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ABSTRACT
In the automata theoretic approach to explicit state LTL model
checking, the synchronized product of the model and an automaton
that represents the negated formula is checked for emptiness. In
practice, a (transition-based generalized) Büchi automaton (TGBA)
is used for this procedure.

This paper investigates whether using a more general form of
acceptance, namely transition-based generalized Rabin automata
(TGRAs), improves the model checking procedure. TGRAs can have
significantly fewer states than TGBAs, however the correspond-
ing emptiness checking procedure is more involved. With recent
advances in probabilistic model checking and LTL to TGRA trans-
lators, it is only natural to ask whether checking a TGRA directly
is more advantageous in practice.

We designed a multi-core TGRA checking algorithm and per-
formed experiments on a subset of the models and formulas from
the 2015 Model Checking Contest. We observed that our algorithm
can be used to replace a TGBA checking algorithm without losing
performance. In general, we found little to no improvement by
checking TGRAs directly.
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Graph algorithms;
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1 INTRODUCTION
Model checking. In the automata theoretic approach to LTL

model checking, the synchronized product of the negated prop-
erty and the state-space of the system is combined. The resulting
product is checked for emptiness by searching for an accepting cycle,
i.e., a reachable cycle that satisfies the accepting condition [28]. The
emptiness checking procedure is limited by the well-known state-
space explosion problem, where the product automaton becomes too
large to handle.

On-the-fly model checking mitigates the state-space memory
constraints by only storing the states (not the transitions) encoun-
tered during the emptiness check. The search procedure is launched
from an initial state. Reachables states are computed via a successor
function, and in case a counterexample is detected the search may
end well before the entire state-space is explored. A consequence
is that in practice emptiness checks rely on depth-first search (DFS)
exploration [27].

Another way to reduce the size of the product automaton is to
keep the sizes of the system’s state-space and the negated prop-
erty automaton as small as possible. In particular, smaller property
automata can be obtained by using more complex acceptance con-
ditions.

With current hardware systems one can further improve the
model checking performance by utilizing multiple cores. This way,
the time to model check can be significantly reduced; related work
shows that even though the problem is difficult to parallelize, in
practice an almost linear improvement with respect to the number
of cores can be obtained [6, 14, 17, 26].

Our goal: emptiness checks using generalized Rabin automata.
The automata-theoretic approach to LTL model checking is often
performed using Büchi automata (BAs), or even transition-based
generalized Büchi automata (TGBAs). TGBAs can be linearly more
concise than BAs, resulting in smaller products, and can be empti-
ness checked using algorithm enumerating strongly-connected
components (SCCs) at no extra cost compared to SCC-based algo-
rithms on BAs [8].

For probabilistic model checking, working with deterministic au-
tomata is important, as otherwise the resulting product automaton
might not be a Markov chain [3]. Since it is well known that not all
BAs can be determinized, probabilistic model checkers use Rabin
automata (RAs) instead. Recently, order-of-magnitude speedups
were reported when performing probabilistic model checking using
a generalized acceptance condition called transition-based gener-
alized Rabin Automata (TGRAs) [7]. Also, there has been a lot of
interest into building tools such as LTL3DRA [2] and Rabinizer
3 [13, 19] for translating LTL formulas into small deterministic
TGRAs.

https://doi.org/10.1145/3092282.3092288
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Our objective is to study whether the speedups observed
with TGRAs in probabilistic model checking also hold for non-
probabilistic explicit model checking. There are plenty of algo-
rithms for checking BAs and TGBAs (both sequentially and multi-
core) [6, 14, 26, 27], however for Rabin acceptance there is only a
recent work on a GPU algorithm for checking (non-generalized)
RAs [29] and a TGRA checking algorithm for probabilistic model
checking [7].

None of these works address our question: is there any advantage
to using transition-based Generalized Rabin Automata (TGRAs) over
transition-based Generalized Büchi Automata (TGBAs)? To do so,
we introduce a multi-core emptiness-check procedure for TGRAs.
We implement it in LTSmin [18], and benchmark several model-
checking tasks realized using TGRAs or TGBAs. Note that in our
case, the determinism of the automaton is not important.

