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Abstract
Model checking is a fully automated, formal method for demonstrating

absence of bugs in reactive systems. Here, bugs are violations of properties in
Linear-time Temporal Logic (LTL). A fundamental challenge to its applica-
tion is the exponential explosion in the number of system states. The current
chapter discusses the use of parallelism in order to overcome this challenge.

We reiterate the textbook automata-theoretic approach, which reduces the
model checking problem to the graph problem of finding cycles. We discuss
several parallel algorithms that attack this problem in various ways, each with
different characteristics: Depth-first search (DFS) based algorithms rely on
heuristics for good parallelization, but exhibit a low complexity and good on-
the-fly behavior. Breadth-first search (BFS) based approaches, on the other
hand, offer good parallel scalability and support distributed parallelism.

In addition, we present various simpler model checking tasks, which still
solve a large and important subset of the LTL model checking problem, and
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show how these can be exploited to yield more efficient algorithms. In partic-
ular, we provide simplified DFS-based search algorithms and show that the
BFS-based algorithms exhibit optimal runtimes in certain cases.

12.1 Introduction

This chapter discusses parallel algorithms for model checking properties of
Linear-time Temporal Logic (LTL). Model checking [30, 8] is a verification
technique to establish the correctness of hardware and software systems. In
contrast to theorem proving, model checking is a fully automated procedure,
invented by the Turing Award winners Clarke, Emerson, and Sifakis (2007).
In contrast to testing, it is a complete and exhaustive method. Nowadays,
along with testing and static analysis, model checking is an indispensable
industrial tool for eliminating bugs and increasing confidence in hardware
designs (e.g., at Intel [45] and IBM [15]) and software products (e.g., at
Microsoft [9]). For an example case study, refer to Chapter 16, An Application
of Parallel Satisfiability Solving to the Verification of Complex Embedded
Systems.

Formally, model checking solves the problem: “Does model M satisfy prop-
erty P?” (M � P ). Here the model M is a finite abstraction of a hardware
or software system, provided in the form of a transition system. The paths
in the graph of model M consist of infinite sequences of states connected
by state transitions. Paths correspond to possible runs of the system. The
property P is specified in some temporal logic. In this chapter, we restrict the
discussion to Linear-time Temporal Logic (LTL). An LTL property denotes
a set of paths, so P can be viewed as a specification of the correct runs of
the system. Section 12.2 will formalize the syntax and semantics of LTL and
identify some important fragments. For this introduction, it is sufficient to
view model checking as a graph search problem, where the goal is to find a
bad state or, more generally, a cycle representing an infinite path violating
the property.

The main obstacle to model checking is the size of the transition system,
often referred to as “the state space explosion” [96]. This graph grows ex-
ponentially in the number of components and variables in the specification,
mainly due to parallel interleaving in concurrent systems, and the Carte-
sian product of data domains. Many sequential algorithms exist to address
the state space explosion, reducing the state space by exploiting symme-
tries [29, 41, 20, 61], restricting the interleavings to be checked [95, 63, 54, 1],
or abstracting the data domains [27, 24]. Another direction is to represent
state spaces symbolically, applying powerful techniques such as Binary De-
cision Diagrams (BDD) [23, 77] or satisfiability (SAT) [28, 16, 78]. Parallel
satisfiability is discussed in Chapter 1, Parallel Satisfiability, and parallel de-
cision diagrams in Chapter 13, Multi-core Decision Diagrams. Although these
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methods greatly reduce the memory and time usage of model checking, the
ever-growing complexity of hardware and software designs has meant that, so
far, the practical application of model checking is still hindered by memory
and time resources.

Parallel model checking algorithms — pragmatics

This chapter focuses on recent advances in utilizing more hardware resources
to solve the model checking problem. In distributed model checking, the mem-
ory problem is alleviated by distributing the state space over the memory of
many computers in some network (cluster, cloud). Recently, several new ap-
proaches to parallel model checking emerged using multiple processors in
a shared-memory machine to speed up model checking computations. Both
approaches are highly non-trivial, since graph (search) algorithms must be
redesigned to be fit for parallel computation. Next, we consider parallel graph
algorithms from pragmatic and theoretical points of view.

From a pragmatic point of view, obtaining good parallel speedups for
graph problems is notoriously hard [75, 73]. This is mainly caused by the
irregularity of graphs. The efficiency of parallel programs often depends on
exploiting locality, which can be predicted for regular data structures like ma-
trices. However, state spaces are irregular sparse graphs, whose shape highly
depends on the model at hand. For distributed algorithms, the consequence
is that traversing a transition from a source state in the graph often requires
communication with the machine where the target is stored, leading to a dra-
matic communication overhead. For multi-core computing, the threads are
continually looking up the location of target states in main memory. Since
main memory (and the memory bus) are a shared resource, memory-intensive
algorithms are hard to speed up on multi-core machines. As a consequence,
practical implementations pay a lot of attention to low-level details, such
as local caching, evading the need for locks using atomic instructions such
as compare-and-swap, and latency hiding by asynchronous communication.
This chapter does not focus on these implementation details, although they
are essential to demonstrate that the treated algorithms achieve speedup in
practice.

Instead, we focus on the algorithmic aspects. We review the basic sequen-
tial algorithms for LTL model checking in Section 12.3. These subproblems
can be solved by linear-time algorithms. However, today the only known lin-
ear time algorithms heavily depend on the Depth-First Search (DFS) strategy,
which (as we will explain below) is hard to parallelize. This holds for LTL
algorithms based on Nested Depth-First Search as well as for those based on
the analysis of the Strongly Connected Components.

Another reason for our general preference for DFS lies in the nature of
search. If we use the algorithm to search for bugs (bug hunting), we can
terminate as soon as the first bug has been found. It would be a waste of
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resources if we were to first compute the whole state space and then search
only a small part to find the bug. The DFS-based algorithms are generally
well-suited for on-the-fly model checking, where computing the state space
and checking the properties are intertwined. This carries over to parallel
search. It is well known that parallel random search can achieve superlinear
speedups when the goal states are uniformly distributed [81, 72]. In case of
full verification of programs, this consideration is less important. We will
present parallel DFS-based algorithms in Section 12.4.

Parallel model checking algorithms — theoretical considerations

Finally, what does theory actually say? A well-known result [82] is that DFS
is inherently sequential. To understand this, we recall the class NC (Nick’s
Class) of problems that admit scalable parallel algorithms [56]: A problem is
in NC if it can be solved in poly-logarithmic time (log n)o(1) using a polyno-
mial amount of hardware, i.e., no(1) processors. Let P be the class of prob-
lems that admit a polynomial-time algorithm. A problem is P-complete, if
all problems in P can be reduced to it by an NC algorithm. The canonical
P-complete problem is CVP, the circuit valuation problem (given a circuit,
and its Boolean input values, determine the value of its output). Although
formally open, it is widely believed that NC does not contain P-complete
problems, so problems in P are “inherently sequential.” Note that if NC con-
tained a single P-complete problem, then all polynomial problems would be
parallelizable. Reif [82] actually showed that lexicographic DFS is P-complete
by a direct reduction to the CVP. Hence, given a graph and a fixed ordering
of transitions from each state, there is probably no parallel algorithm to even
check whether node x will be visited before node y in the DFS post-order,
observing the fixed transition ordering.

The following intellectual positions are possible in relation to this fact
from theory: First, one can decide to ignore this theoretical restriction. This
is the position in Section 12.4. We introduce various parallel random DFS
algorithms for which we have shown practical speedup, even though they are
not poly-logarithmic. The main motivation is that, in practice, the number
of processors is much smaller than the size of the graph. A practical speedup
for graphs from 103 to 108 nodes does not contradict the impossibility result
in the limit case of (108)k processors.

The second position is to take the theoretical result seriously, and avoid
DFS algorithms. Parallel BFS (breadth-first search), and hence SCC decom-
position, is in NC [51], which can be shown by computing transitive closure
with matrix multiplication. Several BFS-based model checking algorithms
and SCC decomposition methods have been designed. Although their worst-
case time complexity is strictly more than linear, they behave well on practical
instances, and are even linear for many model checking fragments. Moreover,
since BFS-based algorithms can be parallelized, with sufficiently many proces-
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sors this approach should scale (even though the increased work-complexity
doesn’t admit a provably efficient parallel solution). Algorithms Owcty and
Map in Section 12.5 are an illustration of BFS-based algorithms in this cat-
egory.

The third possibility is to circumvent the theoretical results. Note that it
is technically still possible that non-lexicographic DFS (without fixing the
ordering of the transitions in advance) is in NC. Actually, it has been proved
that free DFS is in NC indeed for planar graphs [57], and for general graphs
the problem is known to be in Random NC [3]. We do not claim complexity-
theoretic results in this chapter. Our random parallel free DFS algorithms
will not provide a single global post-order and, in the worst case, they don’t
run in parallel logarithmic time. However, we have proved that they provide
sufficient ordering to solve the model checking problem, and we demonstrated
have good speedups for practical problems. Eventually, this approach might
shed some light on this intriguing 30-year-old open problem.

12.2 Preliminaries: LTL Model Checking and Automata

The current section explains the theoretical foundation of LTL model check-
ing. The formal approach taken here is to interpret both the system and its
specification as an automaton. We will show that this automaton is expo-
nential in the size of both the system and the specification and develop the
constructs required by the LTL model checking algorithms in the subsequent
section to efficiently handle such large automata.

12.2.1 Automata-Theoretic Model Checking

Model checkers are tools that take two inputs: some model M of a system,
and some specification ϕ that should be satisfied by all possible behaviors
of M . For instance if M is a model of a road intersection with traffic lights
and sensors, the property ϕ could specify that whenever a car is sensed the
light of its lane should eventually become green. Note that such a property is
not necessarily about the state of the system: in this example it is about its
possible behaviors, i.e., the evolution of its state. Furthermore, the behaviors
of this system are infinite.

Model checking [97] decides whether some model M satisfies some specifi-
cation ϕ (which we denote M |= ϕ). In the automata-theoretic approach, the
model M is first converted into an automaton KM whose language L (KM )
represents the set of all (infinite) behaviors of M . The negation of the for-
mula ϕ is converted into an automatonA¬ϕ whose language L (A¬ϕ) captures
the forbidden behaviors. With these objects, testing whether M satisfies ϕ
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amounts to checking the emptiness of the product of the two automata: if
L (KM ⊗A¬ϕ) = ∅, then M |= ϕ. If L (KM ⊗A¬ϕ) is found not to be empty,
it means there exists a counterexample: a behavior of M that invalidates ϕ.

12.2.2 Sequences and ω-Words

We shall use B = {⊥,>} to denote the set of Boolean values, ω = {0, 1, 2, . . .}
for the set of non-negative integers, and [n] = {0, 1, 2, . . . , n − 1} the first n
of those. By convention [0] = ∅.

Let AP be a finite set of (atomic) propositions. An assignment is a function
x : AP → B that evaluates each proposition. We use BAP to denote the set
of all assignments of AP.

An infinite sequence over some set Σ is a function σ : ω → Σ that assigns
an element of Σ to each possible index. We use Σω to denote the set of
infinite sequences over Σ.

A finite sequence of length n over Σ is a function σ : [n]→ Σ. We use Σ∗

for the set of all finite sequences of any length n ≥ 0, and Σ+ for the set of
finite sequences of length n > 0.

To define a particular sequence, we denote it by the concatenation of its
elements xi ∈ Σ as σ = x0;x1;x2; . . ., meaning that σ(i) = xi.

For some infinite sequence σ ∈ Σω, we use σi to denote the sequence
obtained from σ by removing its first i ≥ 0 elements; i.e., σi(j) = σ(i + j)
for all j. We denote by Inf(σ) ⊆ Σ the set of elements that appear infinitely
often in σ, i.e., Inf(σ) = {s ∈ Σ | ∀i ∈ ω, ∃j > i, σ(j) = s}.

In this chapter AP is assumed to be fixed, and infinite sequences of as-
signments, i.e., elements of (BAP)ω, are called ω-words. Finally, a language
is a (possibly infinite) set of ω-words.

12.2.3 Linear-time Temporal Logic

In model checking, ω-words are used to represent the different behaviors of
the system to check.

