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Abstract—In automata-theoretic model checking, there are
mainly two approaches: explicit and symbolic. In the explicit
approach [1], the state-space is constructed explicitly and lazily
during exploration (i.e., on-the-fly). The symbolic approach [2]
tries to overcome the state-space explosion obstacle by symbol-
ically encoding the state-space in a concise way using decision
diagrams. However, this symbolic construction is not performed
on-the-fly as in the explicit approach. In order to take advantage
of the best of both worlds, hybrid approaches [3, 4, 5] are proposed
as combinations of explicit and symbolic approaches. A hybrid
approach is usually based on an on-the-fly construction of an
explicit graph of symbolic nodes, where each symbolic node
encodes a subset of states by means of binary decision diagrams.

An alternative to the standard Büchi automaton, called
Testing automaton [6] has never been used before for hybrid
model checking. In addition, in previous work [7, 8], we have
shown that Generalized Testing Automata (TGTA) can outperform
the Büchi automata for explicit and symbolic model checking of
stutter-invariant LTL properties. In this work, we investigate the
use of these TGTA to improve hybrid model checking. We show
how traditional hybrid approaches based on Generalized Büchi
Automata (TGBA) can be adapted to obtain TGTA-based hybrid
approaches. Then, each original approach is experimentally
compared against its TGTA variant. The results show that these
new variants are statistically more efficient.

I. INTRODUCTION

Automata-theoretic approach [9] is traditionally used for
the model checking of Linear-time Temporal Logic (LTL)
properties. In this approach, a Kripke structure K is used to
represent the state-space of the system, and the property to be
checked is expressed as an LTL formula ϕ, then its negation
is converted into a Büchi automaton A¬ϕ. The third operation
is the synchronization between K and A¬ϕ. This constructs
a synchronous product automaton K ⊗ A¬ϕ whose language,
L (K) ∩L (A¬ϕ), is the set of executions of K invalidating
ϕ. The last operation is the emptiness check algorithm that
explores the product to tell whether it accepts or not an infinite
word, called a counterexample. The system satisfies ϕ iff
L (K ⊗A¬ϕ) = ∅.

The main problem of model checking is the well known
state-space explosion problem. In particular, the performance
of the automata-theoretic approach mainly depends on the size
of the explored part during the emptiness check of the product
automaton. The latter is often too large to be explored in a
reasonable run time and memory.

There are two variants of the automata-theoretic approach:
explicit and symbolic.

• In explicit model checking, the product automaton is ex-
plicitly constructed by enumerating its states. "On-the-fly"
emptiness check algorithms avoid the construction of the
entire product and system’s state-space by building them
lazily during exploration. These on-the-fly algorithms are
more efficient because they stop as soon as they find a
counterexample and therefore possibly before building the
entire product, thereby reducing the amount of memory and
time used by the emptiness check.

• The symbolic model checking tries to overcome the state-
space explosion obstacle by representing the product au-
tomaton symbolically [2] by means of Binary Decision
Diagrams (BDDs), i.e., concise data structures used to
represent large sets of states. The intersection and union
of sets of states are translated into conjunction (∧) and
disjunction (∨) of Boolean functions efficiently performed
using BDDs. Using these symbolic operations, the product
space is computed as a least fix-point on its symbolic
transition relation. The emptiness check [10, 11] of this
symbolic product is not performed on-the-fly.

The hybrid approaches [12, 13, 5, 4, 3] to LTL model
checking combine ideas from both explicit and symbolic
approaches in order to benefit from the advantages of both
worlds, such as encoding the set of states in a concise way
using decision diagrams as in the symbolic approach, and
an emptiness check performed on-the-fly as in the explicit
approach. In these hybrid approaches, the property automaton
is described explicilty because its size is not large in most
cases (and can be reduced by means of several optimizations
proposed for explicit automata). However, the state-space of
the system is typically very large and must be encoded
symbolically.

Most of hybrid approaches are usually based on an on-
the-fly construction of an explicit graph of symbolic nodes,
called aggregates. Each aggregate symbolically encodes a set
of states of the Kripke structure or of the product.

For instance, the hybrid approach of Biere et al. [12]
replaces the Kripke structure K by a graph of aggregates such
that each aggregate contains the set of states of K having
the same atomic propositions values. The constructed graph
is an abstraction of K that preserves the properties of K (in



particular, it preserves the result of the emptiness-check of the
product K ⊗A¬ϕ).

The hybrid approach SOG (Symbolic Observation
Graph) [13, 4] can be seen as an optimization of the approach
of Biere et al. [12] for the verification of stutter-invariant [14]
properties. It tries to allow further aggregation by exploiting
the fact that only a subset of the atomic propositions of K are
observed by the LTL property ϕ. The constructed SOG is an
abstraction of the Kripke structure where consecutive states
are aggregated if they share the same values of the observed
atomic propositions.

The hybrid approach of Sebastiani et al. [5] called
Property-Driven Partitioning (PDP) is based on the partitioning
of the symbolic state-space of K according to the different
explicit states of the property automaton A¬ϕ. This PDP ap-
proach represents the product space using an array of symbolic
aggregates, one aggregate of K states for each explicit state of
A¬ϕ. However, the symbolic emptiness check of this approach
is not performed on-the-fly.

