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Abstract. Testing Automaton (TA) is a new kind of ω-automaton introduced by
Hansen et al. [6] as an alternative to the standard Büchi Automata (BA) for the
verification of stutter-invariant LTL properties. Geldenhuys and Hansen [5] shown
later how to use TA in the automata-theoretic approach to LTL model checking.
They propose a TA-based approach using a verification algorithm that requires
two searches (two passes) and compare its performance against the BA approach.
This paper improves their work by proposing a transformation of TA into a
normal form (STA) that only requires a single one-pass verification algorithm.
The resulting automaton is called Single-pass Testing Automaton (STA). We have
implemented the STA approach in Spot model checking library. We are thus able
to compare it with the “traditional” BA and TA approaches. These experiments
show that STA compete well on our examples.

1 Introduction

The automata-theoretic approach [11] to LTL model checking relies on ω-automata (i.e.,
an extension of finite automata to infinite words). It starts by converting the negation of
the LTL formula ϕ into an ω-automaton A¬ϕ, then composing that automaton with the
state-space of a model M given as a Kripke structure KM (a variant of ω-automaton), and
finally checking the language emptiness of the resulting product automaton A¬ϕ⊗KM .
This operation tells whether A¬ϕ⊗KM accepts an infinite word, and can return such a
word as a counterexample. The model M satisfies ϕ iff L (A¬ϕ⊗KM) = /0.

As for any model checking process, the automata-theoretic approach suffers from
the well known state explosion problem. In practice, it is the product automaton that can
be very large, its size can reach (|A¬ϕ|× |KM|) states, which can make it impossible to
be handled using the resources of modern computers.

The ω-automaton representing A¬ϕ is usually a Büchi Automaton (BA). This paper
focuses on improving another kind of ω-automaton called Testing Automaton (TA).
TA is a variant of an “extended” Büchi automaton introduced by Hansen et al. [6].
Instead of observing the valuations on states or transitions, the TA transitions only record
the changes between these valuations. In addition, TA are less expressive than Büchi
automata since they are able to represent only stutter-invariant [3] properties. Also they
are often a lot larger than their equivalent Büchi automaton, but their high degree of
determinism [6] often leads to a smaller product size [5].

In a previous work [1], we evaluated the use of TA for the model checking of stutter-
invariant LTL properties. We have shown that the TA approach is efficient when the
formula to be verified is violated (i.e., a counterexample exists). This is not the case
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when the property is satisfied since the product automaton (A¬ϕ⊗KM) has to be visited
twice during the the emptiness check.

In this work, we improve the TA approach in order to avoid the second pass of the
emptiness check algorithm. To achieve this goal, we propose a transformation of TA
into a normal form that does not require such a second pass, called Single-pass Testing
Automata (STA). We have implemented the algorithms of STA approach in Spot [10]
library. Our experimental comparisons between BA, TA and STA approaches show that
the STA approach is statistically more efficient when no counterexample is found (i.e.,
the property is satisfied) because it does not require a second pass.

2 Existing Approaches

Let AP a set of atomic propositions, a valuation ` over AP is a function ` : AP 7→ {⊥,>}
(i.e., an assignment of truth value to each atomic proposition). We denote by Σ = 2AP

the set of all valuations over AP, where a valuation ` ∈ Σ is interpreted either as the
set of atomic propositions that are true, or as a Boolean conjunction. For instance if
AP = {a,b}, then Σ = 2AP = {{a,b},{a},{b}, /0} or equivalently Σ = {ab,ab̄, āb, āb̄}.

2.1 Büchi Automata (BA)

A Büchi Automaton (BA) is an ω-automaton [4] with valuations on transitions and
acceptance conditions on states. Any LTL formula ϕ can be converted into a BA that
accepts the same executions that satisfy ϕ [11].