Linear-time Temporal Logic (LTL) formulas are typically used to specify
the property to verify on the system by specifying which ω-words should be
accepted or rejected. LTL formulas are constructed according to the following
grammar, where a ∈ AP:

ϕ ::= > |⊥ | a | ¬ϕ |ϕ ∨ ϕ |ϕ ∧ ϕ |ϕUϕ |ϕRϕ |Fϕ |Gϕ |Xϕ

Given an ω-word σ ∈ (BAP)ω and an LTL formula ϕ, we say that σ satisfies
ϕ (denoted σ |= ϕ) according to the following semantics. For any a ∈ AP and
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any LTL formulas ϕ1 and ϕ2,

σ |= >
σ 6|= ⊥
σ |= a iff σ(0)(a) = >
σ |= ¬ϕ1 iff σ 6|= ϕ1

σ |= ϕ1 ∨ ϕ2 iff (σ |= ϕ1) ∨ (σ |= ϕ2)
σ |= ϕ1 ∧ ϕ2 iff (σ |= ϕ1) ∧ (σ |= ϕ2)
σ |= ϕ1 Uϕ2 iff ∃i ≥ 0, (σi |= ϕ2) ∧ (∀j < i, σj |= ϕ1)
σ |= ϕ1 Rϕ2 iff ∀i ≥ 0, (σi |= ϕ2) ∨ (∃j < i, σj |= ϕ1)
σ |= Fϕ1 iff ∃i ≥ 0, σi |= ϕ1

σ |= Gϕ1 iff ∀i ≥ 0, σi |= ϕ1

σ |= Xϕ1 iff σ1 |= ϕ1

The language of a formula ϕ is the set of words that satisfy it: L (ϕ) =
{σ ∈ (BAP)ω | σ |= ϕ}. Two LTL formulas are equivalent iff they have the
same language: ϕ1 ≡ ϕ2 ⇐⇒ L (ϕ1) = L (ϕ2). For example one can see
that ¬FGa ≡ GF¬a.

The size of an LTL formula ϕ, denoted |ϕ|, is the number of symbols in ϕ.
For example |¬FGa| = 4.

12.2.4 Kripke Structures

A Kripke structure is an automaton with states labeled by assignments.

Definition 1 (Kripke Structure). A Kripke structure is a tuple K =
(Q, ι, δ, `) where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×Q is a set of transitions,
• ` : Q→ BAP is a function labeling each state with an assignment.

The runs of K, denoted Runs(K), are the infinite sequences of states
ρ ∈ Qω that start with ι and follow transitions in δ:

Runs(K) = {ρ ∈ Qω | ρ(0) = ι and ∀i ≥ 0, (ρ(i), ρ(i+ 1)) ∈ δ}

If we naturally extend the labeling function ` to runs, then each run ρ is
associated with an ω-word `(ρ) defined by `(ρ)(i) = `(ρ(i)). The language
L (K) of the Kripke structure is the set of words associated with all its runs:
L (K) = {`(ρ) | ρ ∈ Runs(K)}.

Definition 2 (Deadlock-Free Kripke Structure). A Kripke structure is
said to be deadlock-free if all its states have at least one successor. In other
words K = (Q, ι, δ, `) is deadlock-free if ∀s ∈ Q, ∃d ∈ Q, (s, d) ∈ δ.
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12.2.5 Büchi Automata

Büchi automata can represent ω-regular languages. We shall define different
flavors of Büchi automata that correspond to combinations of the following
two options:

• transition-based or state-based acceptance
• classical Büchi acceptance, or generalized Büchi acceptance.

While all the resulting automata have the same expressive power, they
can have different degrees of conciseness, and may require different emptiness-
check procedures. Hence from the model checking point of view, these choices
can affect memory consumption and emptiness-check complexity.

Definition 3 (TGBA). A Transition-based Generalized Büchi Automaton
is a tuple A = (Q, ι, δ, n,M) where

• Q is a finite set of states,
• ι ∈ Q is the initial state,
• δ ⊆ Q×BAP ×Q is a set of transitions,
• n is an integer specifying a number of accepting marks,
• M : δ → 2[n] is a marking function that specifies a subset of marks
associated with each transition.

For a transition t ∈ δ we write ts for its source, t` for its label, and td for
its destination: t = (ts, t`, td).

The runs of A are infinite sequences of consecutive transitions:

Runs(A) = {ρ ∈ δω | ρ(0)s = ι and ∀i ≥ 0, ρ(i)d = ρ(i+ 1)s}

The accepting runs of A are those that have, for each acceptance mark,
infinitely many transitions with that mark:

Acc(A) =
{
ρ ∈ Runs(A)

∣∣∣ [n] =
⋃

t∈Inf(ρ)

M(t)
}

Let us also define the word `(ρ) associated with a run ρ by `(ρ)(i) = ρ(i)`.
Now the language L (A) of the automaton A is the set of words associated
with its accepting runs:

L (A) = {`(ρ) | ρ ∈ Acc(A)}

For convenience, we will also overload the δ notation and write δ(q) for the
set of outgoing transitions of any state q ∈ Q: δ(q) = {(s, x, d) ∈ δ | s = q}.

Definition 4 (SGBA). A State-based Generalized Büchi Automaton is also
a tuple A = (Q, ι, δ, n,M), with identical definitions forQ, ι, δ, and n, but this
time the marking functionM associates marks with states:M : Q→ 2[n]. The
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Fig. 12.1 Minimal deterministic automata recognizing L (GFa ∧ GFb). The SGBA and
TGBA use n = 2 accepting marks, while the SBA and TBA have n = 1 by definition

runs are defined similarly. The accepting runs are those that have infinitely
many states marked with each acceptance mark:

Acc(A) =
{
ρ ∈ Runs(A)

∣∣∣ [n] =
⋃

t∈Inf(ρ)

M(ts)
}

and then the automaton’s language is still defined as L (A) = {`(ρ) | ρ ∈
Acc(A)}.

Definition 5 (SBA and TBA). State-based and Transition-based Büchi
Automata are particular cases of the above definitions where n = 1.

1

0

ab, ab
1

ab, ab 1

ab, ab
0

ab, ab0

Fig. 12.2 How to

interpret the SGBA
of Fig. 12.1(b) as a

TGBA

Figure 12.1 shows four automata with differ-
ent acceptance conditions, all recognizing the lan-
guage of the LTL formula GFa ∧ GFb: a and b
should each hold infinitely often, but not neces-
sary at the same time. As usual, multiple tran-
sitions of the form (s, x, d) and (s, y, d) are pic-
tured as a single edge s d

x,y . Marked states
and transitions are denoted using colored bullets
such as 0 or 1 . So the fact that M

(
(s, x, d)

)
=

{0, 1} is pictured as s d
x

0 1 . Looking at the
automaton of Figure 12.1(b), the run ρ1 =
(0, ab, 1); (1, ab, 1); (1, ab, 0); (0, ab, 1); (1, ab, 1); (1, ab, 0); . . . is an accepting
run for the word ab; ab; ab; ab; ab; ab; . . . as it visits 0 and 1 infinitely of-
ten. The run ρ2 = (0, ab, 1); (1, ab, 1); (1, ab, 1); (1, ab, 1); . . . is not accepting
because it only visits 1 infinitely often. By comparing the two definitions of
Acc, it is clear that an SGBA A = (Q, ι, δ, n,M) can be converted into a
language-equivalent TGBA B = (Q, ι, δ, n,M ′) by defining M ′(t) = M(ts).
This amounts to pushing the acceptance marks onto the outgoing transitions,
as in Figure 12.2.

The automata of Figure 12.1 are minimal in the sense that there does
not exist language-equivalent automata with the same acceptance condition
and fewer states. This figure is therefore an example showing how TGBAs



10 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, Renault

can be more concise than the other types of automata presented, but in
Section 12.2.8 we will also discuss some classes of properties for which using
SBAs is sufficient, i.e., no reduction can be obtained by using generalized or
transition-based acceptance.

Property 1. Any TGBA (Q, ι, δ, n,M) can be “degeneralized” into a language-
equivalent SBA with at most (n+ 1) |Q| states, or into a language-equivalent
TBA with at most n · |Q| states.

There exist several variants of degeneralization constructions, discussed for
instance by Gastin and Oddoux [49], or Giannakopoulou and Lerda [53],
and improved by Babiak et al. [7]. The automata of Figures 12.1(a) and (c)
are typically what one could obtain by degeneralizing the TGBA of Fig-
ure 12.1(d).

Property 2. For any LTL formula ϕ, there exists a language-equivalent TGBA
with O(2|ϕ|) states and n = O(|ϕ|) acceptance marks.

Numerous translations from LTL to TGBAs exist, and are implemented in
tools such as ltl2ba [49], ltl3ba [6], or Spot’s ltl2tgba [37]. Now, combin-
ing Properties 1 and 2, we get

Property 3. For any LTL formula ϕ, there exists a language-equivalent SBA
with O(|ϕ| · 2|ϕ|) states.

These upper bounds are rarely reached in practice. For instance Dwyer
et al. [39] define 55 LTL formulas1 that represent 11 intents (Absence, Re-
sponse, Precedence, etc) combined with five different scopes (Before, Be-
tween, After, etc). These 55 formulas have an average size of 16.75 (max-
imum 40), but the SBAs produced by ltl2tgba (from Spot 2.1) have on
average only 3.945 states (maximum 13). Using TGBAs instead of SBAs is
only marginally better: ltl2tgba produces TGBAs with an average of 3.782
states (maximum 10); we will discuss this point in Section 12.2.8.

These small automata, representing the negation of a property we want
to check, will be combined with a (potentially very large) Kripke structure
representing the state space of the model to verify.

Property 4 (Synchronized product). Let K = (Q1, ι1, δ1, `) be a Kripke struc-
ture, and A = (Q2, ι2, δ2, n,M) be a TGBA. Then the TGBA K ⊗ A =
(Q′, ι′, δ′, n,M ′) where

• Q′ = Q1 ×Q2,
• ι′ = (ι1, ι2),
• ((s1, s2), x, (d1, d2)) ∈ δ′ ⇐⇒ (s1, d1) ∈ δ1 ∧ `(s1) = x ∧ (s2, x, d2) ∈ δ2,
• M ′

(
((s1, s2), x, (d1, d2))

)
= M

(
(s2, x, d2)

)
,

is such that L (K ⊗A) = L (K) ∩L (A).

1 http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
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The product between a Kripke structure and a SGBA can be defined
similarly, with M ′

(
(s1, s2)

)
= M(s2) as the only change.

Clearly |Q′| = |Q1| · |Q2|. However the states reachable from ι′ can be a
subset of that, and only that subset needs to be explored to decide whether
L (K ⊗A) is empty.

12.2.6 The Emptiness-Check Problem

The emptiness-check problem can be presented as follows:

Given an automaton B = (Q, ι, δ, n,M), decide whether L (B) = ∅.

The automaton B could be any type of automaton presented previously.
We will focus on TGBA, the more compact ones, as well as SBA, more
frequently used because of their simple structure.

Property 5. If L (B) 6= ∅, then there exists a lasso-shaped accepting run, i.e.,
a run ρ ∈ Acc(B) for which there exist i ≥ 0 and j ≥ i such that ρ(i) = ρ(j).
(Figure 12.3.)

To show the existence of such a run, consider an automaton B (a TGBA or
SGBA) and assume that L (B) 6= ∅. Then by definition of L (B), there exists
an accepting run π ∈ Acc(B), but that run is not necessarily lasso-shaped.
The set Inf(π) contains transitions of B that (1) are visited infinitely often by
π, (2) cover all acceptance marks (since π is accepting), (3) are all reachable
from one another, and (4) are reachable from the initial state. Then a lasso-
shaped run ρ can be constructed by building a prefix connecting the initial
state of B to any transition t ∈ Inf(π), and then building a cycle around t
that visits all transitions of Inf(π). Note that for the lasso-shaped run ρ, the
set Inf(ρ) corresponds exactly to the transitions that appear on the cycle.
We therefore have Inf(ρ) ⊇ Inf(π), which entails that ρ is also accepting.

Definition 6 (Accepting cycle). Given a TGBA (Q, ι, δ, n,M), and a finite
sequence of transitions c ∈ δ+ of length k. We say that c is a cycle if its
transitions actually form a cycle: ∀i < k, c(i)d = c(i+ 1 mod k)s.

. . . . . .
ρ(0) ρ(1) ρ(i− 1) ρ(i) ρ(i+ 1) ρ(j − 2)

ρ(j − 1)

prefix cycle

ι

Fig. 12.3 A lasso-shaped run can be built from two finite sequences of transitions: a
(possibly empty) prefix and a (non-empty) cycle
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We say that a cycle c is an elementary cycle if additionally |{c(i)s | i <
k}| = k, i.e., if c goes through k different states.