SLAP (Self-Loop Aggregation Product) [3] is an hybrid
approach that combines the idea of PDP with an on-the-fly
emptiness-check. SLAP is an aggregation graph alternative
to the traditional product automaton. In a SLAP, the Kripke
structure states are aggregated according to the valuations of
the self-loops in the property automaton.

In this work, we focused on the two hybrid approaches :
SOG and SLAP. Indeed, the SOG and SLAP techniques allow
to manipulate the graph of aggregates simply as a variant
of Büchi automata and to build this graph on-the-fly (they
use the on-the-fly emptiness-check algorithms traditionally
employed in automtata-based explicit approaches), moreover
the computation of each aggregate is efficiently performed
using symbolic fix-point algorithms. In addition, according
to [4, 3], these approaches (especially SLAP) often outperform
other existing (hybrid or fully symbolic) approaches.

The property automaton A¬ϕ is usually a Büchi Automaton
(BA) or a generalization using multiple acceptance sets, such
as Transition-based Generalized Büchi Automata (TGBA). An
alternative to these different variants of Büchi automata, called
Testing Automata (TA) [15, 6] are proposed for the explicit
model checking of stutter-invariant [14] properties.

In previous work [7, 8], we have shown that an im-
provement of TA, called Transition-based Generalized Testing
Automaton (TGTA) is superior to TA, BA and TGBA for
both explicit [7] and symbolic [8] model checking of stutter-
invariant properties. The goal of this work is to show how
the two hybrid approaches SOG and SLAP (that are based on
TGBA) can be improved using TGTA.

II. PRELIMINARIES

Let AP be a finite set of atomic propositions, a valuation
` over AP is an assignment of truth value to each atomic
proposition of AP ). We denote by Σ = 2AP the set of all
valuations over AP , where a valuation ` ∈ Σ is interpreted
either as the set of atomic propositions that are true, or
as a Boolean conjunction. For instance if AP = {a, b},
then Σ = 2AP = {{a, b}, {a}, {b}, ∅} or equivalently Σ =
{ab, ab̄, āb, āb̄}.

The formalization of hybrid approaches requires the fol-
lowing definitions introduced in [4]. We firstly recall the
formalization of propositional formulas, then we present the
definition of TGBA that use these propositional formulas as
labels.

• B = {⊥,>} represents the Boolean values.

• B(AP) is the set of all propositional formulas over AP .
The formulas of B(AP) are built inductively from the
propositions AP , B, and the logical operators ∧, ∨,. . .

• Let ` ∈ 2AP ′ (i.e., a valuation over AP ′) and AP ⊆ AP ′,
the notation `

AP
= `′ is equivalent to `|AP = `′|AP , where

`|AP denotes the restriction of the valuation ` to the subset
of atomic propositions AP . In other words, ` AP

= `′ means
that the valuations ` and `′ match on the atomic propositions
of AP .

Duret-Lutz et al. [3] use a definition of TGBA suitable to define
and implement the hybrid approach SLAP. In these TGBA,
each transition is labeled with a propositional formula φ over
AP .

A. TGBA labeled with propositional formulas

A Transition-based Generalized Büchi Automaton
(TGBA) [16, 17] is a variant of a Büchi automaton that has
multiple acceptance conditions on transitions.

Definition 1 (TGBA). A Transition-based Generalized Büchi
Automaton (TGBA) over the alphabet Σ = 2AP is a tuple
G = 〈Q, I, δ,F〉 where

• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• F 6= ∅ is a finite and non-empty set of acceptance condi-
tions,

• δ ⊆ Q×B(AP)×2F×Q is a transition relation, where each
element (q, φ, F, q′) ∈ δ represents a transition from state q
to state q′ labeled by a propositional formula φ ∈ B(AP),
and a set of acceptance conditions F ∈ 2F . In the following,
an element (q, φ, F, q′) ∈ δ will be denoted q

φ,F−−→ q′

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by
G if there exists an infinite sequence of transitions π =
(q0, φ0, F0, q1)(q1, φ1, F1, q2) · · · (qi, φi, Fi, qi+1) · · · ∈ δω (π
is called a run of G) where:

• q0 ∈ I, and ∀i ∈ N, `i |= φi (i.e., the infinite word σ is
recognized by the run π)

• ∀f ∈ F , ∀i ∈ N, ∃j ≥ i, f ∈ Fj (i.e., the run π is
accepting iff it visits each acceptance condition infinitely
often).

In this TGBA, each transition is labeled with a proposi-
tional formula φ ∈ B(AP) instead of a valuation ` ∈ 2AP .
This formula φ represents the maximal set of valuations
{`0, `1, . . . , `n} ⊆ 2AP such that ∀i ≤ n, `i |= φ. In other
words, the set of valuations {`0, `1, . . . , `n} is the set of all
models of φ. For example, in the TGBA of Figure 1a, the
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Fig. 1: Examples using TGBA [4]

formula φ = b labeling the transition q0
b−→ q1 represents the

set of valuations {āb, ab}.
Figure 1a shows the TGBA of the LTL formula aU b. In

this example, the unique acceptance condition is indicated by

the black dot on the self-loop q1
>,{ }−−−−→ q1 (F = { }). The

transitions are labeled with the formulas ab̄, b and > (which
encodes all the valuations over AP = {a, b}).