We should also point out that having an efficient emptiness
check for TGRAs has more applications than just model check-
ing, because generalized Rabin acceptance can be thought of as a
normal form for any acceptance condition. Such a TGRA empti-
ness check could therefore be useful to ω-automata libraries such
as Spot [10] that work with automata using arbitrary acceptance
conditions [1]. Currently, ω-automata are converted into TGBAs
before being emptiness-checked. A recent tool is LTL3HOA, which
produces automata with an arbitrary acceptance condition.

Overview. The remainder of the paper is structured as follows.
We provide preliminaries in Section 2 and present our algorithm
in Section 3. We discuss related work in Section 4. Implementation
details and experiments are discussed in Section 5 and we conclude
in Section 6.

2 PRELIMINARIES
We defineω-automata using acceptance conditions that are positive
Boolean formulas over terms like Fin(T ) (the transitions inT should
be seen finitely often) or Inf(T ) (infinitely often). This convention,
inspired from the HOA format [1] allows us to express all traditional
acceptance conditions, and is similar to the formalism used by
Emerson & Lei 30 years ago [12] using state-based acceptance.

Definition 2.1 (TELA). A transition-based Emerson-Lei automa-
ton (TELA) is a tuple A = (Σ,Q,q0,δ ,Acc) where Σ is an alphabet,
Q is a finite set of states, q0 ∈ Q is the initial state, δ ⊆ Q × Σ×Q is
a transition relation, Acc is a positive Boolean function over terms
of the form Fin(T ) or Inf(T ) for any subset T ⊆ δ . For a transi-
tion t ∈ δ we note ts its source, tℓ its label, and td its destination:
t = (ts , tℓ , td ).

Runs of A are infinite sequences of consecutive transitions:

Runs(A) = {ρ ∈ δω | ρ(0)s = q0 ∧ ∀i ≥ 0 : ρ(i)d = ρ(i + 1)s }

The acceptance of a run ρ is defined by evaluating the acceptance
condition Acc over ρ such that:

• Fin(T ) is true iff all the transitions inT occur finitely often
in ρ.

• Inf(T ) is true iff some transitions in T occurs infinitely
often in ρ.
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Figure 1: (A1) a deterministic transition-based general-
ized Büchi automaton recognizing GFa ∧ GFb. (A2) a non-
deterministic transition-based Büchi automaton recogniz-
ing FGa. (A3) a deterministic transition-based co-Büchi au-
tomaton recognizing FGa.

Let ρℓ ∈ Σω be the word recognized by a run ρ ∈ Runs(A)
defined by ρℓ(i) = ρ(i)ℓ for all i ≥ 0. The language of A is the set
of all words ρℓ recognized by some accepting run ρ.

A Transition-based Generalized Büchi Automaton (TGBA) is a
TELA where Acc = Inf(T1) ∧ Inf(T2) ∧ . . . ∧ Inf(Tn ) for some n,
meaning that any accepting run has to visit infinitely often one
transition from each set Ti .

As an example, automaton A1 from Figure 1 represents a TGBA
for the formula GFa ∧ GFb. Here, transitions are labeled by all pos-
sible assignments of a and b, i.e., elements of Σ = {āb̄, āb,ab̄,ab}
(ā denotes the negation of a), and transitions are also marked us-
ing 0 and 1 to denote their membership to the sets used in the
acceptance condition. A run of A1 is accepted if it visits the two
acceptance marks 0 and 1 infinitely often.

The two automata A2 and A3 from Figure 1 represent the for-
mula FGa using the alphabet Σ = {ā,a} and different acceptance
conditions: A2 is a Transition-based Büchi Automaton while A3 is
a Transition-based co-Büchi Automaton. Both automata are min-
imal in their number of states and illustrate that allowing Fin ac-
ceptance can reduce the size of the automaton. Moreover, A3 is a
deterministic automaton, whereas no equivalent deterministic BA
exists.