We say that a cycle c is an accepting cycle if its transitions visit each
acceptance mark at least once: ∀i ∈ [n],∃j < k, i ∈ M(c(j)). Accepting
cycles for SGBA are defined likewise, replacing M(c(i)) by M(c(i)s).

Note that the cycle part of any lasso-shaped accepting run is an accepting
cycle. Combining this with Property 5 allows us to reduce the emptiness-
check problem to the search for an accepting cycle.

Property 6. For an automaton B, we have L (B) 6= ∅ if and only if B contains
an accepting cycle reachable from the initial state.

However the number of cycles can be infinite, so it is useful to consider the
simpler case where only elementary cycles need to be checked for acceptance:

Property 7. For an automaton B with n ≤ 1 acceptance marks, we have
L (B) 6= ∅ if and only if B contains an accepting elementary cycle reachable
from the initial state.

a1a 0

Fig. 12.4 This TGBA
has a infinite number of

accepting cycles; none

are elementary

The case with n = 0 is obvious, since any cycle
would be accepting, and if a cycle exists, an elementary
cycle also exists. For n = 1, any accepting cycle c
contains some transition c(i) such that M(c(i)) = 1,
and there necessarily exists some elementary accepting
cycle around this transition. Note that this does not
hold for n ≥ 2, as in the example of Figure 12.4 where
the only two elementary cycles are rejecting, but they
can be combined to form an infinite number of accepting cycles.

The goal of all emptiness-check algorithms presented in the sequel is to
establish the existence or absence of such accepting cycles. Finding an accept-
ing lasso-shaped run is one direct way to prove the existence of a reachable
accepting cycle, but it is not the only one. Another one, which is especially
useful with generalized acceptance (n ≥ 2), is to prove that the automaton
has a (reachable) strongly connected component that covers all acceptance
marks. This is formalized by Definition 7 and Property 8.

Definition 7 (SCC). In an automaton (Q, ι, δ, n,M), a partial strongly
connected component (partial SCC) is a nonempty set of states C ⊆ Q such
that any ordered pair of states of C can be connected by a sequence of consec-
utive transitions. If additionally C is maximal with respect to set inclusion,
we call it a maximal strongly connected component (maximal SCC). Let us
use Cδ = {(s, x, d) ∈ δ | s ∈ C, d ∈ C} to denote the set of transitions induced
by C.

We call an SCC C trivial if Cδ = ∅. In a TGBA we say that a non-trivial
SCC C is accepting if Cδ covers all acceptance marks, i.e., ∀i ∈ [n], ∃t ∈
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Cδ, i ∈ M(t). In an SGBA a non-trivial SCC C is accepting if C covers all
acceptance marks, i.e., ∀i ∈ [n], ∃s ∈ C, i ∈M(s).

A rejecting SCC is either a trivial SCC, or a non-trivial SCC that does
not cover all acceptance marks.

Property 8. For an automaton B, we have L (B) 6= ∅ if and only if the initial
state can reach an accepting SCC.

Note that it does not matter whether the accepting SCC is partial. SCC-
based emptiness checks usually maintain a set of partial SCCs, to which
they add new states when cycles are discovered. For each (reachable) partial
SCC C they maintain the set of acceptance marks seen in C (that is SC =⋃
t∈Cδ

M(t) in the case of TGBAs, or SC =
⋃
s∈CM(s) for SGBAs), and

they can report the non-emptiness of the automaton as soon as one of these
sets equals [n].

In the context of model checking, the automaton B to be checked for
emptiness is actually the product of a Kripke structure (representing the
state space of the model under verification) with an automaton capturing
the behaviors invalidating an LTL formula ϕ (the specification to check).

Theorem 1. Let ϕ be an LTL formula, A¬ϕ an automaton with n acceptance
marks such that L (¬ϕ) = A¬ϕ, and K a Kripke structure. The following
statements are equivalent:

1. L (K) ⊆ L (ϕ),
2. L (K) ∩L (A¬ϕ) = ∅,
3. L (K ⊗A¬ϕ) = ∅,
4. K ⊗A¬ϕ has no reachable, accepting cycle;
or in case n ≤ 1 no reachable accepting elementary cycle,
5. K ⊗A¬ϕ has no reachable, accepting SCC.

The emptiness checks we will present either look for accepting elementary
cycles (when n ≤ 1) or accepting SCCs. However an important point is that
they search for those in the product K ⊗A¬ϕ. Because the Kripke structure
K can be pretty large, a classical optimization is to generate both the Kripke
structure K and the product K ⊗ A¬ϕ on the fly, as required by the needs
of the emptiness-check procedure. Doing so avoids generating any part of K
that would never be reached in the product, and it may also save a lot of
time in case an accepting cycle is discovered early: the emptiness check can
then exit immediately without exploring the rest of the product. For this on-
the-fly construction to work, the emptiness check should only move forward,
i.e., from a given state (s1, s2) of the product, one may only compute its
successors, but not its predecessors. Originally, only the initial state (ι1, ι2)
is known, and the emptiness check may explore the successors of this state, as
well as the successors of any new state discovered this way. In such a setup,
any cycle or SCC we discover is necessarily reachable.
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12.2.7 Implicit Models and Automata

We have seen in Property 2 that the size of the Büchi automaton can be
exponential in the size of the LTL formula, i.e., the number of symbols it
contains. Not much has been said about the size of the model M . To expand
on this, we first need to make some assumptions about its representation.

Definition 8. A model is a tuple M = (D, θ, state-labels,next-state) where

• D = V1×· · ·×Vk is the data of the model composed of k Boolean variables,
• θ ∈ D is the initial state,
• state-labels : D → 2AP is a state label function, and
• next-state : D → 2D is a next-state function.

The data D of the model can be thought of as the values of all variables
and program (thread) counters in some imperative language. The set D rep-
resents all potential states of the model. The next-state function provides an
implicit encoding of all transitions in the system from a given state. It is typ-
ically an implementation of the system semantics of the individual program
statements; for an example see [62].

The actual Kripke structure can be computed as an explicit representation
of the data that the model represents implicitly.

Definition 9. The Kripke structure KM = (Q, ι, δ, `) of a model M =
(D, θ, state-labels,next-state) is defined as follows:

• ι = θ,
• Q is the smallest fixpoint of next-state that includes θ,
• δ =

{
(s, d) ∈ D2 | d ∈ next-state(s)

}
, and

• ` = state-labels.

The introduction mentioned that the graph of the system (the Kripke
structure of the model) is exponential in the number of components and
variables. We can now be more exact. Let n be an upper bound on the data
domains, i.e., |Vi| ≤ n (0 ≤ i ≤ k).

Property 9. The number of states in the Kripke structure K = (Q, ι, δ, `) is
exponential in the number of variables in the model (k): |Q| ∈ O(nk).

The implicit definition of the Kripke structure can be extended to the
product automaton as well.

Definition 10 (Implicit product automaton). The implicit product au-
tomaton of a model M = (D, θ, state-labels,next-state) and a TGBA A =
(Q, ι, δ, n,M) is the implicit TGBA C = (Q′, ι′,next-product, n,M ′) where:

• ι′ = (θ, ι),
• Q′ = D ×Q,
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• (x, (d1, d2)) ∈ next-product((s1, s2)) ⇐⇒ (d1) ∈ next-state(s1) ∧
state-labels(s1) = x ∧ (s2, x, d2) ∈ δ, and
• M ′

(
((s1, s2), x, (d1, d2))

)
= M

(
(s2, x, d2)

)
.

Definition 11. The TGBA (Q′′, ι′, δ′, n,M ′) generated from the implicit
product automaton (Q′, ι′,next-product, n,M ′) is defined by taking:

• Q′′ is the smallest fixpoint of next-product that includes ι′,
• δ′ =

{
(s, x, d) ∈ D2 | (x, d) ∈ next-product(s)

}
.

Property 10. By definition, the product TGBA of M and A in Definition 11
is the same as KM ⊗A from Property 4.

Property 11. The number of states in the product structure KM ⊗ A¬ϕ =
(Q, ι, δ, n,M) of a model M = (D, θ, state-labels,next-state) and a TGBA
A¬ϕ can be exponential in the number of variables in the model (|D| = l,
with data domains bounded by n) and in the formula ϕ: |Q| ∈ O(nl × 2|ϕ|).

The implicit definition helps us to avoid storing all transitions of the Kripke
structure and its product, by recomputing them from the states. Moreover,
entire parts of the Kripke structure might never have to be generated as
they are suppressed by the synchronization of the product. The algorithms
in the subsequent section will therefore use the implicit definition. While this
definition prevents algorithms from doing backwards traversals (the inverse
of next-state is not always computable), we will see that this is not required.

12.2.8 Simpler Subclasses

In 1990, Manna and Pnueli [76] presented a classification of temporal prop-
erties (i.e., languages expressed either as LTL or automata), into a hierarchy.
Two subclasses are of particular interest in the context of model checking [25]:
guarantee and persistence properties. The reason is that they can be repre-
sented by automata with additional constraints that simplify their emptiness
checks.

Let us call an LTL guarantee (ϕG) and an LTL persistence (ϕP ) any
property that can be defined as an LTL formula using the following grammar,
where a ∈ AP is any atomic proposition. (ϕS and ϕR correspond to the dual
classes of safety and recurrence.)

ϕG ::= ⊥ | > | a | ϕG ∨ ϕG | ϕG ∧ ϕG | XϕG | FϕG | ϕG UϕG | ¬ϕS
ϕS ::= ⊥ | > | a | ϕS ∨ ϕS | ϕS ∧ ϕS | XϕS | GϕS | ϕS RϕS | ¬ϕG
ϕP ::= ϕS | ϕG | ϕP ∨ ϕP | ϕP ∧ ϕP | XϕP | FϕP | ϕP UϕP | ϕP RϕS | ¬ϕR
ϕR ::= ϕS | ϕG | ϕR ∨ ϕR | ϕR ∧ ϕR | XϕR | GϕR | ϕR RϕR | ϕR UϕG | ¬ϕP
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Fig. 12.5 A weak TGBA (left) and an equivalent weak SBA (right). Both have two

accepting SCCs and one rejecting SCC. Inside each SCC, all transitions or states bear the

same marks. Their language is that of the formula (Fa∧G((b∧X¬b)∨(¬b∧Xb)))R b, which
is an LTL persistence
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Fig. 12.6 Two terminal SBAs recognizing L (Fa). The left one was made artificially more

complex to illustrate how any terminal automaton can be simplified by compacting all
accepting SCCs into a single (and unique) state, and removing any SCCs that are only

reachable via an accepting SCC

For instance, GFa is a recurrence formula (ϕR), FGb is a persistence formula
(ϕP ), but the conjunction of these two formulas GFa ∧ FGb does not belong
to any of the above classes.

LTL guarantee and LTL persistence formulas can be represented respec-
tively by terminal and weak automata.

Definition 12 (Weak Automaton). A TGBA (or SGBA) is weak if in any
of its SCCs all transitions (or states) have the same marks.

This definition implies that in each SCC of a weak automaton, either
all cycles are accepting, or all cycles are rejecting. Because of that, any
weak TGBA (Q, ι, δ, n,M) can be trivially converted into an equivalent
SBA (Q, ι, δ, 1,M ′), with the same transition structure, but defining M ′ by
M ′(s) = [1] if there exists a transition t ∈ δ(s) such that M(t) = [n] and
ts and td belong to the same SCC; or M ′(s) = ∅ otherwise. Figure 12.5
illustrates this.

Weak automata can still express a large subclass of LTL properties. Many
properties encountered in practice turn out to be weak or even simpler [11,
69].

An even simpler subclass of weak automata is terminal automata.

Definition 13 (Terminal Automaton). A TGBA (SGBA) (Q, ι, δ, n,M)
is terminal if it is weak, and if any of its accepting SCCs is complete: that is,
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for any accepting SCC C ⊆ Q, any pair of states s, d ∈ C within that SCC,
and any assignment x ∈ BAP, there exists (s, x, d) ∈ δ.

The states that belong to accepting SCCs are called terminal states.

Note that because the accepting SCCs of terminal automata are complete,
they will accept all suffixes. Therefore any terminal automaton can be sim-
plified into an equivalent terminal automaton with a single terminal state
looping over all possible assignments. Figure 12.6 illustrates this.

Property 12. From any LTL guarantee (ϕG on page 15) one can build an
equivalent terminal automaton. Similarly, one can build a weak automaton
equivalent to any LTL persistence (ϕP ).