B. Kripke Structure

The state-space of a system can be represented by a di-
rected graph, called Kripke structure, where vertices represent
the states of the system and edges are the transitions between
these states. In addition, each vertex is labeled by a valuation
that represents the set of atomic propositions that are true in
the corresponding state.

Definition 2 (Kripke Structure). A Kripke structure over a
set of atomic propositions AP ′ is a tuple K = 〈S,S0,R, l〉,
where:

• S is a finite set of states,

• S0 ⊆ S is a set of initial states,

• R ⊆ S × S is the transition relation,

• l : S → 2AP ′ is a labeling function that maps each state s
to a valuation that represents the set of atomic propositions
(of AP ′) that are true in s.

Fig. 1b represents an example of Kripke structure over
AP ′ = {a, b, c}.

The synchronous product between a TGBA G and a Kripke
structure K is also a TGBA (G⊗K) that only accepts the words
accepted by both G and K.

Definition 3 (Synchronous product of a TGBA with a Kripke
structure). For a TGBA G = 〈Q, I, δ,F〉 over the alphabet
Σ = 2AP and a Kripke structure K = 〈S,S0,R, l〉, the prod-
uct G ⊗K is the reachable part of the TGBA 〈Q⊗, I⊗, δ⊗,F〉
over the alphabet Σ = 2AP where

• Q⊗ = Q× S ,

• I⊗ = I × S0,

• δ⊗ ⊆ Q⊗ ×B(AP)× 2F ×Q⊗ where

δ⊗ =

(q1, s1)
l(s1),F−−−−→ (q2, s2)

∣∣∣∣∣∣∣∣∣
(s1, s2) ∈ R and
∃φ ∈ B(AP) s.t.

q1
φ,F−−→ q2 ∈ δ and

l(s1) |= φ


Figure 1c is an illustration of Definition 3. It shows an

example of a synchronous product G ⊗ K between a TGBA
G of aU b (Figure 1a) and an example of Kripke structure K
over AP ′ = {a, b, c} shown in Figure 1b. The initial state
of the product is (q0, s0). Then, the successors {s1, s4} of s0

in K are synchronized with the state q0 of G, because the
TGBA self-loop q0

ab̄−→ q0 is labeled by the formula φ =
ab̄ and l(s0) = ab̄c |= φ. From state (q0, s4), the product
move to state (q1, s5) through the TGBA transition q0

b−→ q1

because l(s4) = abc̄ |= b. From the product state (q1, s5), the
TGBA state q1 only requires to verify > (i.e, any valuation)
to explore the self-loop labeled with the acceptance condition

. Therefore, any cycle of K starting in s5 corresponds to an
accepting cycle in the product.



C. TGTA labeled with propositional formulas

In previous work [7, 8] we introduced a new kind of
automata, called Transition-based Generalized Testing Au-
tomata (TGTA) that only recognize stutter-invariant [14] LTL
properties.

While a TGBA observes the value of the atomic proposi-
tions AP , a TGTA observes the changes in these values. If
a valuation of AP does not change between two consecutive
states, we say that a TGTA executes a stuttering transition.

If A and B are two valuations, A⊕B denotes the symmetric
set difference (called “changeset”), i.e., the set of atomic
propositions that differ (e.g., ab̄⊕ ab = {a} ⊕ {a, b} = {b}).

Similar to TGBA, we present in this section a definition of
a TGTA labeled with propositional formulas, more suited than
the definition of [7] to define and implement the TGTA-based
hybrid approaches presented later in this paper.

Definition 4 (TGTA [8]). A Transition-based Generalized
Testing Automaton (TGTA) over the alphabet Σ = 2AP is a
tuple T = 〈Q, I, U, δ,F〉 where

• Q is a finite set of states,

• I ⊆ Q is a set of initial states,

• U : I → B(AP) is a function mapping each initial state to
a propositional formula φ ∈ B(AP),

• F 6= ∅ is a finite and non-empty set of acceptance condi-
tions,

• δ ⊆ Q×B(AP)×2F×Q is a transition relation, where each
element (q, φ, F, q′) ∈ δ represents a transition from state q
to state q′ labeled by a propositional formula φ ∈ B(AP),
and a set of acceptance conditions F ∈ 2F .
The propositional formula φ encodes a set of changesets
{k0, k1, . . . , kn} ⊆ 2AP , where ∀i ≤ n, each changeset ki
is interpreted as a set of atomic propositions whose values
change between q and q′,

• δ has to satisfy the following stuttering-normalization con-
straint [8]:
All stuttering transitions are self-loops, and every state
has a stuttering self-loop: ∀(q, q′) ∈ Q2 : (∃(φ, F ) ∈
B(AP)× 2F , ∅ |= φ ∧ (q, φ, F, q′) ∈ δ)⇐⇒ (q = q′)

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by
T iff there exists an infinite sequence of transitions π =
(q0, φ0, F0, q1)(q1, φ1, F1, q2) · · · (qi, φi, Fi, qi+1) · · · ∈ δω (π
is called a run of T ) where:

• q0 ∈ I, and `0 |= U(q0)

• ∀i ∈ N, (`i ⊕ `i+1) |= φi (i.e., the infinite word σ is
recognized by the run π)

• ∀f ∈ F , ∀i ∈ N, ∃j ≥ i, f ∈ Fj (i.e., the run π is
accepting).