A Transition-based Generalized Rabin Automaton (TGRA) is a
TELA where Acc has the form

∨n
i=1

(
Fin(Fi ) ∧ Inf(I1

i ) ∧ Inf(I2
i ) ∧

. . . ∧ Inf(I ℓii )
)
for some values of n, and ℓ1, ℓ2, . . . , ℓn . This is a

generalization of Rabin acceptance in the sense that in Rabin ac-
ceptance ℓi = 1 for all i . Each conjunctive clause of the form
Fin(Fi )∧ Inf(I1

i )∧ Inf(I2
i )∧ . . .∧ Inf(I ℓii ) is called a transition-based

generalized Rabin pair (TGRP).
Figure 2 depicts a deterministic TGRA (A4) and a non-

deterministic TGBA (A5), both representing the property
FG(FaUb). A4 is accepting if either 1 is visited infinitely often
without visiting 0 infinitely often, or if 2 is visited finitely often
and both 1 and 3 are visited infinitely often. Only one of the two
TGRPs has to be satisfied. In this case, by comparingA4 andA5 we
can (again) observe that Fin acceptance aids in both reducing the
size of the automaton and causing the automata to be deterministic.

Since generalized Rabin acceptance is just a disjunction of TGRPs,
it can serve as a normal form for any acceptance condition. Any
acceptance condition can be converted into generalized Rabin ac-
ceptance by distributing ∧ over ∨ to obtain a disjunctive nor-
mal form, and then replacing any conjunctive clause of the form
Fin(F 1) ∧ Fin(F 2) ∧ . . . ∧ Fin(Fm ) ∧ Inf(I1) ∧ Inf(I2) ∧ . . . ∧ Inf(I ℓ)
by the TGRP Fin(⋃n

i=1 F
i ) ∧ Inf(I1) ∧ Inf(I2) ∧ . . . ∧ Inf(I ℓ). This
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0 āb̄

0
ab̄

0 1
ab

Inf( 0)∧Inf( 1)(A5)

Figure 2: Two automata recognizing FG(FaUb). (A4) a deter-
ministic transition-based generalized-rabin automatonwith
two pairs. (A5) a non-deterministic transition-based gener-
alized Büchi automaton.

conversion can be done without changing the transition structure
of the automaton; its only downside is that it may introduce an
exponential number of TGRPs.

Strongly-connected components (SCCs) are usually defined as
maximal with respect to inclusion, but this extra constraint is not
always desirable in an emptiness check, where we are just looking
for one accepting cycle. We therefore use the terms partial SCC and
maximal SCC when we need to be specific.

Definition 2.2 (SCC). Given a TELA of the form A =

(Σ,Q,q0,δ ,Acc), a partial Strongly Connected Component (partial
SCC) is a pair C := (CQ ,Cδ ) ∈ 2Q × 2δ with CQ , ∅ such that
any ordered pair of states ofCQ can be connected by a sequence of
consecutive transitions from Cδ . We say that C is a maximal SCC
if C is maximal with respect to inclusion, thus the case where both
CQ and Cδ cannot be extended. An SCC is called trivial if Cδ = ∅,
and hence CQ consists of a single state.

In a TGBA with n acceptance sets of the form Inf(T1) ∧ . . . ∧
Inf(Tn ), finding an accepting run boils down to searching for a
trace from the initial state to a reachable partial SCC C for which
∀1≤i≤n : Ti ∩Cδ , ∅ holds, i.e., a partial SCC that intersects each
acceptance set.

In a TGRA, an accepting run has to satisfy one TGRP. We say
that a TGRP Fin(F )∧Inf(I1)∧Inf(I2)∧ . . .∧Inf(I ℓ) has an accepting
run if there is a trace from the initial state to a reachable partial
SCCC with ∀1≤i≤ℓ : Ii ∩Cδ , ∅ and F ∩Cδ = ∅, i.e., a partial SCC
that contains a transition from every Inf set and no transition from
the Fin set.

Note that in the case of a TGBA, it is always valid to replace the
search of a partial SCC intersecting all acceptance sets by the search
of a maximal SCC intersecting these sets. However this cannot be
done when the acceptance condition uses Fin sets. For instance
consider the automaton A4 in Figure 2 checked against the TGRP
Fin( 0 ) ∧ Inf( 1 ): the automaton is a unique maximal SCC that does
not satisfy 1 ∩Cδ , ∅ ∧ 0 ∩Cδ = ∅. However, those constraints
hold on the partial SCC that consists of state 0 and the loop above
it. For this reason our algorithm will build partial SCCs that do not
include transitions labeled by Fin sets.

3 ALGORITHM FOR TGRA EMPTINESS
In this section we present an algorithm for checking emptiness
on TGRAs. We start by splitting up the TGRA acceptance into
individual TGRPs, and show how these can be checked.