The subclass of LTL guarantees is simple enough that typical LTL transla-
tion algorithms [49, 6, 37] produce terminal automata naturally. A construc-
tion of weak automata from LTL persistence properties is given by Černá
and Pelánek [25], and is implemented for instance in ltl2tgba.

The usefulness of terminal automata for model checking comes from the
fact that to prove the existence of an accepting run, we only need to reach a
terminal state. This fact also applies to the product with a Kripke structure,
provided that the Kripke structure is known to be deadlock-free (Definition 2).

Property 13. Let K = (Q1, ι1, δ1, `) be a deadlock-free Kripke structure, and
A = (Q2, ι2, δ2, n,M) a terminal automaton. L (A ⊗ K) 6= ∅ if and only if
there exists a reachable state (s1, s2) ∈ Q1×Q2 where s2 is a terminal state.

Indeed, the fact that K is dead lock-free implies that any prefix from ι1
to s1 can be continued into a lasso-shaped accepting run on K, and the fact
that s2 belongs to an accepting and complete SCC means that any suffix can
be accepted from there. Therefore, upon reaching (s1, s2) it is clear that an
accepting run can be found in A⊗K.

In the subsequent section, we show that these simpler classes of automata
also allow for simpler algorithms to solve the emptiness-check problem.

12.3 Basic Sequential LTL Model Checking Algorithms

The current section presents sequential algorithms for checking emptiness of
Büchi automata. As discussed in the previous section, this problem can be
solved in the case of n ≤ 1 by showing that none of the elementary cycles
are accepting. In the generalized case with n ≥ 2, however, all cycles need to
be considered according to Theorem 1. Therefore, we present a specialized
algorithm called Nested Depth-First Search for the case where n ≤ 1 and
an SCC-based algorithm for the general case. We will show that the gener-
ality of the second algorithm comes at the cost of a slightly higher resource
consumption.



18 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, Renault

We also saw that the automaton to check is the product between the
property automaton A¬ϕ and the Kripke structure KM . Since this product
can be large, a classical technique these algorithms employ is to compute
this product on the fly. Before presenting the algorithms, we first discuss the
on-the-fly technique and its advantages.

12.3.1 On-The-Fly Algorithms

While the automaton A¬ϕ representing the specification is usually quite small
(often fewer than 10 states), the automaton KM can have billions of states,
and the product of these two automata is a Cartesian product of their states
in the worst case (i.e., |KM ⊗A¬ϕ| ≤ |KM | ⊗ |A¬ϕ|).

For efficiency reasons model checkers will therefore computeKM andKM⊗
A¬ϕ on the fly, using the implicit definitions from Section 12.2.7. So instead
of using the static definition of product transitions δ, we use its implicit
counterpart next-product. This approach has various advantages:

• any part of KM that does not synchronize with A¬ϕ is not computed,
• we do not need to store the transitions of KM and KM ⊗ A¬ϕ since
these can be recomputed when needed, and
• states can be deleted and recomputed, at the expense of re-explorations
of the automaton, thus allowing for trading of computation time for mem-
ory use.2

The advantages are especially important when we recall that the number
of states in the product automaton is exponential in both the property and
the system (see Property 11). As memory is often a bottleneck for model
checking, it would be disastrous to store those as well since there might be
up to quadratically more transitions than states.

An important consequence is that these emptiness-check algorithms are
only allowed to move forward in the automaton: from a state of A, one can
compute the successors, but not the predecessors. This restriction comes from
the fact that the actions of the original model might not be reversible (it might
be intractable to compute the inverse of next-product). While respecting this
constraint, the emptiness check needs to explore the product automaton to
find information about cycles or SCCs.

2 Various state space caching techniques have been invented that also ensure termination
of the model checking algorithm [55, 89].
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12.3.2 Depth-First Search

This exploration can be done using one of the two classical graph traversal
algorithms: breadth-first search (BFS) or depth-first search (DFS). These al-
gorithms iterate over vertices of a graph (or states of an automaton). The
evolution of both DFS and BFS may be described as a process by which
every state in the automaton is colored. At the beginning a state has no
color and, at some point, it becomes “activated” and receives its color. In
the general description of DFS below, we use ⊥ for “no color” and > for “a
color”. These algorithms only differ by the order in which states are colored.
In depth-first search, when choosing which state to explore next, children
are favored over siblings. In contrast, in a breadth-first search siblings are
favored over children. Even if both DFS and BFS have running time that is
linear in the size of the product automaton (i.e., the number of states plus
the number of transitions), most sequential emptiness checks are based on a
DFS exploration since it can be used to detect cycles easily.

Algorithm 1: Depth-first search algorithm

1 function Setup (A = (Q, ι, next-product, n,M))

2 Dfs(A, ι)

3 function Dfs (A = (Q, ι, next-product, n,M), s)

4 s.color := >
5 forall t ∈ next-product(s) do
6 if td.color = ⊥ then

7 Dfs(A, td)

Algorithm 1 presents a DFS exploration for an implicit automaton A =
(Q, ι,next-product, n,M). Lines 1–2 only set up the exploration and launch
the DFS exploration with the initial state ι of the automaton A. The main
procedure (lines 3–7) maintains for each state a Boolean color , initially set
to ⊥, that keeps track of “activated” states. Every time a state is visited, its
field color is set to > (line 4). At line 5 all successors of the currently visited
state are processed: only new ones, i.e., with color = ⊥, are recursively visited
(line 7). The stack of recursive calls is also called the DFS stack. A state that
is colored > and is on the stack is called scheduled or stacked. Once all its
successors have been considered, it is popped off the stack, or backtracked.

A closer look at this algorithm shows that DFS exploration by its nature
supports on-the-fly processing: only the initial state is used at the beginning
(line 2) and the predecessors of a state are never computed (line 5).

The emptiness of a terminal automaton A = (Q, ι,next-product, n,M)
(see Section 12.2.8) can easily be verified using the above DFS. All we have
to do is to check whether M(t) = [n] (for transition-based acceptance) or
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M(ts) = [n] (for the state-based case) in the for loop. The check is so simple
that it can be done by a BFS algorithm as well.

To detect elementary cycles of the automaton, the DFS algorithm has to
be extended to keep track of the states on the stack. Algorithm 2 does this.
It first marks the state s that is about to be explored gray at line 5. When
backtracking over a state (removing it from the (program) stack), its color
is set to black (line 11). When exploring the successor td of s at line 6, if td

is in the DFS stack, a cycle has been found. Indeed, the states in the DFS
stack between td and s form a path and td is a successor of s. Otherwise, if
td is not on the DFS stack, no information about cycles can be inferred.

The algorithm exploits this to check the accepting condition in the weak
case (Definition 12). Since in this case either all states on the cycle are ac-
cepting or none are, the following solution is correct. At line 2, the automaton
is first converted into an equivalent state-based version. Then at line 7, the
check for elementary cycles is performed by checking whether td.color = gray .
If additionally the state td is accepting (M(td) = [1]), non-emptiness of the
automaton is reported at line 8. We only need to check the accepting mark
on td (or s), and not the marks of other states on the cycle, as all states in
one SCC have the same mark by Definition 12 and consequently all states on
the same cycle also carry the same mark.

Algorithm 2: Sequential emptiness check for weak TGBAs based on
DFS

1 function Setup (A = (Q, ι, next-product, n,M))
2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)

3 Dfs(A′, ι)

4 function Dfs (A = (Q, ι, next-product, 1,M), s)
5 s.color := gray

6 forall t ∈ next-product(s) do
7 if td.color = gray ∧M(td) = [1] then
8 report non-empty

9 if td.color = ⊥ then
10 Dfs(A, td)

11 s.color := black

Edelkamp et al. [40] show how such simple algorithms can be used even
in the case when only part of the automaton is weak or terminal. In Sec-
tion 12.4.1, we discuss similar parallel variants.

Since the Büchi emptiness-check problem requires an inspection of all cy-
cles to exclude accepting cycles, most algorithms rely on a DFS exploration
(with some more elaborate cycle checks for general, non-weak TGBAs/SBAs
as we will show in the subsequent section on Nested-DFS). These algorithms
either use DFS directly to conclude emptiness by inspecting elementary cy-
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cles, exploiting Property 7, or decompose the automaton into SCCs, exploit-
ing Property 8. Nested-DFS falls in the former category, while the SCC al-
gorithm falls in the latter.

In contrast, a BFS exploration cannot easily detect cycles. Consequently,
using BFS as exploration strategy requires a redesign of the LTL model check-
ing algorithms, as we will illustrate in Section 12.5.

12.3.3 Nested-DFS

The Nested-DFS algorithm (NDFS) was originally proposed by Courcoubetis
et al. [31] and relies on the detection of accepting elementary cycles reachable
from the initial state. This algorithm focuses on SBA with n ≤ 1 and runs in
time linear with respect to the size of the graph. The algorithm accomplishes
this by using DFS. Its use of DFS is however not as simple as we have seen in
the previous section, because we cannot simply check the acceptance criterion
on any state in the cycle as is sufficient in the case of weak automata.

NDFS uses a first DFS to detect accepting states, i.e., states of the automa-
ton holding the unique acceptance mark. Traditionally this DFS is called
blue-DFS since it colors in blue all the states encountered during the ex-
ploration. When an accepting state is about to be backtracked during this
search, a second DFS is then invoked with the accepting state as a seed. This
DFS colors all states in red and thus it is often called red -DFS. The goal of
this second exploration is again to reach the seed state. If this state, which is
accepting, can be reached itself, an accepting run is reported proving that the
automaton has a non-empty language. Because the version in Algorithm 3
contains several improvements, we first discuss its details.

The BlueDfs function (lines 4–15) is similar to the DFS presented in
Algorithm 1. Nonetheless some improvements have been added to transform
it into an emptiness check. First of all, this algorithm uses two bits per state
to keep track of the associated colors. Four colors are used:

• white: the initial color of a state. We assume that states are white when
they are generated for the first time.

• cyan: the state is still in the DFS stack of the blue search.
• blue: all the direct successors of the state have been visited by the blue-

DFS but not yet by a red one.
• red : states that have been considered in both the blue- and the red-DFS.

The BlueDfs function starts by coloring any new state in cyan (line 5).
This color helps to detect accepting cycles directly inside the BlueDfs
(lines 7 and 8): during this search, if the successor td of an accepting state s is
cyan an accepting run exists since there is a path from d to s and vice versa.
Similarly, if td is accepting and cyan, an accepting run exists. Otherwise, if
td has not yet been visited (line 9) a recursive call is performed (line 10).
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Algorithm 3: Nested Depth-first search algorithm

1 function Ndfs (A = (Q, ι, next-product, n,M))

2 assert(n = 1)

3 dfsBlue(A, ι)

4 function dfsBlue (A = (Q, ι, next-product, 1,M), s)

5 s.color := cyan

6 forall t ∈ next-product(s) do
7 if td.color = cyan ∧ (M(ts) = [1] ∨M(td) = [1]) then

8 report non-empty

9 else if td.color = white then
10 dfsBlue(A, td)

11 if M(s) = [1] then

12 dfsRed(A, s)
13 s.color := red

14 else
15 s.color := blue

16 function dfsRed (A = (Q, ι, next-product, 1,M), s)

17 forall t ∈ next-product(s) do

18 if td.color = cyan then
19 report non-empty

20 else if td.color = blue then

21 s.color := red
22 dfsRed(A, td)

Two cases are of interest when all the successors of a state have been
visited, i.e., just before backtracking it from the blue search. If the state is
not accepting (line 15), its color becomes blue and the state is backtracked.
Otherwise, the state is accepting (line 11) and the algorithm launches a nested
exploration using the RedDfs function.

This function uses the accepting state as a seed, which is treated specially:
it remains cyan during the red search and becomes red afterwards (line 13).
This is required to limit the algorithm to four colors (which can be stored in
two bits). The RedDfs function only looks for a state with the cyan color,
i.e., a state that belongs to the DFS stack of the blue exploration. Because
the stack of the blue search terminates in the seed, this condition is sufficient
to demonstrate the reachability of a cycle over an accepting state. Therefore,
if a cyan state is detected in the red search (line 18) then an accepting run
exists and the automaton is reported to have a non-empty language (line 19).

Because the red search therefore never crosses the stack of the blue search,
it will only explore blue states.