Definition 1 (BA) A Büchi Automaton (BA) over the alphabet Σ = 2AP is a tuple
B = 〈Q ,I ,δ,F 〉 where:

– Q is a finite set of states, I ⊆ Q is a finite set of initial states,
– F ⊆ Q is a finite set of accepting states (F is called the accepting set),
– δ⊆ Q ×Σ×Q is the transition relation where each transition is labeled by a letter

` of Σ, i.e., each element (q, `,q′) ∈ δ represents a transition from state q to state q′

labeled by a valuation ` ∈ 2AP.
A run of B over an infinite word σ = `0`1`2 . . . ∈ Σω is an infinite sequence of transitions
r = (q0, `0,q1)(q1, `1,q2)(q2, `2,q3) . . . ∈ δω such that q0 ∈ I (i.e., the infinite word is
recognized by the run). Such a run is said to be accepting if ∀i ∈N, ∃ j ≥ i, q j ∈ F (i.e.,
at least one accepting state is visited infinitely often). The infinite word σ is accepted by
B if there exists an accepting run of B over σ.

Figure 1 shows a BA recognizing the LTL formula (aUGb). In this BA, the Boolean
conjunctions labeling each transition are valuations over AP = {a,b}. The LTL formu-
las labeling each state represent the property accepted starting from this state of the
automaton: they are shown for the reader’s convenience but not used for model checking.
As an illustration of Definition 1, the infinite word ab;ab̄; āb;ab; āb;ab; . . . is accepted
by the BA of Figure 1. A run over such infinite word must start in the initial state labeled
by the formula (aUGb) and remains in this state for the first two valuations ab;ab̄, then
it changes the value of a, so it has to take the transition labeled by the valuation āb to
move to the second state labeled by the formula (Gb). Finally, to be accepted, it must
stay on this accepting state by executing infinitely the transitions labeled by {āb,ab}.
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Fig. 1. A BA B for the LTL formula
aUGb, with accepting states shown as
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Fig. 2. A TA T for the LTL formula aUGb.

2.2 Model Checking using BA

The synchronous product of a BA B with a Kripke structure K is a BA K ⊗B whose
language is the intersection of both languages. Testing this product automaton (i.e., a
BA) for emptiness amounts to the search of an accepting cycle that contains at least one
accepting states (of F ).

Algorithm 1 presented below is an iterative version of the Couvreur’s SCC-based
algorithm [2] adapted to the emptiness check of BA. Algorithm 1 computes on-the-fly the
Maximal Strongly Connected Components (MSCCs) of the BA representing the product
K ⊗B: it performs a Depth-First Search (DFS) for SCC detection and then merges the
SCCs belonging to the same Maximal SCC into a single SCC. After each merge, if the
merged SCC contains an accepting state from F⊗ (line 16), then an accepting run (i.e., a
counterexample) is found (line 17) and the L (K ⊗B) is not empty. todo is the DFS
stack. It is used by the procedure DFSpush to push the states of the current DFS path and
the set of their successors that have not yet been visited. H maps each visited state to
its rank in the DFS order, and H[s] = 0 indicates that s is a dead state (i.e., s belongs to
a maximal SCC that has been fully explored). The SCC stack stores a chain of partial
SCCs found during the DFS. For each SCC the attribute root is the DFS rank (H) of the
first state of the SCC, acc is the set of accepting states belonging to the SCC, and rem
contains the fully explored states of the SCC.

SCC[i−1] SCC[i] SCC[i+1] SCC[n]

t

Fig. 3. SCC search stack and how the SCCs are merged.

1. The algorithm 1 begins by pushing in SCC each state s visited for the first time
(line 12), as a trivial SCC with the set acc = {s}∩F⊗ (line 22).

2. Then, when the DFS explores a transition t between two states s and d, if d is
in the SCC stack (line 14), then t closes a cycle passing through s and d in the
product automaton. This cycle “strongly connects” all SCCs pushed in the SCC
stack between SCC[i] and SCC[n]: the two SCCs that respectively contains the states
d and s (SCC[n] is the top of the SCC stack).

3. All the SCCs between SCC[i] and SCC[n] are merged (line 15) into SCC[i]. The
merge of SCCs is illustrated by Figure 3: a “back” transition t is found between
SCC[n] and SCC[i], therefore the latest SCCs (from i to n) are merged.
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1 Input: A BA K ⊗B = 〈S⊗,I⊗,δ⊗,F⊗〉
2 Result: > if and only if L (K ⊗B) = /0

3 Data: todo: stack of 〈state ∈ S⊗,succ⊆ δ⊗〉
SCC: stack of
〈root ∈N,acc⊆ F⊗,rem⊆ S⊗〉
H: map of S⊗ 7→N
max← 0

4 begin
5 foreach s0 ∈ I⊗ do
6 DFSpush(s0)
7 while ¬todo.empty() do
8 if todo.top().succ = /0 then
9 DFSpop()