3.1 Checking each Rabin pair separately
Checking TGRAs can be achieved by checking each Rabin pair
separately, as shown in Algorithm 1. In case an accepting cycle is
found by TGRPAcc, that sub-procedure should report Acc and exit.
Thus, in case none of the TGRPAcc sub-procedures report accep-
tance, the algorithm returns with No_Acc. We assume that prior
to each TGRPAcc call, we have no knowledge on the individual
TGRPs and therefore treat them equally and separately. In theory,
this assumption may lead to missed opportunities. For example,
consider the case where TGRP1 = TGRP2, or even an overlap in
the Fin and/or Inf fragments of the TGRPs could be a reason for
combining gained information.

Algorithm 1: Checking TGRA by checking each TGRP
1 function TGRACheck (Q,q0, TGRA = {TGRP1, . . . , TGRPn })
2 forall i ∈ {1, . . . ,n} do
3 TGRPAcc(Q,q0, TGRPi )
4 return No_Acc // No TGRPAcc call reported Acc

Parallel TGRA checking. After a TGRPAcc call has finished, the
next Rabin pair is selected and a new sub-procedure is started, until
all n pairs have been checked. Since we are working in a multi-core
environment, we can assign different worker instances to different
Rabin pairs. Suppose there are P workers available, we can choose
to either use all P workers for checking a single Rabin pair, or we
can distribute the workers over the different pairs. By distributing
the workers evenly, for n Rabin pairs, each pair is checked by P

n
workers.

A disadvantage of this setup is that each of the n groups of P
n

workers processing the same TGRP needs its own copy of the shared
data structure. This means that by checking all pairs in parallel,
approximately n times more memory is required1.

However one advantage of checking each pair in parallel is
that the total workload can be better spread out over the available
workers, i.e., there is less contention in the data structures since the
probability of interfering with different search instances is reduced.
Another advantage could be that counterexamples may be detected
faster in this setting; suppose for example that only the nth pair
contains a counterexample, assuming that the counterexample is
detected by visiting only part of the state-space, this prevents the
complete state-space from being searched n − 1 times.

3.2 TGRP checking algorithm
Throughout this section we consider checking a TGRP with accep-
tance of the form Acc = (F ,I = {I1, . . . , I ℓ}).

Abstract idea of the algorithm. The general idea of the algorithm,
which we present in Algorithm 2, is to perform an SCC decomposi-
tion of the graph without allowing any F transitions from being part

1All global (shared) data structures have to be copied for the n pairs, but the memory
overhead for the local data structures remains the same.
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of the SCCs. As a result, we obtain SCCs that contain all edges ex-
cept those in F . Formally, we have that each SCCC is a partial SCC
of A that is maximal on the TGRP Aδ\F := (Σ,Q,q0,δ \ F ,Acc).
C is an accepting SCC if ∀1≤i≤ℓ : Cδ ∩ I i , ∅, i.e., C contains
transitions such that every I i can be visited infinitely often. By
definition of Aδ\F , we have that Cδ ∩ F = ∅. If C is also reachable
from q0 via transitions from δ (including F transitions), it can be
reported that a counterexample exists.

Preventing F transitions from being considered. The algorithm
detects the aforementioned ‘constrained’ SCCs in linear time and
in an on-the-fly setting, without relying on visiting states multiple
times2. It does so by performing a constrained SCC decomposition
of A from q0. Once a transition t = (ts , tℓ , td ) ∈ F is encountered,
state td is stored in a so-called Fstates set and t is further dis-
regarded since t cannot appear in any accepting cycle. Once this
search is finished, all states are marked as Dead and all SCCs are
decomposed on the subgraphA ′, which is formed by a reachability
from q0 over the transitions δ \ F . In case a non-trivial SCC con-
tains transitions from all I i sets we have detected a counterexample.
Otherwise, we pick a state s from the Fstates set and repeat the
same procedure (using q0 := s). For this state s there are two cases:

(1) s is marked Dead, meaning that it was added to Fstates
but it was also reachable in A ′ (without taking any F
transitions). Thus, we have already explored this state and
can ignore it.

(2) s is not marked Dead, meaning that s is not part of A ′ and
we launch a new SCC decomposition from s .