One can also note that all states visited by the RedDfs are marked red
(line 21) and thus will be ignored by other (blue or red) explorations. This
makes NDFS linear in the size of the input automaton (in terms of states and
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transitions). But why does the red search not have to reset its visited states
like the inner search of the previous algorithm? It turns out that the DFS
order of the blue search plays a crucial role here. Consider the case where
the red search is started from a seed s and it encounters a red state. It can
be shown that this state can never lead back to the cyan stack, because that
would contradict the depth-first order of the blue search. An intuition for
this property can be found in [48] and a detailed proof in [64].

Note that if the automaton has no accepting state the NDFS is optimal
since states and transitions are visited only by the blue-DFS.

Many improvements of this algorithm have been proposed [59, 50, 40] to
faster detect non-emptiness, reduce the size of accepting runs if they exist, or
to reduce memory footprint. Algorithm 3, derived from the work of Schwoon
and Esparza [87], presents a combination of all these optimizations.

12.3.4 Algorithms Based on SCC Decomposition

The algorithm presented in the previous section works only if the automaton
to check is a non-generalized Büchi automaton. If the input automaton is
a generalized one, the emptiness check of Tauriainen [94] can be used. This
algorithm derives from the NDFS and repeats the inner DFS several times (at
worst n times, with n the number of acceptance marks). The main drawback
of this algorithm is that its complexity depends of the number of acceptance
marks: this reduces all the benefits of using a generalized Büchi automaton.

Another idea to check for the emptiness of a generalized Büchi automaton
is to degeneralize this automaton (as described by Property 1) before checking
its emptiness. In this approach, the degeneralized automaton may have n · |Q|
states, with |Q| the number of states of the input automaton and n the
number of acceptance marks. Once again, this approach is not optimal since
it depends of the number of acceptance marks.

Another emptiness-check approach is to compute the accepting strongly
connected components of the generalized Büchi automaton. SCC-based empti-
ness checks [32, 52, 33, 4, 48] are still based on a DFS exploration of the
automaton; they do not require another nested DFS, have a linear time com-
plexity and directly support TGBA. These emptiness checks are based on the
classical SCC decomposition algorithm for directed graphs by Tarjan [90],
which partitions the set of states according to the SCC equivalence classes.
Each partition is then associated with the set of acceptance marks that ap-
pears inside the corresponding SCC to facilitate the emptiness check.

Intuitively, Tarjan’s algorithm maintains a separate stack (apart from the
search stack) of partial SCCs. Partial SCCs are enlarged when the DFS finds
a cycle by adding its states to the secondary SCC stack. Each partial SCC
is associated with a potential root, i.e., the state of the partial SCC that is
the lowest on the stack. Thus, every time the partial SCC is enlarged, a new
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potential root may be selected. When the root is backtracked, the DFS order
guarantees that the entire SCC was visited and is on the secondary stack.
This is the moment when it is popped off the stack and the SCC can be
reported even before the algorithm finishes traversing the entire graph (i.e.,
on the fly). To identify current roots the algorithm uses indices. Therefore,
it uses slightly more memory per state than the NDFS algorithm, which
requires only two bits per state.

We focus on a version of Tarjan’s algorithm that maintains partial SCCs
in a database, as it forms the basis of communicating partial SCCs in our
parallel algorithm (see Section 12.4.3). It was developed by Purdom [80] even
before Tarjan’s algorithm, and later optimized by Munro [79]. Like Tarjan’s
algorithm it uses DFS, but this is not explicitly mentioned (Tarjan was the
first to do so). In this algorithm, the secondary stack only stores roots as the
partial SCC is kept in the database. We also add the ability to collapse cycles
into partial SCCs immediately (as in Dijkstra [35, 47]).

The database with partial SCCs is implemented using a union-find data
structure. As its name suggests, a union-find is a data structure that repre-
sents sets and provides efficient union and membership-check procedures. The
union-find structure partitions a set E of elements and associates a unique
representative (an element of E) with each partition. This structure offers
the following methods on elements x, y ∈ E:

• makeset(x): creates a new partition containing the element x if x is not
already in the union-find.

• find(x): returns null if x is not in the union-find, otherwise returns the
actual representative of the partition containing x.

• sameset(x, y): returns a Boolean indicating whether x and y are in the
same partition.

• unite(x, y): merges the partitions containing x and y.

With this structure, the set E of elements is partitioned into disjoint sub-
sets {S1, . . . , Sm} where m corresponds to the number of disjoint subsets.
The underlying data structure of each subset Si is typically a reverse arbores-
cence (an in-tree), represented by a parent function p(x) ∈ Si for each x ∈ Si.
A unique representative y is appointed as the root of this in-tree. It is often
designated with a self-pointer p(y) = y.

The parent function is usually implemented using an array of size |E|
that stores, for each element in |E|, the index of its parent in the tree.
The array elements are initialized to ⊥ representing the empty subset. The
operation makeset(x) then creates a singleton set consisting of its root
p(x) := x. If two sets are merged with unite(x, y), first the representativity
of rx = find(x) and ry = find(y) is identified. Then one of them, e.g., ry, is
designated the new root by setting p(rx) := ry.

By compacting the paths in the in-tree, i.e., making leaves point directly to
the root, the operations on the structure can all be solved in quasi-constant,
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amortized time [92]. Many variants on compaction schemes and unite strate-
gies have been studied by Tarjan and van Leeuwen [93].

Algorithm 4: SCC-based emptiness check

1 Union-find of 〈Q ] {Dead}〉 : uf

2 Stack of 〈q ∈ Q, a ∈ 2[n], ingoing ∈ 2[n]〉 : roots

3

4 function Setup (A = (Q, ι, next-product, n,M))

5 uf.makeSet(Dead)

6 SccBased(A, ι, ∅)

7 function SccBased (A = (Q, ι, next-product, n,M), s, acc)

8 uf.makeSet(s)

9 roots.push(〈s, ∅, acc〉)
10 forall t ∈ next-product(s) do

11 if uf.sameSet(td,Dead) then

12 continue

13 else if uf.find(td) = null then

14 SccBased(A, td,M(t))

15 else
16 roots.top().a← roots.top().a ∪M(t)

17 while ¬uf.sameSet(td, s) do

18 〈r, a, i〉 ← roots.pop()
19 roots.top().a← roots.top().a ∪ i ∪ a
20 uf.unite(r, roots.top().q)

21 if roots.top().a = [n] then
22 report non-empty

23 if roots.top().q = s then
24 roots.pop()
25 uf.unite(s,Dead)

Algorithm 4 presents the emptiness check [83] for TGBA. Two global vari-
ables are used:

1. The union-find uf (line 1), which stores the various partitions correspond-
ing to the SCCs discovered so far by the exploration. This structure main-
tains a special partition Dead, which holds all states of already completed
SCCs (without accepting run), i.e., all states that cannot be part of an
accepting run.

2. The roots stack roots (line 2) that contains tuples composed of: q the
potential root, a the set of acceptance marks (visited so far) associated
with the SCC containing q, and a special field ingoing. This special field
keeps track of the acceptance marks held by the ingoing transition. This
information must be kept since it is not directly available on TGBAs.
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Lines 4 to 6 only set up the union-find with the special partition Dead,
and then call the recursive exploration through the SccBased function. This
function takes three parameters: the automaton to check, the state to explore,
and the acceptance mark held by the ingoing transition.

Lines 8 and 9 respectively insert the state into the union-find and the
roots stack. Lines 10 to 22 process all the successors of the current state
s. If the destination td of a transition is already Dead (lines 11–12) then
the transition is just skipped since it cannot lead to an accepting run. If
the destination has not yet been visited (lines 13–14) the function is called
recursively. Finally, the destination can be a part of an SCC (trivial or not)
that is not yet marked Dead. In this case, a cycle has been found and partial
SCCs stored in the roots stack (lines 16–20) must be merged. During this
merge the acceptance marks in the SCC are also merged (line 19). When all
partial SCCs have been merged, an accepting run exists iff the field a of the
top of the roots stack contains all acceptance marks. Note that this test could
also be done during the merge.

Finally, when the root of an SCC is about to be backtracked, all states
belonging to this SCC must be marked Dead. Line 25 performs this operation
in quasi-constant time, by virtue of the union-find data structure.

12.4 Multi-core, DFS-Based Solutions

12.4.1 Terminal and Weak Acceptance

In Section 12.3, we saw that the simplest classes of Büchi automata often
allow for simpler and more efficient algorithms. Here we show that checking
emptiness of weak and terminal automata can be done using a parallel version
of DFS that preserves enough of the depth-first order to still be able to
find all elementary cycles. First, we show how a simple parallel search can
detect emptiness of terminal automata, as it illustrates nicely what low-level
ingredients are required for shared-memory parallel algorithms.

Terminal acceptance

Algorithm 5 shows a parallel search algorithm with a shared state set. To
simplify the acceptance condition, the algorithm first converts the terminal
automaton, which is by extension also a weak automaton, to an equivalent
SBA A′ at line 4. Then it schedules the initial state in the stack or the queue
of the first worker Queues[0]. The first worker will start exploring from this
state and generate new states, as we will see later, while a load balancer
will take care that work arrives in the queues of the other workers. When
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the initializations are completed, the algorithm launches the actual search
procedure in parallel at line 7. At the first encounter of an accepting state
the algorithm terminates at line 15, just like the sequential algorithm for
terminal acceptance discussed in Section 12.3.2.

Algorithm 5: A parallel search algorithm for checking the emptiness
of terminal automata

1 global Queues[P ]

2 global StateSet
3 function par-terminal-check (A = (Q, ι, next-product, n,M), P )

4 Convert A into an equivalent SBA A′ (e.g. Figure 12.5).
5 Queues[0] := {ι}
6 StateSet := ∅
7 search1(A′) || . . . || searchP (A′)
8 report no-cycle

9 function searchp (A = (Q, ι, next-product, 1,M))

10 while load-balance(Queues[p]) do
11 s := Queues[p].dequeue()

12 if StateSet .find-or-put(s) then

13 forall t ∈ next-product(s) do
14 if M(td) = [1] then

15 report cycle and terminate

16 Queues[p].queue(td)

Each worker perpetually calls the load balancer at line 10. When its queue
is non-empty (Q[p] 6= ∅), the load -balance function will merely return true.
When a worker has run out of work (Q[p] = ∅), however, the function takes
some work from the queue of another thread and adds it to the local queue
Q[p]. Only when the load balancer detects termination, using a specialized
termination detection algorithm [85], will the load balancer return false, al-
lowing the worker thread to exit the search function.

The use of a load balancer has the advantage that no communication oc-
curs while workers still have work locally available (their queue is non empty).
Only in the extreme cases when a worker is without work, e.g., right after
initialization and when most of the state space has been processed, will the
algorithm experience overhead from additional synchronization. Specialized
concurrent “deque” data structures allow the load balancer to be particularly
efficient [19].

For the rest, the parallel search function operates as expected: A state is
taken from the local queue at line 11, its successors are considered at line 13,
and when a new state is encountered it is added to the local queue at line 16.
The worker thus traverses the state space more or less independently, with one
exception: visited states are entered into a shared set StateSet . To atomically
add states, this set implementation has a find -or -put operation, which at the
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same time checks whether a state s is already contained in the set, and when
this is not the case, adds it to the set. It can be used to “grab” new states
and thus exclusively assign them to the worker that encounters a state first.

The state set can be implemented efficiently as a concurrent hash table or
tree table data structure [71, 68]. Because the set of visited states accounts
for almost all memory use of the algorithm (recall from the previous section
that transitions do not need to be stored), and because workers diverge into
different parts of the (huge) state space, most lookups in the table do not
collide, i.e., they access different parts of the table. This is another efficient
aspect of the algorithm; it exploits the random memory characteristic of
model checking algorithms (as also discussed in the introduction) to increase
parallelism.

In the sequential case, the algorithm yields a strict DFS order when im-
plementing Queues as a stack, and a strict BFS order when implementing
Queues as a fifo-queue. This parallel algorithm variant however violates a
strict order as soon as workers start encountering the same states. Because
only one of them will win the race in the find -or -put call, the others are forced
to violate the order. For this reason, the algorithm might just as well imme-
diately try to “grab” each generated state td inside the for loop by moving
line 12 right before line 16 (the state set should be initialized to {ι}). While
this causes a more abnormal search order, it limits all duplication of states
on local stacks.