10 else
11 pick one 〈s,_,d〉 off todo.top().succ
12 if d 6∈ H then
13 DFSpush(d)
14 else if H[d]> 0 then
15 merge(H[d])
16 if SCC.top().acc 6= /0 then
17 return ⊥
18 return >

19 DFSpush(s ∈ S⊗)
20 max← max+1
21 H[s]← max
22 SCC.push(〈max,({s}∩F⊗), /0〉)
23 todo.push(〈s,{〈q, l,d〉 ∈ δ⊗ | q = s}〉)
24 DFSpop()
25 〈s,_〉 ← todo.pop()
26 SCC.top().rem.insert(s)
27 if H[s] = SCC.top().root then
28 foreach s ∈ SCC.top().rem do
29 H[s]← 0
30 SCC.pop()
31 merge(t ∈N)
32 r← /0

33 while t < SCC.top().root do
34 acc← acc∪SCC.top().acc
35 r← r∪SCC.top().rem
36 SCC.pop()
37 SCC.top().acc← SCC.top().acc∪acc
38 SCC.top().rem← SCC.top().rem∪ r

Algorithm 1: Emptiness check algorithm for BA.

4. The set of accepting states of the merged SCC is equal to the union of SCC[i].acc∪
SCC[i+1].acc∪ ·· · ∪SCC[n].acc. If this union contains an accepting state of F⊗,
then the merged SCC is accepting and the algorithm return false (line 17): the
product is not empty.

2.3 Testing Automata (TA)

Testing Automata were introduced by Hansen et al. [6] to represent stutter-invariant [3]
properties. While a Büchi automaton observes the value of the atomic propositions AP,
the basic idea of TA is to only detect the changes in these values, making TA particularly
suitable for stutter-invariant properties; if a valuation of AP does not change between
two consecutive valuations of an execution, the TA can stay in the same state, this kind
of transitions are called stuttering transitions. To detect infinite executions that end
stuck in the same TA state because they are stuttering, a new kind of accepting states is
introduced: livelock-accepting states.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the
set of atomic propositions that differ (e.g., ab̄⊕ab = {b}).

Definition 2 (TA) A TA over the alphabet Σ = 2AP is a tuple T = 〈Q ,I ,U,δ,F ,G〉,
where:

– Q is a finite set of states, I ⊆ Q is a finite set of initial states,
– U : I → 2Σ is a function mapping each initial state to a set of valuations (set of

possible initial configurations),
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– F ⊆ Q is a set of Büchi-accepting states,
– G ⊆ Q is a set of livelock-accepting states,
– δ⊆Q ×(Σ\ /0)×Q is the transition relation where each transition (s,k,d) is labeled

by a changeset: k ∈ Σ is interpreted as a non empty set of atomic propositions whose
value must change between states s and d.

An infinite word σ = `0`1`2 . . . ∈ Σω is accepted by T iff there exists an infinite sequence
r = (q0, `0⊕ `1,q1)(q1, `1⊕ `2,q2) . . .(qi, `i⊕ `i+1,qi+1) . . . ∈ (Q ×Σ×Q )ω such that:

– q0 ∈ I with `0 ∈U(q0),
– ∀i ∈N, either (qi, `i⊕ `i+1,qi+1) ∈ δ (the execution progresses in the TA), or (`i =
`i+1)∧ (qi = qi+1) (the execution is stuttering and the TA does not progress),

– either, ∀i ∈ N, (∃ j ≥ i, ` j 6= ` j+1)∧ (∃l ≥ i, ql ∈ F ) (the TA is progressing in
a Büchi-accepting way), or, ∃n ∈ N, (qn ∈ G ∧ (∀k ≥ n, qk = qn ∧ `k = `n)) (the
sequence reaches a livelock-accepting state and then stays on that state because the
execution is stuttering).