The difference between TGBA and TGTA resides mainly
in the interpretation of the transition relation δ ⊆ Q×B(AP)×
2F ×Q. In TGTA, for each transition (q, φ, F, q′) ∈ δ, the for-
mula φ encodes a set of changesets {k0, k1, . . . , kn} ⊆ 2AP ,
where ∀i ≤ n, each changeset ki |= φ. In the following, we

will use (q, φ, F, q′) and (q, {k0, . . . , kn}, F, q′) interchange-
ably as transitions of δ. For example, in Figure 2a, the formula
φ = b labeling the transition q0

b−→ q1 represents the set of
changesets {{b}, {a, b}} (meaning that the value of b changes
between q0 and q1 and we “do not care” about a).

Figure 2a shows the TGTA of the LTL formula aU b.
The valuations of the initial states are U(q0) = ab̄ and
U(q1) = b = {ab, āb}. The formula āb̄ labeling the stuttering
self-loop on q0 is the empty changeset ∅. The formula b

labeling the transition q0
b−→ q1 is obtained by merging the

two changesets of the transitions q0
{b}−−→ q1 and q0

{a,b}−−−→ q1

(because {{b}, {a, b}} |= b). On the self-loop q1
>,{ }−−−−→ q1,

the formula > is obtained by merging the set of all changesets
over AP = {a, b}, and the acceptance condition is indicated
by the black dot (F = { }).

Using this definition of TGTA, we obtain the following
definition of the synchronous product between a TGTA and a
Kripke structure. This synchronous product is also a TGTA:

Definition 5 (Synchronous product of a TGTA with a Kripke
structure). For a TGTA T = 〈Q, I, U, δ,F〉 over the alpha-
bet Σ = 2AP and a Kripke structure K = 〈S,S0,R, l〉,
the product T ⊗ K is the reachable part of the TGTA
〈Q⊗, I⊗, U⊗, δ⊗,F〉 over the alphabet Σ = 2AP where

• Q⊗ = Q× S ,

• I⊗ = {(q, s) ∈ I × S0 | l(s) |= U(q)}

• ∀(q, s) ∈ I⊗, U⊗((q, s)) = l(s),

• δ⊗ ⊆ Q⊗ ×B(AP)× 2F ×Q⊗ where:

δ⊗ =

(q1, s1)
l(s1)⊕l(s2)|AP ,F−−−−−−−−−−→ (q2, s2)

∣∣∣∣∣∣∣∣∣
(s1, s2) ∈ R and
∃φ ∈ B(AP) s.t.

q1
φ,F−−→ q2 ∈ δ∧

l(s1)⊕l(s2) |= φ


Figure 2c is an illustration of Definition 5. It shows an

example of a synchronous product T ⊗K between the TGTA
T of aU b (Figure 2a) and the Kripke structure K (Figure 2b).
The initial state of the product is (q0, s0) because l(s0) =
ab̄c |= U(q0) = ab̄. Then, (q0, s0) have two successors: the
first successor is (q0, s1) because K has a transition s0 −→ s1

with l(s0) ⊕ l(s1) = ∅ |= āb̄ and T have a stuttering self-
loop q0

āb̄−→ q0; the second successor is (q1, s4) because in
K we have s0 −→ s4 with l(s0) ⊕ l(s4) = {b, c} |= b

and the TGTA have a transition q0
b−→ q1 labeled with

φ = b. From the product state (q1, s4), the TGTA can explore
any changeset through the self-loop labeled with > and the
acceptance condition . Therefore, the TGTA state q1 can be
synchronized with any reachable state from s4 in K and the
cycle (q1, s4) −→ (q1, s5) −→ (q1, s6) −→ (q1, s7) −→ (q1, s4)
is an accepting cycle in the product. In the obtained prod-
uct T ⊗ K, each transition is labeled with the changeset
((l(s1)⊕ l(s2))|AP ) between the states of K. These changesets
are computed according to the set of atomic propositions
AP = {a, b} observed by T . The product transitions also
bear the acceptance conditions coming from the TGTA T .
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(a) TGTA T for aU b. The formula āb̄ labeling the
self-loop on q0 represents the empty changeset ∅. The
formula b labeling the transition q0

b−→ q1 represents
the set of changesets {{b}, {a, b}}. The label > of
the self-loop on q1 encodes the set of all changesets
{∅, {a}, {b}, {a, b}}.
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Fig. 2: Examples Using TGTA

III. SYMBOLIC OBSERVATION GRAPH FOR TGTA
(SOG-TGTA)

In this section, we propose an adaptation of the SOG hybrid
approach for use with TGTA instead of TGBA.

An SOG [13, 4] is a transformation of a Kripke structure
allowing to aggregate states according to the set AP of
atomic propostions observed in the property automaton. This
transformation only preserves stutter-invariant properties. The
constructed SOG is an explicit graph where each node is a
symbolic set of states. Theses states are aggregated because
they share the same values for the atomic propositions of
AP (they may have different values for the other atomic
propositions of the system (in AP ′) that are not in AP ).