Various researchers have found ways to approach BFS more precisely in
parallel algorithms, while also limiting communication by introducing sepa-
rate queues [2, 58]. A more precise order can have practical benefits, e.g., it
allows the model checker to find the shortest counterexample, but also mit-
igates the on-the-fly behavior of the procedure. It is unknown yet whether
(non-lexicographic) DFS can be preserved efficiently as well (recall from the
introduction that lexicographic DFS, with fixed transition ordering, likely is
not parallelizable according to theory). Nonetheless, we now show that with
a simple parallel algorithm, we can preserve enough of the DFS order to find
all elementary cycles, which is sufficient to tackle the LTL model checking
problem as the following sections show.

Weak acceptance

Emptiness of weak automata is a little harder to compute than for terminal
automata because the algorithm still needs to inspect all elementary cycles.
In Section 12.3.2, we showed how DFS can solve it sequentially. Algorithm 6
does the same in parallel. Again, to simplify the acceptance condition, the
algorithm first converts the terminal automaton to an equivalent SBA A′ at
line 2. Then, the algorithm launches the actual search procedure in parallel
at line 3. All workers start searching from the same initial state.
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Algorithm 6: A parallel DFS algorithm for checking emptiness of
weak automata

1 function par-weak-check (A = (Q, ι, next-product, n,M), P )

2 Convert A to an equivalent SBA A′ (e.g. Figure 12.5)

3 par-dfs1(A′, ι) || . . . || par-dfsP (A′, ι)
4 report no-cycle

5 function par-dfsp (A = (Q, ι, next-product, 1,M), s)
6 s.gray[p] := true
7 forall t ∈ randomize(next-product(s)) do

8 if td.gray[p] ∧M(td) = [1] then
9 report cycle and terminate

10 if ¬td.gray[p] ∧ ¬td.black then
11 par-dfsp(td)

12 s.black := true
13 s.gray[p] := false

The search procedure resembles the sequential DFS procedure of Algo-
rithm 2, with the exception that the stack states are now colored gray lo-
cally. This means that workers’ stacks might overlap while searching through
the state space. When backtracked, however, the states are colored globally
black , pruning the search space for other workers. This is where the speedup
of the parallel algorithm comes from. To obtain the best performance, the
search order of each parallel worker should be randomized, so that workers
are guided into different parts of the state space [65]. Although redundant
due to the set inclusion, we nonetheless emphasize this with the randomize
function.

To detect cycles, the algorithm uses the same stack-based check as its
sequential counterpart. It will not miss any cycles because of the parallel
search for the following reasons:

• It is possible to show that all black states always have black or gray states
as successors (gray for some worker).

• When a worker p ignores a state td for being black, and that state actually
has a path to its gray stack, then by induction on the cycle, it can be
shown that there is some other worker in a similar situation or able to
find a path back to its stack.

• Because there are a finite number of workers, one will eventually find the
cycle.

A full proof of correctness can be found in Laarman and Faragó [69].
Because the use of DFS, the weak emptiness check algorithm looks simpler

than Algorithm 5. Indeed, it does not require a load-balancer, because work
distribution is achieved by letting stacks (partly) overlap. While it may be
the case that workers exclude each other from parts of the state space, there
are easy ways to remedy that [69]. Because the lack of a load-balancer, the
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stack can be completely local (here it is maintained as part of the program
stack). However, it is not the case that the algorithm does without a global
state set. The set is hidden behind the color variables and implicitly accessed
when these are referenced in the algorithm. Therefore, an efficient concurrent
hash table or tree data structure is again crucial for its performance.

To detect non-progress properties, another subset of LTL, Laarman et
al. [69] introduce DFS-FIFO, an algorithm that utilizes a similar parallel DFS.
It can be used for checking emptiness of weak automata as well and improves
the parallel scalability by combining the search with a highly scalable BFS.
A similar approach was taken for parallel checking of weak LTL properties
on timed automata in [34]. The parallel DFS approach has the additional
benefit that it combines well with state space reduction techniques, as these
can implemented with the same on-the-fly algorithm [70].

12.4.2 CNDFS

Two algorithms were presented simultaneously (LNdfs by Laarman et al.
[66] and ENdfs by Evangelista et al. [42]) that adapted the Nested-DFS
(Ndfs) algorithm to multi-core architectures. Both share the principle of
launching multiple instances of Ndfs that synchronize themselves to avoid
useless state revisits, just like the algorithm for checking emptiness of weak
automata discussed in the previous section. Although they are heuristic algo-
rithms in the sense that, in the worst case, they reduce to spawning multiple
unsynchronized instances of NDFS, the experiments reported by Laarman et
al. [66, 65] show good practical speedups.

They were then combined and improved in the Cndfs algorithm by Evan-
gelista et al. [43]. This algorithm is both much simpler and uses less memory,
making it more compatible with exact compression techniques such as tree
compression [68] that can compress large states down to two integers.

Cndfs is presented in Alg. 7 for P threads. It is based on the principle of
swarm worker threads (indicated by subscript p here), sharing information
via colors stored in the visited states: here blue and red. After randomly
visiting all successors (lines 13–15), a state is marked blue at line 16 (meaning
“globally visited”), causing the (other) blue-DFS workers to lose the strict
postorder property.

If the state s is accepting, as in the sequential NDFS algorithm, a red-
DFS is launched at line 19 to find a cycle. At this point, state s is called
“the seed.” All states visited by dfsRedp are collected in Rp. If no cycle is
found in the red-DFS, none exists for the seed. Still, because the red-DFS
was not necessarily called in postorder, other (non-seed, non-red) accepting
states may be encountered about which we know nothing, except the fact
that they are out of order and reachable from the seed. These are handled
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after completion of the red-DFS at line 20 by simply waiting for them to
become red.

In this scenario there is always another worker that can color such a state
red. The intuition behind this is that there has to be another worker to cause
the out-of-order red search in the first place (by coloring blue) and, in the
second place, this worker can continue its execution because cyclic waiting
configurations can only happen for accepting cycles. These accepting cycles
would however be encountered first, causing termination and a cycle report
(line 8). After completion of the waiting procedure, Cndfs marks all states
in Rp globally red, pruning other red-DFSs.

Algorithm 7: Cndfs, a multi-core algorithm for LTL model checking

1 function cndfs (ι, P )

2 dfsBlue1(ι) || . . . || dfsBlueP (ι)
3 return no-cycle

4 function dfsRedp(A = (Q, ι, next-product, n,M), s)

5 Rp := Rp ∪ {s}
6 forall t ∈ randomize(next-product(s)) do
7 if td.cyan[p] then

8 return cycle and terminate

9 if td 6∈ Rp ∧ ¬td.red then

10 dfsRedp(A, td)

11 function dfsBluep(A = (Q, ι, next-product, n,M), s)
12 s.cyan[p] := true

13 forall t ∈ randomize(next-product(s)) do
14 if ¬td.cyan[p] ∧ ¬td.blue then
15 dfsBluep(A, td)

16 s.blue := true

17 if M(s) 6= ∅ then
18 Rp := ∅
19 dfsRedp(A, s)

20 await ∀s′ ∈ Rp s.t. M(s′) 6= ∅ : s 6= s′ ⇒ s′.red
21 forall s′ ∈ Rp do
22 s′.red := true

23 s.cyan[p] := false

An efficient parallelization of the blue-DFS is absolutely essential for scal-
ability, since the number of blue states (all reachable states) typically exceeds
the number of red states (visited by the red-DFS). Since it was impossible
to color both blue and red while backtracking from the respective DFS pro-
cedures, Cndfs uses an intermediate solution, using a wait statement as a
compromise, leaving enough parallelism to maintain scalability.
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Cndfs only uses P +2 bits per state plus the sizes of R. In the theoretical
worst case (an accepting initial state), each worker p ∈ [P ] could collect
all states in Rp. According to extensive experiments, the set rarely contains
more than one state and never more than thousands, which is still negligible
compared to |Q|.

12.4.3 Multi-core/DFS-Based SCC Decomposition

To handle emptiness checking of TGBAs, a parallel SCC-based algorithm is
required as Theorem 1 indicates. Traditional parallel SCC algorithms [86,
46, 13, 98, 60, 88] are BFS-based implementations of divide-and-conquer ap-
proaches, which are not on the fly [18]. Also, these algorithms often exhibit an
n× log(n) or quadratic-time worst-case complexity. We therefore rely on DFS
to detect SCCs in parallel since DFS-based SCC detection can be both on
the fly and linear time. The main difficulty here, like in the previous section,
is that a sufficient amount of the DFS order must be preserved for correctly
detecting cycles.

We first briefly discuss a fully synchronized approach and show how bot-
tlenecks impose limitations on the algorithm’s performance. Then we present
a random search/swarmed approach that performs linearly and show how
this technique scales for multiple workers.

Fully synchronized parallel SCC algorithm

The general idea of the fully synchronized algorithm [74] is to have multiple
non-overlapping search instances. Every reachable state is visited by exactly
one worker, who globally takes ownership of the state. Searches are spawned
from unvisited successor states. Upon encountering a state taken by a differ-
ent worker, the search suspends until the state is marked as being completely
explored. Otherwise, the search proceeds similarly to Tarjan’s algorithm [91].

A cycle of suspended searches can occur as a consequence. In case no
further actions are taken, the algorithm may never finish. A map of suspended
searches is used to detect such cycles. If a worker suspends a search and
detects a cycle of suspended searches, it transfers all relevant states from
the suspended searches to one search and proceeds normally. For example,
suppose that a worker visits edge v → w and detects that w is part of a
different search. Before suspending, it checks whether the path w →∗ v can
be found by traversing states from the suspended searches. If so, a cycle is
detected, which should be resolved by the current worker.

Maintaining the suspended map and resolving cycles of suspended searches
is a costly process. The sequential linear-time performance of Tarjan’s algo-
rithm reduces to a quadratic worst-case performance in the synchronized
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variant. For the practical performance of the algorithm, two important cases
can be distinguished: graphs containing relatively large SCC sizes (|C| ∼ |Q|),
often consisting of many interconnections; and small SCCs, consisting of only
a few states (|C| ∼ 1). The synchronized algorithm exhibits good scalabil-
ity for graphs containing only small SCCs, since the different searches do
not tend to interfere with each other. For graphs with large SCCs, a fully
synchronizing algorithm can pay a large performance penalty if the worst-
case time complexity is attained due to the wait-cycle checks. On the other
hand, this algorithm totally avoids any redundant explorations as searches
never overlap. Hence, while in appearance similar to the multi-core NDFS
approaches discussed in the previous subsection, the fully synchronous algo-
rithm has characteristics similar to the BFS-based algorithms that will be
discussed in Section 12.5.

Swarmed parallel SCC algorithm

A different approach is to detect SCCs in a swarmed fashion, similarly to
Cndfs (Section 12.4.2). The general idea of the algorithm is to spawn mul-
tiple instances of a sequential DFS algorithm and communicate the fully
explored SCCs in a shared data structure [84]. An SCC is considered to be
fully explored when all its successors (direct or indirect) have been explored.
As a consequence, an instance of the algorithm can ignore all states belonging
to a fully explored SCC. Thus, communicating fully explored SCCs allows us
to prune other DFSs since an instance will never traverse a state that belongs
to a fully explored SCC.

s1

s0

δ2
1

δ3
δ0
2

δ1

Fig. 12.7 Sharing
acceptance marks

In this approach, two instances can still visit the same
SCC (in a swarmed fashion) until one of the instances
detects that it has been fully explored. If the SCC con-
tains an accepting run, we want to be able to speed up its
discovery. The multiple instances can then share the ac-
ceptance marks discovered so far for each (partial) SCC.
This information helps us to find whether an accepting
run exists. Suppose that we have two instances of a clas-
sical SCC-based algorithm running on the example of
Figure 12.7 without sharing acceptance marks. Neither
of these instances can detect an accepting cycle before
δ0, δ1, δ2, and δ3 have all been visited. Let us now suppose that they share
acceptance marks and that the first instance i0 has visited δ1 and δ2 while the
other instance i1 has visited δ0. When instance i1 discovers the transition δ3
it also discovers that s0 and s1 are in the same SCC. In this case, since i0 and
i1 share information about acceptance marks, they can detect the existence
of an accepting cycle.