The construction of a TA from a BA is detailed in [5, 1]. To illustrate Definition 2, let
us consider Figure 2, representing a TA T for aUGb. In this figure, the initial states 1, 2
and 3 are labeled respectively by the set of valuations U(1) = {ab̄}, U(2) = {ab} and
U(3) = {āb}. Each transition of T is labeled with a changeset over the set of atomic
propositions AP = {a,b}. In a TA, states with a double enclosure belong to either F or
G : states in F \G have a double solid line, states in G \F have a double dashed line
(states 2 and 3 of T ), and states in F ∩G use a mixed dashed/solid style (state 4).

– The infinite word ab; āb;ab; āb;ab; āb;ab; . . . is accepted by a Büchi accepting run
of T . Indeed, a run recognizing such word must start in state 2, then it always
changes the value of a, so it has to take transitions labeled by {a}. For instance it

could be the run 2
{a}−−→ 4

{a}−−→ 4
{a}−−→ 4 · · · or the run 2

{a}−−→ 3
{a}−−→ 4

{a}−−→ 4 · · · Both
visit the state 4 ∈ F infinitely often, so they are Büchi accepting.

– The infinite word ab; āb; āb; āb; . . . is accepted by a livelock accepting run of T . An
accepting run starts in state 2, then moves to state 4, and stutters on this livelock-
accepting state. Another possible accepting run goes from state 2 to state 3 and
stutters in 3 ∈ G .

– The infinite word ab;ab̄;ab;ab̄;ab;ab̄; . . . is not accepted. It would correspond to
a run alternating between states 2 and 1, but such a run is neither Büchi accepting
(does not visit any F state) nor livelock-accepting (it passes through state 2 ∈ G ,
but does not stay into this state continuously).

2.4 Model Checking using TA

The product of a Kripke and a TA is not a TA: while a TA execution is allowed to stutter
on any state, the product execution must execute an explicit stuttering transition.

Definition 3 (Synchronous Product of a TA with a Kripke structure) For a Kripke
structure K = 〈S ,S0,R , l〉 and a TA T = 〈Q ,I ,U,δ,F ,G〉, the product K ⊗T is a
tuple 〈S⊗,I⊗,U⊗,δ⊗,F⊗,G⊗〉 where

– S⊗ = S ×Q , F⊗ = S ×F , G⊗ = S ×G ,
– I⊗ = {(s,q) ∈ S0× I | l(s) ∈U(q)} with ∀(s,q) ∈ I⊗,U⊗((s,q)) = {l(s)},
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– δ⊗ = {((s,q),k,(s′,q′)) | (s,s′) ∈ R , (q,k,q′) ∈ δ, k = l(s)⊕ l(s′)}
∪{((s,q), /0,(s′,q′)) | (s,s′) ∈ R ,q = q′, l(s) = l(s′)}

.

An execution σ= `0`1`2 . . .∈ Σω is accepted by K ⊗T if there exists an infinite sequence
r = (s0, `0⊕ `1,s1)(s1, `1⊕ `2,s2) . . .(si, `i⊕ `i+1,si+1) . . . ∈ (S⊗×Σ×S⊗)ω such that:

– s0 ∈ S 0
⊗ with `0 ∈U⊗(s0),

– ∀i ∈N,(si, `i⊕ `i+1,si+1) ∈ δ⊗ (we are always progressing in the product)
– Either, ∀i ∈N, (∃ j≥ i, ` j 6= ` j+1)∧ (∃l ≥ i, sl ∈ F⊗) (the automaton is progressing

in a Büchi-accepting way), or, ∃n ∈N,∀k ≥ n,(`k = `n)∧ (sk ∈ G⊗) (a suffix of the
execution stutters in G⊗).

We have L (K ⊗T ) = L (K )∩L (T ) by construction.

Figure 4 shows an example of a synchronous product between a Kripke structure
K and a TA T recognizing the LTL formula FG p. Each state of K is numbered and
labeled with a valuation of atomic propositions (over AP = {p}) that hold in this state.
In the product K ⊗T , states are labeled with a pairs of the form (s,q) where s is a state
of K and q of T , and the livelock accepting states are denoted by a double dashed circle.

0

1 2

3

p̄

p̄ p

p

(a) a Kripke structure K

0

{ p̄}

1

{p}

p̄

{p}

{p}

(b) a TA T for FG p

0,0{ p̄} 3,1

2,11,0

p̄

/0

{p}

/0/0

{p}

(c) K ⊗T

Fig. 4. Example of a product between a Kripke structure K and a TA T of FG p. The bold cycle
of K ⊗T is livelock-accepting.

