr 1Strategy

Hordesat

Producers: Vk

Consumers: All

Shr nStrategy

...

Fig. 2. Architecture of painless-maplecomsps.

III. PAINLESS-MAPLECOMSPS

This section describes the overall behaviour of our com-
peting instantiation, namely painless-maplecomsps. Its
architecture is highlighted in Fig. 2.

A. Sequential Engines: MapleCOMSPS

MapleCOMSPS is the winner sequential solver of the
main track of the SAT Competition 2016. It is based on
MiniSat [3], and uses as decision heuristics the classical
Variable State Independent Decaying Sum (VSIDS) [4], and
newly defined Learning Rate Branching (LRB) one [5]. These
heuristics are used in one-shot phases: first LRB, then VSIDS.

We adapt this solver for the parallel context as follows: (1)
we parametrized the solver to select either LRB or VSIDS
for all solving process (noted respectively, L and V); (2) we
added callbacks to export and import clauses. The export is
parametrized according to a Literal Block Distance (LBD) [6]
threshold.

B. Parallelization: Portfolio and Diversification

painless-maplecomsps is a solver implementing a ba-
sic Portfolio strategy (PF), where the underlying core engines
are either L or V instances.

For each type of instances, we apply a sparse random
diversification similar to the one introduced in [7]. That is
for each group of k solvers, the initial phase of a solver is
randomly set according the following settings: every variable
gets a probability 1/2k to be set to false, 1/2k to true, and
1− 1/k not to be set.

C. Sharing: Controlling the Flow of Shared Clauses

In painless-maplecomsps, the sharing strategy is
inspired from the one used by [7]. We instantiate a Sharer
per solver (the producer). It gets clauses from this producer
and exports some of them to all others (the consumers).

The exchange strategy is defined as follows: each solver
exports clauses having a LBD value under a given threshold (2
at the beginning). Every 1.5 seconds, 1500 literals (the sum of
the size of the shared clauses) are selected by the Sharer and
dispatched to consumers. The LBD threshold of the concerned
solver is increased if an insufficient number of literals (¡ 1200)
are dispatched.

ACKNOWLEDGMENT

We would like to thank Jia Hui Liang, Chanseok Oh, Vijay
Ganesh, Krzysztof Czarnecki, and Pascal Poupart, the authors
of MapleCOMSPS.

REFERENCES

[1] J. H. Liang, C. Oh, V. Ganesh, K. Czarnecki, and P. Poupart, “Maple-
comsps, maplecomsps lrb, maplecomsps chb,” SAT COMPETITION 2016,
p. 52.

[2] M. M. Michael and M. L. Scott, “Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms,” in Proceedings of the fifteenth
annual ACM symposium on Principles of distributed computing, pp. 267–
275, ACM, 1996.

[3] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and
applications of satisfiability testing, pp. 502–518, Springer, 2003.

[4] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaff: Engineering an efficient sat solver,” in 38th annual Design
Automation Conference, pp. 530–535, ACM, 2001.

[5] J. H. Liang, V. Ganesh, P. Poupart, and K. Czarnecki, “Learning rate
based branching heuristic for sat solvers,” in Theory and Applications of
Satisfiability Testing, pp. 123–140, Springer, 2016.

[6] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern
sat solvers.,” in IJCAI, vol. 9, pp. 399–404, 2009.

[7] T. Balyo, P. Sanders, and C. Sinz, “Hordesat: A massively parallel port-
folio sat solver,” in int. conf. on Theory and Applications of Satisfiability
Testing, pp. 156–172, Springer, 2015.