In the sequential SCC-based emptiness check (Algorithm 4) the informa-
tion about fully explored SCCs is already stored inside a union-find data
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structure with a dedicated partition Dead. Lock-free versions of the union-
find structure exist [5]. A simple implementation of this structure is presented
in Algorithm 8. As mentioned Section in 12.3.4 each element stored by the
union-find maintains a field parent which represents a forest of reverse ar-
borescences. In a parallel setting this field must not be updated concurrently
by two threads. This can be done using a compare-and-swap (CAS) operation
(line 13 and 15). This operation is an atomic instruction used in multithread-
ing to achieve synchronization: CAS(m, v1, v2) compares the contents of a
memory location m to a given value v1 and, only if they are the same, modi-
fies the contents of that memory location to a given new value v2. The CAS
operation returns true if the modification was successful and false otherwise.
A closer look to Algorithm 8 shows that this structure is only lock-free and
not wait-free because of the spin-wait loops of lines 8 and 19. The rest of
this union-find remains similar to the sequential version apart from the use
of atomic operations.

This union-find can then be shared among the multiple instances to com-
municate fully explored SCCs. This structure can also be extended to store,
for each partition, a set of acceptance marks. This modification slightly im-
pacts the interface of union-find:

• When makeSet(e) effectively creates a partition for e (because it did
not exist before), the associated acceptance set is ∅.

• The unite function takes an extra argument representing the set of ac-
ceptance marks that occur in the (partial) SCC. During this operation,
the union-find must propagate the acceptance set to the representative
of the partition. This is costless since this representative is already com-
puted by the find function. Also note that for implementation details, a
union with the partition containing Dead always returns ∅.

This swarmed emptiness check is presented in Algorithm 9 and mostly
relies on the sequential SCC-based emptiness check presented in Algorithm 4.
It performs a DFS, maintains a roots stack, and uses a union-find to store
partitions representing partial SCC and Dead states. Nonetheless, some minor
changes have been made:

• Only the union-find is shared among the threads. The roots stack is local
to each instance.

• Each instance p now maintains a local integer counterp (line 3). This
integer is only incremented (line 10) so it can be used to (locally) order
states that have been visited.

• For an instance p, each state s is associated with a live number, i.e., an
integer accessible via s.livenump. This live number is given according to
counterp the first time the state is visited by the thread p (line 11).

• Line 21 has been changed since sameSet cannot be used to pop the
roots stack until the new root is discovered. Indeed, since the union-find
is shared among all threads, no assumptions about its internal state can
be made.
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Algorithm 8: Concurrent union-find data structure

1 function find (a)

2 if a.parent 6= a then

3 a.parent := find(a.parent)

4 return a.parent

5 function unite (a, b)

6 x := a
7 y := b

8 while true do

9 x := find(x)
10 y := find(y)

11 if x = y then return
12 else if x < y then

13 if cas(x.parent , x, y) then return

14 else
15 if cas(y.parent , y, x) then return

16 function sameSet (a, b)

17 x := a

18 y := b
19 while true do
20 x := find(x)
21 y := find(y)

22 if x = y then return true

23 else if x.parent = x then return false

It is worth noting that the union-find structure collects the acceptance
marks that are discovered by all threads. Thus, at line 23 the algorithm uses
the global uf structure to detect which acceptance marks have been found, by
any worker, in the partial SCC. This helps speed up reporting the existence of
an accepting run. Nonetheless, if an SCC is not accepting, its states cannot be
marked Dead before a thread has visited all the states and all the transitions
of this SCC. This is a serious drawback of this algorithm when the automaton
to check is composed of a single large SCC: in this case, the expected speedup
is null. The next algorithm solves this problem.

Improved parallel swarmed SCC algorithm

The key aspects of the improved algorithm are to communicate partially
found SCCs and globally track the remaining work left for each SCC. The
SCC algorithm is presented in [18] and is applied to LTL model checking
in [17]. It is presented in Algorithm 10 and differs slightly from Algorithm 9.

The local counter and livenum have been replaced by globally tracking
worker IDs in the union-find structure. This worker set, w ∈ 2P , is a bit-
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Algorithm 9: Swarmed SCC-based algorithm

1 Shared Union-find of 〈Q ∪ {Dead}, a ∈ 2[n]〉 : uf

2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3 Local Integer counterp

4

5 function setup (A = (Q, ι, next-product, n,M))

6 uf.makeSet(Dead)

7 counter1 ← 0; . . . ; counterP ← 0
8 swarmedSccBased1(ι, ∅) || . . . || swarmedSccBasedP (ι, ∅)

9 function swarmedSccBasedp (A = (Q, ι, next-product, n,M), s, acc)

10 counterp := counterp + 1
11 s.livenump := counterp

12 uf.makeSet(s)

13 rootsp.push(〈s, acc〉)
14 forall t ∈ randomize(next-product(s)) do

15 if uf.sameSet(td,Dead) then
16 continue

17 else if uf.find(td) = null then

18 swarmedSccBasedp(A, td,M(t))

19 else
20 uf.find(s).a := uf.find(s).a ∪M(t)

21 while td.livenump < rootsp.top().q.livenump do
22 〈r, i〉 := rootsp.pop()

23 uf.unite(r, rootsp.top().q, i)

24 if uf.find(s).a = [n] then
25 report non-empty

26 if rootsp.top().q = s then

27 rootsp.pop()

28 uf.unite(s,Dead, ∅)

set that tracks which worker threads are active in the current SCC. The
makeSet(p, s) is extended to set the bit for worker p in the partial SCC of
s, which is tracked in the representative of the set. This worker set is used
in line 14 to detect a cycle. Note that if worker p has visited some state s
in a partial SCC, every state of this partial SCC is considered to have been
visited before. This is valid since there is a path from every other state in
the SCC to s. Also note that multiple workers aid each other by concurrently
adding more states to the set, thus increasing the number of states that have
been “visited before.”

In order to collaborate in detecting when an SCC has been fully explored,
the union-find structure has been further extended to track a list of Busy
states in each partial SCC. The idea is to initially keep a global list consisting
of every state in the SCC. Then, after concluding that no new knowledge can
be obtained from a state, it gets removed from the list and another state is



12 Parallel Model Checking Algorithms for Linear-time Temporal Logic 37

Algorithm 10: Ufscc Algorithm: Improved swarmed SCC algorithm

1 Shared Union-find of 〈Q ∪ {Dead}, a ∈ 2[n], w ∈ 2P , list ∈ 2Q〉 : uf

2 Local Stack of 〈q ∈ Q, ingoing ∈ 2[n]〉 : rootsp
3

4 function setup (A = (Q, ι, next-product, n,M))
5 uf.makeSet(Dead)

6 improvedSCC1(ι, ∅) || . . . || improvedSCCP (ι, ∅)

7 function improvedSCCp (A = (Q, ι, next-product, n,M), s, acc)
8 uf.makeSet(p, s)

9 rootsp.push(〈s, acc〉)
10 while s′ ∈ uf.pickFromList(s) do
11 forall t ∈ randomize(next-product(s′)) do

12 if uf.sameSet(td,Dead) then

13 continue

14 else if p /∈ uf.find(td).w then

15 improvedSCCp(A, td,M(t))

16 else
17 uf.find(s).a := uf.find(s).a ∪M(t)

18 while ¬sameSet(s, td) do
19 〈r, i〉 := rootsp.pop()
20 unite(r, rootsp.top().q, i)

21 if uf.find(s).a = [n] then
22 report non-empty

23 uf.removeFromList(s′)

24 uf.unite(s,Dead, ∅)
25 if rootsp.top() = s then
26 rootsp.pop()

chosen. In the algorithm this is shown in lines 10 and 23. When all successors
of state s′ have been handled (lines 11–22) we can conclude that for every
successor d of s′ we either have: (1) d is part of a Dead SCC, or (2) d is part
of the same SCC as s′. In the latter case, d has been added to the list of Busy
states and therefore s′ can be removed from the list. Multiple workers pick
states from the list, explore them, and correspondingly remove them from
the list to cooperatively reduce the number of states in the list. Once the list
is empty (exit condition for line 10), every state of the SCC has been fully
explored and the SCC can be marked Dead.

In the implementation, the union-find structure is extended such that every
state contains a worker set of size |P |, which is maintained (similarly to the
acceptance set) in the unite procedure. Every state in the structure also
contains a list-next pointer such that a cyclic list is formed of all states in
the partial SCC. See Figure 12.8 for an illustration. Combining two lists in
the unite procedure is then realized by swapping two list pointers with a
fine-grained lock to form a single list containing all states. A Boolean flag is
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Fig. 12.8 Cyclic list of Busy states. White nodes are Busy and gray nodes have been
removed from the list

used to mark a state to be removed from the list. Workers then traverse the
list to find Busy states and update the next pointers such that the removed
states are detached from the list.

12.5 Distributed, BFS-Based Solutions

In shared-memory, parallel algorithms can exploit relatively fast accesses to
concurrent data structures to dynamically distribute the search procedure
over the processor cores, as achieved in the previous section through the use
of a shared state set. In the distributed setting, such synchronous commu-
nication would be too costly. To solve this problem, distributed algorithms
statically partition the states over the workers, using so called hash-based
partitioning. Under this scheme, every state of the graph to be stored is as-
signed to a single workstation that is responsible for its storage. The function
to assign an owner of a state is referred to as the partition or owner function.

This section discusses two algorithms suitable for distributed computation.
Because the static partitioning works best in combination with the highly
scalable breadth-first search, the emptiness-check problem is first rephrased
so that it can be solved by an iterative approach. In the worst case, each iter-
ation represents one pass over the state space, but can be implemented with
BFS. Nonetheless, for many inputs the time complexity of this approach is
still optimal and we demonstrate that the emptiness check can even be made
partially on the fly. At the end of this section, we show how this approach
compares to the DFS approaches in the previous section.

12.5.1 One-Way-Catch-Them-Young

The emptiness-check algorithm discussed in this section is built on top of a
procedure for topological sorting. It relies on the fact that vertices of a di-
rected graph may be topologically sorted if and only if the graph is acyclic.
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The topological sort procedure may be effectively adapted for parallel pro-
cessing without any increase in the theoretical time complexity. While topo-
logical sort can directly detect the presence of a cycle in a directed graph, it
cannot distinguish between accepting and non-accepting cycles. Therefore, it
must be accompanied by another technique in order to be used as a Büchi
automata emptiness check. One of the options to achieve accepting-cycle
detection is to combine the topological sort procedure with a forward reacha-
bility analysis that eliminates states not reachable from accepting states. The
algorithm relying on this combination is referred to as the Owcty algorithm
(One-Way-Catch-Them-Young) [44, 26].

The idea of the Owcty algorithm is to remove leading rejecting SCCs
(SCCs without accepting states) from the graph of the product Büchi au-
tomaton, then use the topological sort procedure to remove leading accepting
states that do not lie on a cycle. This process is iterated until a fixpoint is
reached. When the remaining graph is empty, it contains no accepting cycle.
When the remaining graph is non-empty, the presence of an accepting cycle
in the graph is guaranteed.

The Owcty algorithm therefore uses two removal procedures, Elim-
No-Accepting and Elim-No-Predecessors, which alternate. See Algo-
rithm 11 for details. Elim-No-Accepting is a procedure that computes all
states that are reachable from an accepting state in the graph and removes
the rest. Efficiently, this procedure removes all leading SCCs that contain no
accepting states at all. Obviously, these SCCs must be rejecting. After that,
all leading SCCs in the rest of the graph contain an accepting state; however,
they might all be trivial SCCs (contain no edges). To detect whether there
is a non-trivial leading SCC with an accepting state in the graph, the triv-
ial leading SCCs must be removed. For that, the Elim-No-Predecessors
procedure is used. Note that after the removal of a leading trivial SCC an-
other trivial SCC may become leading. To deal with that the Elim-No-
Predecessors procedure proceeds iteratively, and removes all trivial SCCs
from the top of the graph (mimicking the topological sort procedure). After
Elim-No-Predecessors finishes, all leading SCCs in the remaining part of
the graph are non-trivial, hence a new round of the elimination is executed,
starting again with the Elim-No-Accepting procedure.

To learn whether a state is a trivial leading component, the algorithm needs
to detect not-yet-removed predecessors of the state. To do so, the algorithm
maintains an integer value associated with every vertex to keep the number
of not-yet-removed direct predecessors, the so called indegree. The unique
feature of the Owcty algorithm is that the indegrees are updated without
the need to enumerate the predecessors of a state. In fact, the algorithm
only performs forward traversal procedures to maintain the indegrees. This
is exactly what the One-Way in the name of the algorithm stands for. While
this does not immediately make the algorithms on the fly (we do so in the
subsequent section), it does already avoid the costly need to store all edges of
the graph for reverse traversals as discussed in Section 12.3.1. To emphasize



40 Barnat, Bloemen, Duret-Lutz, Laarman, Petrucci, van de Pol, Renault

this fact, we again use the implicit definition of the Büchi automaton, i.e.,
with next-product instead of δ, as defined in Section 12.2.7.