0

{ p̄}

1

{p}

g

{p}

p̄

{p}

{p}
{p}

(a) an STA T + for FG p

0,0{p̄} 3,1

2,11,0

p̄

3,g

2,g

/0

{p}{p}

/0/0

{p}

/0/0

(b) K ⊗T +

Fig. 5. Impact on the product of using STA T + instead of TA T . Bold states and transitions are
addition relative to Figure 4.

A two-pass emptiness check algorithm In this section, we present a two-pass algorithm
for the emptiness check of the synchronous product between a TA and a Kripke structure.
In model checking approach using TA, the emptiness check requires a dedicated algo-
rithm because according to the Definition 3, there are two ways to detect an accepting
cycle in the product:
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– Büchi accepting: a cycle containing at least one Büchi-accepting state (F⊗) and at
least one non-stuttering transition (i.e., a transition (s,k,s′) with k 6= /0),

– livelock accepting: a cycle composed only by stuttering transitions and livelock
accepting states (G⊗).
A straightforward emptiness check would have the following two passes: a first pass

to detect Büchi accepting cycles and a second pass to detect livelock accepting cycles.

1 Input: K ⊗T = 〈S⊗, I⊗,U⊗,δ⊗,F⊗,G⊗〉
2 Result: > if and only if L (K ⊗T ) = /0

3 Data: todo: stack of 〈state ∈ S⊗,succ⊆ δ⊗〉
SCC: stack of 〈root ∈N, lk ∈ 2AP,k ∈
2AP,acc⊆ F⊗,rem⊆ S⊗〉
H: map of S⊗ 7→N
max← 0, Gseen← f alse

4 begin
5 if ¬ first-pass() then return ⊥ ;
6 if Gseen then return second-pass() ;
7 first-pass()
8 foreach s0 ∈ I⊗ do
9 DFSpush1( /0, s0)

10 while ¬todo.empty() do
11 if todo.top().succ = /0 then
12 DFSpop()
13 else
14 pick one 〈s,k,d〉 off todo.top().succ
15 if d 6∈ H then
16 DFSpush1(k, d)
17 else if H[d]> 0 then
18 merge1(k, H[d])
19 if (SCC.top().acc 6= /0)∧

(SCC.top().k 6= /0) then return ⊥;
20 if (d ∈ G⊗)∧ (SCC.top().k = /0)

then return ⊥ ;
21 return >

22 DFSpush1(lk ∈ 2AP, s ∈ S⊗)
23 max← max+1
24 H[s]← max
25 if s ∈ F⊗ then
26 SCC.push(〈max, lk, /0,{s}, /0〉)
27 else
28 SCC.push(〈max, lk, /0, /0, /0〉)
29 todo.push(〈s,{〈q,k,d〉 ∈ δ⊗ |q = s}〉)
30 if s ∈ G⊗ then
31 Gseen← true

32 merge1(lk ∈ 2AP, t ∈N)
33 acc← /0

34 r← /0

35 k← lk
36 while t < SCC.top().root do
37 acc← acc∪SCC.top().acc
38 k← k∪SCC.top().k∪SCC.top().lk
39 r← r∪SCC.top().rem
40 SCC.pop()
41 SCC.top().acc← SCC.top().acc∪acc
42 SCC.top().k← SCC.top().k∪ k
43 SCC.top().rem← SCC.top().rem∪ r

Algorithm 2: The first-pass of the Emptiness check algorithm for TA products.

The first-pass of Algorithm 2 is similar to Algorithm 1, it detects all Büchi-
accepting cycles, and with line 20 included in this algorithm, it detects also some
livelock-accepting cycles. Since in certain cases it may fail to report some livelock-
accepting cycles, a second pass is required to look for possible livelock-accepting cycles.
However, if no livelock-accepting state is visited during the first pass (i.e., the product
does not contain livelock-accepting states), then the second pass can be disabled: this
is the purpose of variable Gseen of Algorithm 2 (line 6), where Gseen is a flag that
records if a livelock-accepting state is detected during the exploration of the product by
the first pass (line 30). This first-pass is based on the BA emptiness check algorithm
presented in Algorithm 1 with the following changes:

– In each item scc of the SCC stack: the new field scc.lk stores the change-set labeling
the transition coming from the previous SCC, and scc.k contains the union of all
change-sets in scc (lines 38 and 42).
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– After each merge, SCC.top() is checked for Büchi-acceptance (line 19) or livelock-
acceptance (line 20) depending on the emptiness of SCC.top().k.