In hybrid approaches, symbolic data structures are used to
represent sets of states of the Kripke structure. The following
symbolic operations are introduced in [4] to manipulate this
symbolic aggregate of states.

Notations Let K = 〈S,S0,R, l〉 a Kripke structure, for a
set of states a ⊆ S and a propositional formula φ ∈ B(AP),
the symbolic operations SuccF(a, φ) and ReachF(a, φ) are
defined as follows:

SuccF(a, φ) = {s′ ∈ S | ∃s ∈ a, (s→ s′ ∈ R) ∧ l(s′) |= φ},
i.e., the set of the Successors of states of aggregate a, Filtered
to keep only those satisfying φ. ReachF(a, φ) computes the
least subset of S satisfying:

• a ⊆ ReachF(a, φ),

• SuccF(ReachF(a, φ), φ) ⊆ ReachF(a, φ).

ReachF(a, φ) is implemented using symbolic least fixed-
points on Decision Diagrams.

Definition 6 (Homogeneous aggregate [4]). Let a ∈ 2S \ {∅}
be a subset of states of K. We say that a is a homogeneous
aggregate w.r.t. (with respect to) a given set of atomic propo-
sitions AP iff ∀s, s′ ∈ a, l(s) AP

= l(s′). In other words, all the



states of the aggregate a have the same valuation for all the
atomic propositions in AP .

For a homogeneous aggregate a w.r.t. AP , we write
lAP (a) = l(s)|AP for any state s ∈ a (i.e., the valuation
of a is the valuation of any one of its states).

The variant of SOG used in a TGBA-based approach was
detailed in [4]. In this section, in our TGTA approach, we
use another variant of SOG proposed in [13], this variant is
called in this work SOG-TGTA because it is better suited
for being employed in a TGTA-based approach. This SOG-
TGTA does not use the divergent states used in the variant of
SOG proposed in [4]. Instead of using divergent states, this
SOG-TGTA has a self-loop on each aggregate that contains
a cycle [13]. Because in a TGTA, all stuttering transitions
are self-loops (see the stuttering-normalization constraint of
Definition 4), then the synchronization between these stuttering
self-loops and the self-loops of SOG-TGTA only produces
self-loops in the product automaton, and therefore does not
generate new states in this product.

Definition 7 (Symbolic Observation Graph [13] for TGTA
(SOG-TGTA)). Let K = 〈S,S0,R, l〉 be a Kripke structure
over AP ′. A SOG-TGTA over AP ⊆ AP ′ of K is defined as
K̂AP = 〈Ŝ, Ŝ0, R̂, l̂〉 a Kripke structure over AP satisfying:

1) Ŝ =

{
a ∈ 2S \ {∅}

∣∣∣∣ a is homogeneous w.r.t. AP
a = ReachF(a, lAP (a))

}
2) ∀a ∈ Ŝ, l̂(a) = lAP (a)
3) R̂ = {a −→ a′ ∈ Ŝ × Ŝ |

a′ = ReachF(SuccF(a, l̂(a′)) \ a, l̂(a′))}
∪ {a −→ a ∈ Ŝ × Ŝ | a contains a cycle }

4) Ŝ0 = {ReachF({s0}, l(s0)|AP ) | s0 ∈ S0}.

The above Definition details how to build a SOG-TGTA
K̂AP . The set Ŝ0 of initial states of K̂AP is composed
by the set of homogenous aggregates as0 satisfying as0 =
ReachF({s0}, l(s0)|AP ), i.e., for each initial state s0 of K,
as0 is the set of reachable states s′ from s0 in K as long as
l(s′)

AP
= l(s0).

The set Ŝ of states of K̂AP is composed of homogenous
aggregates a satisfying a = ReachF(a, lAP (a)).

For the transition relation of K̂AP , R̂ is composed of two kinds
of edges:

1) Case a and a′ are two aggregates of Ŝ:
a −→ a′ ∈ R̂ iff lAP (a) 6= lAP (a′) and a′ is the least
subset of S that contains every state s′ ∈ S satisfying
l(s′)|AP = l̂(a′) and s −→ s′ ∈ R with s ∈ (a ∪ a′).

2) Case a is an aggregates of Ŝ:
a −→ a ∈ R̂ iff a contains a cycle (i.e., the Kripke
structure K contains a cycle visiting only states in a).
In other words, the divergent states of the SOG proposed
in [4] are replaced in SOG-TGTA by adding a self-loop
on each aggregate that contains a cycle (see point 3 of
Definition 7). These cycles are computed using symbolic
least fixed-points. The obtained SOG-TGTA contains
only one kind of nodes: homogenous aggregates.

Figure 2d shows an example of a SOG-TGTA K̂{a,b} built
from the Kripke structure K of Figure 1b according to AP =
{a, b} (ignoring the atomic proposition c of K). The initial state
of K̂{a,b} is an aggregate {s0, s1, s2, s3} because they agree
on the value of atomic propositions observed in AP = {a, b}:
l(s0)|{a,b} = l(s1)|{a,b} = l(s2)|{a,b} = l(s3)|{a,b} = ab̄.
In addition, the initial aggregate of K̂{a,b} has a self-loop
because it contains a cycle. The constructed SOG K̂{a,b} is also
a Kripke structure, that allows to check any stutter-invariant
property over the alphabet 2{a,b}. As example, Figure 2e
presents the product T ⊗ K̂{a,b} of K̂{a,b} with the TGTA
T of aU b.