The pseudo code of the Owcty algorithm depends on the following no-
tational conventions. Distributed data structures R,Open, and OldR are re-
ferred to either in a global way, in which case no subscript is used, or in a
local (partitioned) way, in which case the subscript denotes which part of
a distributed data structure is accessed. For example, a set of states R is a
union over distributed data parts of R denoted by R1, . . . , Rn. Rp is used in
procedure Elim-No-Predecessorsp to denote that the algorithm accesses
the local part of the data structure. The indegrees are denoted as fields of
the states, but in reality should be stored in the state set Rp, which can be
implemented as a hash map. At line 20, the indegree is set to 0 for (newly en-
countered) accepting states, as these are the roots of the search tree, but to 1
for other states, indicating that these are reachable from one accepting state.
At line 17, the indegree is incremented when other incoming edges of the
state s are found. Termination detection is implemented by Termination.

12.5.2 MAP

Yet another approach to accepting-cycle detection in distributed memory is
taken by the algorithm Map [21]. The main idea behind the algorithm is
based on the fact that each accepting state lying on an accepting cycle is
its own predecessor. When the algorithm computes the set of all accepting
predecessors for every accepting state, it is sufficient to check, whether any of
the accepting states is present in its own predecessor set. However, to com-
pute and store all this information would be rather expensive. The algorithm
instead stores only a single unique representative of the set of all accepting
predecessors per state. Let us assume a linear ordering ≺ of vertices (given;
e.g., by their representation in memory), then the unique representative could
just be the maximal accepting predecessor (Map). Let ⊥ be a unique value
that is the lowest in the order. We will present here a sequential version of the
Map algorithm and explain in a subsequent section how it can be integrated
into the Owcty algorithm to achieve a parallel version with on-the-fly prop-
erties. See Algorithm 12 for the pseudocode of the sequential version of the
Map algorithm.

For a state u, we denote its maximal accepting predecessor in the graph
G by mapG(u). Clearly, if an accepting state is its own maximal accepting
predecessor (mapG(u) = u), then it lies on an accepting cycle. Unfortunately,
the converse does not hold in general. Assume that u is the largest accepting
state on some accepting cycle. It can happen that the maximal accepting
predecessor of u lies outside the cycle, i.e., mapG(u) = v for some accepting
state v. However, for this accepting state v either mapG(v) = v, in which case
the presence of an accepting cycle can be detected on v, or mapG(v) ≺ v,
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Algorithm 11: Owcty Algorithm

1 global Open, R,OldR

2 function Owcty(A = (Q, ι, next-product, n,M))

3 R := Open := ∅
4 o := owner(ι)

5 Openo := {ι}
6 Reach(A,Rp)

7 OldR := ∅
8 while (R 6= OldR) ∧ (R 6= ∅) do
9 OldR := R

10 Elim-No-Accepting1(A,R1) || . . . || Elim-No-Acceptingn(A,Rn)

11 Elim-No-Predecessors1(A,R1) || . . . || Elim-No-Predecessorsn(A,Rn)

12 if R 6= ∅ then report “accepting cycle” else report “no accepting cycle”

13 function Reachp (A = (Q, ι, next-product, n,M), Rp)
14 while Openp 6= ∅ ∧ ¬Termination(Open) do

15 s := Openp.dequeue()

16 if s ∈ Rp then

17 s.indegree := s.indegree+ 1

18 else

19 Rp.add(s)

20 s.indegree := if M [s] = [1] then 0 else 1
21 forall t ∈ next-product(s) do
22 o := owner(td)

23 Openo.queue(td)

24 function Elim-No-Acceptingp (A = (Q, ι, next-product, n,M), Rp)

25 forall s ∈ Rp do
26 if M [s] = [1] then
27 Openp.queue(s)

28 R′
p := ∅

29 barrier() // Wait until all workers reinitialized R′
p

30 Reach(A,R′
p)

31 function Elim-No-Predecessorsp (A = (Q, ι, next-product, n,M), Rp)
32 forall s ∈ Rp do
33 if s.indegree = 0 then

34 Openp.queue(s)

35 while Openp 6= ∅ ∧ ¬Termination(Open) do

36 s := Openp.dequeue()

37 s.indegree := s.indegree − 1

38 if s.indegree ≤ 0 then

39 Rp.remove(s)
40 forall t ∈ next-product(s) do

41 o := owner(td)

42 Openo.queue(td)
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Algorithm 12: Map Algorithm

1 function Map(A = (Q, ι, next-product, n,M))

2 Waiting.add(ι)

3 oldmap(Q) := ⊥
4 ShrinkM := ∅
5 while Waiting 6= ∅ do
6 while Waiting 6= ∅ do

7 seed := Waiting.dequeue()

8 Propagate-Map(A, seed ,ShrinkM )

9 Waiting := ShrinkM

10 ShrinkM := ∅

11 report “no accepting cycle”

12 function Propagate-Map(A = (Q, ι, next-product, n,M), seed, ShrinkM)
13 oldmap(seed) := seed

14 map(seed) := ⊥
15 Seeds.queue(seed)

16 while Seeds 6= ∅ do

17 u := Seeds.dequeue()
18 if M [u] = [1] ∧ (u 6= oldmap(u)) then

19 if map(u) ≤ u then
20 propagate := u
21 ShrinkM .add(u)

22 else

23 propagate := map(u)
24 ShrinkM .remove(u)

25 else
26 propagate := map(u)

27 forall t ∈ next-product(u) do
28 if propagate = td then

29 report “accepting cycle”

30 if map(td) = oldmap(ts) then

31 oldmap(td) := oldmap(ts)

32 map(td) := propagate
33 Seeds.queue(td)

34 else if (propagate > map(td)) ∧ (oldmap(td) = oldmap(ts)) then

35 map(td) := propagate
36 Seeds.queue(td)

in which case v is not part of any cycle in the graph. In the latter case, v
can safely be removed from the set of accepting states (or marked as non-
accepting). However, removing v from the set of accepting states invalidates
the value of mapG(u), which has to be recomputed.

The basic workflow of the algorithm is thus to compute maximal accepting
predecessors for accepting states in the graph, and when no accepting cycle
can be proved, to shrink the set of accepting states. These two steps are
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alternated until either a cycle is found, or there are no more accepting states
in the graph to be removed.

To compute the value of the mapG function, Algorithm 12 proceeds by the
principle of value propagation. Note that whenever some value is propagated
to a state from which a low value had been propagated before, the new
higher value must be repropagated. Due to these duplicate propagations,
this procedure requires quadratic time with respect to the size of the graph.

An interesting property of the mapG function is that once computed, the
values of mapG partition the graph into subgraphs. More precisely, states that
share the same value of mapG may lie on a cycle, however, states that do not
share the same value of mapG cannot lie on the same cycle (they cannot be
part of the same SCC). The algorithm takes advantage of this observation and
in the propagation phase it restricts the propagation to only the subgraphs
given by the same value of the mapG function from the previous iteration.
In particular, when exploring a transition t within a given subgraph for the
first time, it is the case that mapG(td) = oldmapG(ts) (line 30); later on,
oldmapG(td) = oldmapG(ts) is used to localise the exploration to a single
subgraph (line 34).

To do so, the algorithm maintains oldmap values for all states. Also note
that the subgraphs where the next iteration of map propagation is about
to be computed are rooted in the accepting states that were just shrunk.
Note that some accepting states may be temporarily recorded as roots of a
subgraph, but later on they may become dominated by some other accepting
state, in which case they are no longer considered to be roots (see line 24).

An interesting question is how to define the ordering with respect to which
the maximal accepting state is determined. It has been shown [22] that for
every graph an optimal ordering exists, however, to find it is as difficult as
to define a DFS postorder, which is hard to parallelize, and would bring us
back to the algorithms in Section 12.4.

12.5.3 Combining OWCTY and MAP

Algorithm Map works on the fly, i.e., it is capable of reporting the presence of
accepting cycles without the need to explore the whole underlying graph. This
is not the case with algorithm Owcty, as to properly compute the indegrees,
the whole graph has to be traversed. On the other hand, the time complexity
of the Owcty algorithm is quadratic, while the time complexity of Map
is cubic. In [11] a combination of the two algorithms has been presented to
obtain the best of both worlds. In particular, while performing the Elim-No-
Accepting procedure in the Owcty algorithm, it is possible to perform
limited propagation of map values at the same time. The propagation is
limited to a single visit of a state (no repropagation is allowed). Still, if the
algorithm finds an accepting state that is its own predecessor, the accepting
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cycle may be reported and the algorithm may terminate without the need
for the whole exploration of the graph.

Table 12.1 provides an overview of all emptiness algorithms discussed in
this chapter. We use a subjective scale for the scalability of these algorithms,
as a theoretical treatise on the matter is out of the scope of this handbook.
The DFS algorithms feature optimal runtimes, but not necessarily good scal-
ability. The BFS algorithms on the other hand sacrifice the optimality prop-
erty to attain better scalability. However, in practice, both approaches have
been shown to scale well on multi-core machines [43, 65, 12]. Moreover, in
many important cases, i.e., for weak automata, the Owcty algorithms and
its combination with Map also achieve optimal runtime in theory.

The integration of Map into the Owcty algorithm further yields some
on-the-fly behavior. While not completely on the fly, Owcty tends to deliver
shorter counterexamples because of its use of BFS. Short counterexamples are
important for repairing errors in the model as they simplify error diagnosis.
In practice, Cndfs has been shown to also be able to yield similarly short
counterexamples with increasing parallelism [43], but it provides no guar-
antees about counterexample length. Thus far, only the SCC algorithms are
suitable for direct use on TGBAs. Cndfs likely cannot be adapted to support
TGBAs without increasing the complexity, but we consider the combination
of the BFS algorithms with TGBAs to be an open problem.

12.6 Conclusion

This chapter has revisited the automata-theoretic approach to LTL model
checking in Section 12.2. The starting point is a translation of an LTL formula
into a (Transition-based Generalized) Büchi Automaton. Fragments of LTL

Complexity Scalability Optimal On-the-fly TGBA

Cndfs O(V + E) + Yes Yes No

Ufscc O(V + E) + Yes Yes Yes

Owcty

general Büchi O(V.(V + E)) ++ No No ?

weak Büchi O(V + E) ++ Yes No ?

Map O(V 2 · (V + E)) ++ No Partially ?

Owcty + Map

general Büchi O(V · (V + E)) ++ No Partially ?

weak Büchi O(V + E) ++ Yes Partially ?

Table 12.1 Overview of distributed-memory algorithms for accepting-cycle detection.

Complexity is expressed in the number of vertices V , the number of edges E, and the
number of processes P
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lead to weak or even terminal automata. The LTL model checking algorithm
is reduced to emptiness checking of automata, which boils down to detecting
accepting cycles.

To speed up cycle detection, we have introduced parallel algorithms for
shared-memory multi-core machines in Section 12.4. These algorithms are
based on Depth-First Search and come in two flavors: those based on Nested-
DFS, and those based on SCC detection. We showed instances of both.

Based on the observation that DFS is hard to parallelize, an alternative is
to design BFS-based algorithms to detect accepting cycles. We have done so
in Section 12.5. This type of algorithm is used in shared-memory machines,
but was originally designed for distributed clusters of machines connected by
a fast communication network.

Although this chapter has focused on the algorithmic ideas behind the
various parallel LTL model checking algorithms, we would like to stress that
the algorithms that we have explained are also available to the community
in open-source tools. The translations from LTL to automata are available
in the Spot toolset3 [36, 38]. Various DFS-based multi-core algorithms are
available in the LTSmin toolset4 [67, 62]. Finally, the distributed and multi-
core implementation of the BFS-based algorithms are available through the
DiVinE toolset5 [10, 14].

The scientific papers connected to the algorithms implemented in these
tools report on extensive experiments to investigate the practical efficiency
and parallel speedup on various benchmark suites of realistic examples, and
on their performance in international model checking competitions.
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[20] D. Bošnački. A nested depth first search algorithm for model checking
with symmetry reduction. In D. A. Peled and M. Y. Vardi, editors,
Formal Techniques for Networked and Distributed Sytems, volume 2529
of LNCS, pages 65–80. Springer Berlin Heidelberg, 2002. ISBN 978-3-
540-00141-6. doi: 10.1007/3-540-36135-9˙5.
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