Figure 4 illustrates how the first-pass of Algorithm 2 can fail to detect the livelock
accepting cycle in a product K ⊗T as defined in Definition 3. In this example, GT = {1}
therefore (3,1) and (2,1) are livelock-accepting states, and C2 = [(3,1)→ (2,1)→
(3,1)] is a livelock-accepting cycle.

However, the first-pass may miss this livelock-accepting cycle depending on
the order in which it processes the outgoing transitions of (3,1). If the transition
t1 = ((3,1),{p},(0,0)) is processed before t2 = ((3,1), /0,(2,1)), then the cycle C1 =
[(0,0)→ (1,0)→ (2,1)→ (3,1)→ (0,0)] is detected and the four states are merged in
the same SCC before exploring t2. After this merge (line 18), this SCC is at the top of the
SCC stack. Subsequently, when the DFS explores t2, the merge caused by the cycle C2
does not add any new state to the SCC, and the SCC stack remains unchanged. Therefore,
the test line 20 still return false because the union SCC.top().k of all change-sets labeling
the transitions of the SCC is not empty (it includes for example t1’s label: {p}). Finally,
first-pass algorithm terminates without reporting any accepting cycle, missing C2.

On the other side, if the first-pass had processed t2 before t1, it would have merged
the states (3,1) and (2,1) in an SCC, and would have detected it to be livelock-accepting.

In general, to report a livelock-accepting cycle, the first-pass computes the union of
all change-sets of the SCC containing this cycle. However, this union may include non-
stuttering transitions belonging to other cycles of the SCC. In this case, the second-pass
is required to search for livelock-accepting cycles, ignoring the non-stuttering transitions
that may belong to the same SCC. In the next section, we propose a Single-pass Testing
Automata STA, which allows to obtain a synchronous product in which such mixing of
non-stuttering and stuttering transitions will never occur in SCCs containing livelock-
accepting cycles, making the second-pass unnecessary.

It is important to say that in the experiments presented in the sequel, we implemented
Algorithm 2 including an heuristic proposed by Geldenhuys and Hansen [5] to detect
more livelock-accepting cycles during the first pass. However, when properties are
satisfied, the second pass is always required because this heuristic fails to report some
livelock-accepting cycles [5]. We don’t present the details of this heuristic because we
show in the next sections other solutions that allow to detect all the livelock-accepting
cycles during the first pass and therefore remove the second pass (in all cases).

3 Converting a TA into a Single-pass Testing Automaton (STA)

In this section, we introduce STA, a transformation of TA into a normal form such that
livelock-accepting states have no successors, and therefore STA approach does not need
the second pass of the emptiness check of TA approach. This contribution improves the
efficiency of the model checking (this will be experimentally evaluated in section 4).
In addition, STA simplify the implementation (and the optimization) of the emptiness
check algorithm as it renders unnecessary the implementation of the second pass.

Definition 4 (STA) A Single-pass Testing Automaton (STA) is a Testing Automaton
T = 〈Q ,I ,U,δ,F ,G〉 over Σ such that δ∩ (G ×Σ×Q ) = /0. In other words, an STA is
a TA in which every livelock-accepting state has no successors.
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3.1 Construction of an STA from a TA

Property 1 formalizes the construction of an STA from a TA. We can transform a TA
into an STA by adding an unique livelock-accepting state g (i.e., in STA, G = {g}), and
adding a transition (q,k,g) for any transition (q,k,q′) that goes into a livelock-accepting
state q′ ∈ G of the original automaton. In addition, if q′ has no successors then q′ can be
removed, since it is bisimilar to the new state g.