Theorem 1 ([13]). Given a Kripke Structure K defined on
AP ′, then the SOG-TGTA K̂AP of K built over AP ⊆ AP ′

preserves any stutter-invariant property A on AP . In other
words: L (A⊗K) 6= ∅ ⇐⇒ L (A⊗ K̂AP ) 6= ∅.

IV. SELF-LOOP AGGREGATION PRODUCT FOR TGTA
(SLAP-TGTA)

SLAP [3] is a hybrid synchronous product, in which the
aggregation of Kripke structure states is based on the self-loops
of the property automaton.

Definition 8. Given a TGBA G = 〈Q, I, δ,F〉 or a TGTA
T = 〈Q, I, U, δ,F〉, for a state q ∈ Q, SF(q) encodes the
Self-loop Formulas labeling edges q −→ q. Formally,

SF(q) =
∨

q
φ,F−−→q∈δ

φ

A SLAP [3] is a hybrid product between a Kripke structure
K and a TGBA G. The states of the SLAP are pairs of the form
(q, a) composed of a state q of G and an aggregate a containing
successive states of K aggregated as long as they model SF(q).
These aggregates are computed as symbolic least fixed-points.

The SLAP-TGTA is a variant of SLAP based on TGTA
instead of TGBA. In SLAP-TGTA, the states of the Kripke
structure are aggregated according to the changesets labeling
the TGTA transitions. In particular, each SF(q) represents the
set of changesets encoded by the Self-loop Formulas labeling
edges q −→ q of the TGTA. Therefore, in SLAP-TGTA the
successive states of the Kripke structure are aggregated as long
as they change according to the changesets encoded by SF(q).
These aggregates are computed as least fixed-points based on
changesets using the symbolic operations Succ⊕ and Reach⊕

defined as follows:

Let K = 〈S,S0,R, l〉 a Kripke structure. For a set of states
a ⊆ S and a propositional formula φ ∈ B(AP), we define the
following symbolic operations:

• Succ⊕(a, φ) = {s′ ∈ S | ∃s ∈ a, (s → s′ ∈ R) ∧
((l(s) ⊕ l(s′)) |= φ)}, i.e, the set of the Successors states
of a Filtered to keep only those satisfying k |= φ where
k = l(s)⊕ l(s′) is the changeset between l(s) and l(s′).

• Reach⊕(a, φ) computes the least subset of S satisfying:
◦ a ⊆ Reach⊕(a, φ),
◦ Succ⊕(Reach⊕(a, φ), φ) ⊆ Reach⊕(a, φ).
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Definition 9 (SLAP of a TGTA and a Kripke structure). Given
a TGTA T = 〈Q, I, U, δ,F〉 over AP and a Kripke structure
K = 〈S,S0,R, l〉, the SLAP-TGTA of T and K is the TGTA
denoted T �K = 〈Q�, I�, δ�,F〉 where:

• Q� = Q× (2S \ {∅})

• δ� =


(q1, a1)

>,F−−→ (q2, a2)

∣∣∣∣∣∣∣∣∣∣∣

∃φ ∈ B(AP) such that

q1
φ,F−−→ q2 ∈ δ, with

(q1 = q2)⇒ (F 6= ∅)∧
a2 = Reach⊕(

Succ⊕(a1, φ),SF(q2))


• I� = {(q0,Reach⊕({s0},SF(q0))) |

(q0, s0) ∈ I × S0 and l(s0) |= U(q0)}

We have L (T ⊗K) 6= ∅ ⇐⇒ L (T �K) 6= ∅ by construction.

For the same reason as in SLAP [3], the SLAP-TGTA
transitions are only labeled with > because these labels are
irrelevant when checking language emptiness of SLAP-TGTA.

The reachable states of a SLAP-TGTA are of the form
(q, a) where q is a state of the TGTA and a is an aggregate of
states of the Kripke structure such that: for each state s ∈ a, if
s′ is a successor of s in the Kripke structure with l(s)⊕l(s′) |=
SF(q), then s′ ∈ a.

Figure 2f presents T � K, an example of SLAP-TGTA
computed from the Kripke structure K and the TGTA T of
aU b. Because l(s0) = ab̄c |= U(q0) = ab̄, the initial state
of T � K is the pair (q0, a1), where a1 is computed from
s0 by iteratively aggregates successors that change according
to a changeset belonging to (the set of changesets encoded
by) SF(q0). Formally, a1 = Reach⊕({s0},SF(q0)) = { s0 s1s2 s3 }
(because l(s0)⊕ l(s1) = l(s1)⊕ l(s2) = l(s2)⊕ l(s3) = ∅ |=
SF(q0) = āb̄). Then, in order to compute the successors of
(q0, a1), we explore the transition q0

b−→ q1 of TGTA. We

obtain only one successor (q1, a2) with the aggregate a2 =
Reach⊕(Succ⊕(a1, b),SF(q1)) is computed as follows:

• Succ⊕(a1, b) = {s4} because s4 is a successor of s0 ∈ a1

and it is the unique successor of states of a1 that satisfies
l(s0)⊕ l(s4) |= b ( l(s0)⊕ l(s4) = {b, c}),

• SF(q1) = > because q1
>−→ q1

• Thus, a2 = Reach⊕({s4},>) = {s4, s5, s6, s7} because
a2 contains all the reachable states from s4 through any
changeset.