Property 1 Let T = 〈Q ,I ,U,δ,F ,G〉 be a TA, we construct an equivalent STA T ′ =
〈Q ′,I ′,U ′,δ′,F ,{g}〉 such that L (T ′) = L (T ) by the following:

– Q ′ = (Q \G /0)∪{g} where G /0 = {q∈G | ({q}×Σ×Q )∩δ = /0} is the set of states
of G that have no successors, and g 6∈ Q is a new state,

– I ′ = I ∪{g} if G ∩ I 6= /0, I ′ = I otherwise,
– δ′ = (δ\ (Q ×Σ×G /0))∪{(q,k,g) | (q,k,q′) ∈ δ, q′ ∈ G},
– ∀q ∈ I ,U ′(q) =U(q) and U ′(g) =

⋃
q∈(G∩I )

U(q).

Figure 5a shows how the TA from Figure 4b was transformed into an STA using
Property 1. The idea behind this transformation is that any livelock-accepting execution
of T will be mapped to an execution of T + that is captured by the new state g. The new
g state has an impact on the product (Figure 5b): the strongly connected components of
this new product no longer mix non-stuttering transitions and livelock-accepting cycles:
this renders the second-pass useless. The objective of STA is to isolate in the product
the exploration of the parts that are composed only by livelock-accepting states and
stuttering transitions, like the bold part of the product represented in the Figure 5b.

The STA emptiness check algorithm is the first-pass of the TA emptiness check
algorithm without the second-pass procedure. In other words, in STA approach, the
emptiness check is only Algorithm 2 (page 7) without line 6.

3.2 Correctness of the One-pass Emptiness Check using STA

In the following, K , T , T + denote respectively a Kripke structure, a TA and an STA.
The first-pass is an SCC-based algorithm, it computes the set of all MSCCs

(i.e., Maximal SCCs) of the product automaton. Therefore, in order to prove that the
first-pass is sufficient to detect all livelock-accepting cycles, we prove that in K ⊗T +,
searching for all livelock-accepting cycles is equivalent to searching for all MSCCs that
are only composed of stuttering transitions and livelock-accepting states. In Algorithm 2,
line 20 allows to detect this kind of MSCCs.

Lemma 1 In a product K ⊗T : if one MSCC M contains a product state (s,q) such that
q is a livelock-accepting state that has no successors in T , then M is only composed of
stuttering transitions and livelock-accepting states.

Proof. q has no successors in the TA T , therefore from q, a run of T can only execute
stuttering transitions: it stays in the same livelock-accepting state q. Consequently, all
product states of M are connected by stuttering transitions. In addition, they have the
same livelock-accepting state as TA component (q), therefore by Definition 3 all states
of M are livelock-accepting.



10 Ala Eddine Ben Salem

Lemma 2 In a product K ⊗T +: one MSCC M contains a livelock-accepting state if
and only if M is only composed of stuttering transitions and livelock-accepting states.

Proof. (=⇒) If an MSCC M contains a livelock-accepting state (s,q) of K ⊗T +, then q
is a livelock-accepting state that has no successors in T + because in STA every livelock-
accepting state has no successors. The proof follows from Lemma 1 applied to K ⊗T +.
(⇐=) Any state of M is livelock-accepting.

The difference between Lemma 1 and Lemma 2 is that the livelock-accepting states of
STA have no successors, while those of TA can. The following lemma is only for STA.

Lemma 3 In the product automaton K ⊗T +: there exists at least one livelock-acceptan-
ce cycle C if and only if there exists at least one non trivial MSCC M such that M is
only composed of stuttering transitions and livelock-accepting states.

Proof. (=⇒): The cycle C contains at least one livelock-accepting state, therefore
applying Lemma 2 with M is the MSCC containing C allows us to conclude.
(⇐=): M is non-trivial (i.e., it contains at least two states or a single state with a self-
loop), therefore M contains at least one non-trivial cycle only composed of stuttering
transitions and livelock-accepting states. This cycle is the livelock-accepting cycle C.

In Algorithm 2, the first-pass computes all MSCCs and line 20 allows to detect
only the MSCCs satisfying Lemma 3. Thus, the STA emptiness check algorithm reports
one cycle if and only if this cycle is a livelock-accepting or a Büchi-accepting cycle.

STA optimization The goal of this optimization is to reduce the number of transitions
in STA, by exploiting the fact that the livelock-accepting states (q′ ∈ G) that are also
Büchi-accepting (q′ ∈ F ) do not require the second pass. Indeed, during the TA to STA
transformation described by Property 1, it was unnecessary to add artificial transitions
(q,k,g) for any transition (q,k,q′) where q′ ∈ (G ∩F ), because any MSCC containing q′

is necessarily an accepting MSCC and it is detected by the first-pass of Algorithm 2.