Finally, we compute the successors of (q1, a2) by exploring

the TGTA transition q1
>,−−→ q1. This TGTA accepting self-

loop also generates an accepting self-loop on state (q1, a2) of
the SLAP-TGTA. Indeed, the unique successor of (q1, a2) is
itself because:
Reach⊕(Succ⊕(a2,>),>) = a2 (the states of a2 are in a
cycle).

V. EXPERIMENTAL COMPARISON OF HYBRID
APPROACHES USING TGBA VS. TGTA

This section presents an experimental evaluation conducted
to compare each hybrid approach (SOG and SLAP) with its
variant based on TGTA (SOG-TGTA and SLAP-TGTA). This
experimentation is based on BEEM benchmark [18]. It reuses
the same benchmark inputs, formulas and models used in [8]
to evaluate the symbolic approach using TGTA.

A. Implementation

We have implemented SOG-TGTA and SLAP-TGTA in the
same tool LTL-ITS 1 that already contains SOG and SLAP.
LTL-ITS tool is built on top of libraries 2: SDD/ITS, Spot,

1http://ddd.lip6.fr
2Respectively http://ddd.lip6.fr, http://spot.lip6.fr, and http://fmt.cs.utwente.

nl/tools/ltsmin.
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and LTSmin. These three libraries were already presented in
the previous work [8].

The DVE variant of LTSmin [19] is used to produce an
ETF file representing the transition relation of each BEEM
model. These ETF files are loaded by the SDD/ITS [20]
library to encode the symbolic transition relations of the Kripke
structures, used to implement the symbolic operations ReachF.
For SLAP-TGTA, it is a changeset-based [8] symbolic tran-
sition relations that are built from the ETF files. It is used
to implement the symbolic operation Reach⊕ for the SLAP-
TGTA aggregates computation.

The Spot library [17] is used to translate the LTL properties
into TGBA or TGTA. It is also used to perform the emptiness
check of explicit graphs, such as the synchronous products
between TGBA and SOG and between TGTA and SOG-
TGTA. In addition, the hybrid synchronous products SLAP
and SLAP-TGTA are also handled by the emptiness check
of Spot. Indeed, they are explicit graphs in which each node
stores a set of states encoded as a Decision Diagram. These
sets of states are computed using least fixed-points (ReachF
or Reach⊕).

A SOG-TGTA is implemented in the same way as a SOG,
as a concrete class of the Kripke structure interface provided by
Spot. During the emptiness check of the products TGBA/SOG
and TGTA/SOG-TGTA, the SOG and the SOG-TGTA nodes
are constructed on-the-fly using the implementation of the
symbolic operation ReachF.

Similar to SLAP, we have implemented SLAP-TGTA as
concrete classes of the synchronous product interface of Spot.
During the emptiness check, the nodes of these two hybrid
products are built on-the-fly from the states of the property
automaton (TGBA or TGTA) and using the symbolic opera-
tions: FReach for SLAP [3] and Reach⊕ for SLAP-TGTA.

In the next section, the results of our experimental compar-
isons are presented as scatter plots using logarithmic scale. In

these experimentations, we check that the different approaches
(SOG, SLAP, SOG-TGTA and SLAP-TGTA) always gave the
same result on each pair (formula, model).

B. SOG versus SOG-TGTA

The scatter plots of Figure 3 compare the performance
of two hybrid approaches: the first is based on TGBA and
SOG (called just SOG approach in the following); the sec-
ond is based on TGTA and SOG-TGTA (called SOG-TGTA
approach). Each point of the left and right scatter plots
compares respectively the time and memory used in the model
checking of each pair (formula, model). The x-axis represents
the performance of the SOG approach and the y-axis shows
the performance of the SOG-TGTA approach, so the points
below the diagonal correspond to cases where the SOG-
TGTA approach is better. Symmetrically, the points above the
diagonal correspond to points were the SOG approach is better.
The points represented by gray squares correspond to verified
formulas (empty products), and the black crosses correspond
to violated formulas (non-empty products).

In the two scatter plots, we observe that for verified
formulas (gray points), the SOG-TGTA approach outperforms
the SOG approach (in time and memory). This result is
similar to the comparison between the explicit approaches
based on TGBA versus TGTA, presented in [7]. This similarity
is justified by the fact that these approaches are based on
traditional explicit synchronous products.

For violated formulas, the SOG approach outperforms the
SOG-TGTA approach for only the cases where the execution
time is less than one second. On the contrary, for hard cases,
there are more cases that failed using SOG than when using
SOG-TGTA (compare the “aligned” black points at top and on
right of the scatter plots).

In total in these scatter plots, SOG failed in 53 cases solved
by SOG-TGTA, while the SOG-TGTA approach failed for only



9 cases solved by SOG. In addition, 875 cases are not solved
by any of the two approaches within the time and memory
limits. In the experiments that have not failed, SOG-TGTA
was at least ten times faster than SOG in 20 cases, and two
times faster in 287 cases. A contrario, SOG was at least ten
times faster than SOG-TGTA in 4 cases, and two times faster
in 144 cases.

C. SLAP versus SLAP-TGTA

The scatter plots of Figure 4 compare the performance of
SLAP against SLAP-TGTA. The left scatter plot compares
the time performance and the right concerns the memory
consumption. The points below the diagonal correspond to the
cases where SLAP-TGTA is better.

The interpretation of the scatter plots results depends on
the colors of the points:

• For black crosses that correpond to violated formulas, in
most cases, SLAP-TGTA is more efficient than SLAP to
find a counterexample. Therefore, SLAP-TGTA should be a
valuable help to debug systems (i.e. when counterexamples
are expected in the “debugging phase”).

• For the gray squares representing the verified formulas, the
scatter plots are difficult to interpret, there are many cases
on both sides of the diagonal.

In total, we observe a relative advantage for SLAP-TGTA
in cases where the two approaches were successful. Indeed,
on the one hand, SLAP-TGTA was at least a hundred times
faster than SLAP in 85 cases, ten times faster in 646 cases,
and twice times faster in 1605 cases. On the other hand, SLAP
was at least one hundred times faster than SLAP-TGTA in 12
cases, ten times faster in 95 cases, and two times faster in 434
cases only. However, for the failed cases, SLAP-TGTA failed
in 277 experiments solved by SLAP, while SLAP failed for
only 85 cases solved by SLAP-TGTA.

We believe that the two approaches SLAP and SLAP-
TGTA are complementary and very different because of the
fact that SLAP-TGTA aggregates are based on changesets
and therefore are very different from SLAP aggregates that
are based on valuations. Thus, these two approaches can be
considered complementary and can be launched in parallel in
order to retrieve the result of the fastest approach.

VI. CONCLUSION

In previous work [7, 8], we have shown that Transition-
based Generalized Testing Automata (TGTA) are a way to
improve the explicit and symbolic model checking approach
when verifying stutter-invariant properties, but they had not
been used for hybrid model checking. In this paper, we gave
the first hybrid approaches using a variant of Testing Automata,
and compare it to more classical hybrid approaches (using
TGBA). We propose two hybrid approaches using TGTA:
SOG-TGTA and SLAP-TGTA.

SOG-TGTA is a variant of SOG without divergent states,
which are replaced in SOG-TGTA by adding a self-loop on
each aggregate that contains a cycle. Adding these self-loop
in SOG-TGTA is better than adding divergent states because
in TGTA all stuttering transitions are self-loops, and therefore

adding self-loops in SOG-TGTA does not generate new states
in the product between TGTA and SOG-TGTA.

SLAP-TGTA is an adaptation of SLAP to use TGTA
instead of TGBA. The two variants (SLPA and SLAP-TGTA)
are based on the aggregation of the states of a Kripke structure
according to the self-loops of the formula automaton (i.e.,
TGBA for SLAP and TGTA for SLAP-TGTA). However,
the obtained aggregates are very different between the two
variants. In a SLAP-TGTA, the states of an aggregate change
according to the changesets of the TGTA self-loops (instead
of satisfying the valuations labeling the TGBA self-loops in
the case of SLAP).

We implemented and experimentally compared the perfor-
mance of each TGTA based hybrid approach (SOG-TGTA and
SLAP-TGTA) against its reference variant (SOG and SLAP).
The obtained results show that SOG-TGTA is statistically
better than SOG, especially to prove that a property is verified.
For SLAP versus SLAP-TGTA, we observed an advantage for
SLAP-TGTA to find a counterexample for violated properties
(in the “debugging phase”). The results are more difficult to
interpret for verified properties: there are many cases where
SLAP-TGTA is better than SLAP and vice versa. This dif-
ference between SLAP and SLAP-TGTA can be explained
by the fact that the aggregates computed using TGBA and
TGTA are very different (in SLAP-TGTA, the aggregates are
based on changesets instead of valuations as in SLAP). We
believe that the two variants (using TGBA versus TGTA) are
complementary, and the best solution is to run the two variants
in parallel, then take the result of the faster one.

In future work, we plan to evaluate the use of TGTA in
another hybrid approach called SSP (Symbolic Synchronized
Product) [21]. Similar to SLAP, the SSP replaces the product
automaton K ⊗ A¬ϕ by a smaller product graph that pre-
serves the result of the emptiness-check. In order to perform
this reduction, the SSP approach aggregates “symmetrically
equivalent” states by exploiting the symmetries in the model
according to the states of the property automaton.

Another future work is to combine the TGTA-based ap-
proaches with other techniques that propose state-space opti-
mizations specific to stutter-invariant properties, such as the
partial order reduction [22, 23, 24]. TGTA and partial order
reduction are complementary. Indeed, while the TGTA-based
approaches focus on optimizing the property automata, the
partial order techniques try to reduce the state-space of the
model.

Finally, TGTA are less expressive than TGBA since they
are able to represent only stutter-invariant LTL properties
(LTL\X). Another future work is to extend TGTA to represent
all LTL properties, and therefore extend the SLAP-TGTA
hybrid approach to check any LTL property.
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