4 Experimental evaluation of STA

This section presents our experimentation conducted under the same conditions as our
previous work [1], i.e., within the same tools Spot and CheckPN. We selected some Petri
net models and formulas to compare the three approaches: BA, TA and STA.

The models are from the Petri net literature [9], we selected the following models:
the flexible manufacturing system (FMS), the Kanban system, the Peterson algorithm,
the slotted-ring system, the dining philosophers and the Round-robin mutex. We also
used two models from actual case studies: PolyORB [8] and MAPK [7]. All these
models have a parameter n. For the dining philosophers, the Peterson algorithm, the
Round-robin, and the slotted-ring, the models are composed of n 1-safe subnets. For
FMS and Kanban, n only influences the number of tokens in the initial marking. We
selected two instances for each model: n = 4/5 for Peterson, FMS and Kanban; n = 6/5
for slotted-ring; n = 9/10 for dining philosophers; n = 14/15 for Round-robin.

For each selected model instance, we generated 200 verified formulas (i.e., no
counterexample in the product) and 200 violated formulas (i.e., a counterexample exists):
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Fig. 6. Performance (transitions explored by the emptiness check) of STA against TA and BA.

100 random (length 15) and 100 weak-fairness [1] (length 30) of the two cases of
formulas. Since generated formulas are very often trivial to verify (the emptiness check
needs to explore only a handful of states), we selected for each model only those formulas
requiring more than one second of CPU for the emptiness check in all approaches.

4.1 Results

Figure 6 compares the number of visited transitions when running the emptiness check;
plotting STA against TA and BA. This gives an idea of their relative performance.
Each point corresponds to one of the 5600 evaluated formulas (2800 violated with
counterexample as black circles, and 2800 verified having no counterexample as grey
crosses). Each point below the diagonal is in favor of STA while others are in favor of
the other approach. Axes are displayed using a logarithmic scale.

4.2 Discussion

On verified properties, the results are very straightforward to interpret when looking at
the number transitions explored by the emptiness check in Figure 6 .

STA significantly improve TA in all cases where a second pass was necessary. In these
cases, the STA approach, with its single-pass emptiness check, is a clear improvement
over TA. These cases where the STA approach is twice faster than TA’s, appear as a
linear cloud of grey crosses below the diagonal in the scatter plot of Figure 6 (we recall
that the axes are displayed using a logarithmic scale). Otherwise, they have the same
performance because if no livelock-acceptance states are detected in the product then
the TA and STA approaches explore exactly the same product (these cases correspond to
the grey crosses on the diagonal).

In the scatter plot comparing STA against BA, in most cases the grey crosses appear
below the diagonal, i.e., the points where STA is better. Therefore, STA outperform BA
for verified properties.

On violated properties, it is harder to interpret the results because they depend on the
order in which non-deterministic transitions of the property automaton are explored. In
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the best case, the order of transitions leads the emptiness check straight to a counterex-
ample; in the worst case, the algorithm explores the whole product until it finally finds
a counterexample. The different kinds of property automata BA, TA and STA provide
different orders of transitions and therefore change the number of states and transitions
to be explored by the emptiness check before a counterexample is found.

5 Conclusion

In a preliminary work presented in [1], we experiment LTL model checking of stuttering-
insensitive properties with various techniques: Büchi automata (BA), Transition-based
Generalized Büchi Automata and Testing Automata (TA) [5]. At this time, conclusions
were that TA has good performance for violated properties (i.e. when a counterexample
was found). However, this was not the case when no counterexample was computed
since the entire product had to be visited twice to check for each acceptance mode of a
TA (Büchi acceptance or livelock-acceptance).

This paper extends the above work to avoid the second pass of the emptiness check
algorithm in TA approach. It proposes a transformation of TA into STA, a Single-pass
Testing Automata that avoids the need for a second pass.

The STA approach have been implemented in Spot, our model checking library and
used on several benchmark models including large models issued from case studies.
Experimentation with Spot reported that, STA remain good for violated properties, and
also beat TA and BA in most cases when properties exhibit no counterexample.
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