The search procedure is illustrated in Figure 3. Here, two TGRPs
are checked separately. Note that due to the way how 0 and 3

are located in the automaton, the initial searches for the first and
second pair lead to different components. The search for pair 1
detects A ′

1 = C1 ∪C3 (avoiding 0 ) and the search for pair 2 detects
A ′

2 = C1 ∪ C2 (avoiding 3 ). Consider the search for pair 1, after
the initial search it found the Fstates u and t . Both have not been
explored so suppose that u is arbitrarily chosen as a ‘new’ initial
state. We assume that the search from u visits all states in C23. If
now the edge is found from v to r , thus from C2 to C1, we must
not allow this transition to form a cycle as it would contain the
0 mark. Since the search from u is initiated after the search from
q0 is complete, r is already marked Dead and thus ignored. In fact,
even when we allow the search from u to start before all states
in C1 ∪ C3 are marked Dead it may in the worst case only add
redundant explorations. This is because the edge from s to u is
never really considered as an edge in the SCC decomposition and
hence no cycle can be formed with a 0 mark.

Data structures. To represent the Fin and Inf fragments of a
TGRP, we use a set of accepting marks per transition. We assign a
unique mark to each F and I i set, for 1 ≤ i ≤ ℓ, and refer to these
marks with FM and I iM (and IM for

⋃
1≤i≤ℓ I

i
M ). The complete

2The parallel search is based on swarmed verification, making it unlikely that states
are visited only once in practice, but in theory and in a sequential setting this is not
necessary for correctness.
3Consider for example what happens when there is no path from u to t . After the
search for u ends, all reachable states from u are marked Dead and the search from t
is started. Once it observes a Dead state it will not continue searching that state, hence
no redundant states are explored.

C1

C2

C3

q0

p
w

x

tu
v

s

r

3

0

0

(
Fin( 0)∧Inf( 1)∧Inf( 2)

)
∨
(
Fin( 3)∧Inf( 4)

)
pair 1 pair 2

Figure 3: Example of running an emptiness check on an
TGRA with two pairs. C1, C2, and C3 represent components
(not necessarily strongly connected) that do not contain any
transition in the sets 0 or 3 . Workers doing the emptiness
check for the first pair will first explore C1 ∪C3, attempting
to find a cycle satisfying Inf( 1)∧Inf( 2) without crossing the
0 -transitions leading to u and t . If no accepting cycles are
found, they will continue their exploration in C2, starting
in states u and v, and ignoring all transitions going back to
C1 ∪ C3. Workers doing the emptiness for the second pair,
will similarly first look for cycles satisfying Inf( 4) inC1 ∪C2,
postponing the exploration of C3 that is only accessible via
a 3 -transition.

set M is thus defined as M := {FM , I0
M , . . . , I

ℓ
M }. Each transition

t is associated to a set of acceptance marks acc ⊆ M , indicating
whether t ∈ F or t ∈ I i for 1 ≤ i ≤ ℓ.

We define S as a mapping from states to pairs, consisting of a set
of states and a set of marks. Thus S(s) = (states,acc) and formally,
S : Q → 2Q × 2M . By implementing S with a union-find structure,
we can maintain the following invariant at all times:

∀u,v ∈ Q : u ∈ S(v).states ⇔ S(v) = S(u)

This further implies that every state is part of exactly one set of
states. In the algorithm, we use S to associate each state u to its
partial SCC that contains the states S(u).states and visits all the
marks in S(u).acc . S pairs can be combined using a Unite func-
tion. We use an example to illustrate S and the Unite function.
Let S(u) := {{u,w}, {FM }} and S(v) := {{v}, {FM , I1

M }}, we can
use the Unite function to combine the two structures. After call-
ing Unite(S,u,v) we have S(u) = S(v) = {{u,v,w}, {FM , I1

M }},
while keeping all other mappings the same. For more details on
this structure, we refer to Bloemen et al. [5]. We use an additional
function AddAcc to ‘add’ (the union of) acceptance marks to the
set, thus AddAcc(S,v, {I1

M , I
2
M }) will ensure that S(v).acc becomes

{FM , I1
M , I

2
M }.

The Fstates structure is implemented as a cyclic list that con-
tains all states added to the list (by means of Fstates.addState).
Fstates.pickState returns a state from the list, in case the list
is nonempty. Finally, states are removed from the list by calling
Fstates.removeState. For efficient list containment and to avoid
duplicated states from being added, we store the list on top of an
array, in which the elements point to each other.
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Algorithm 2: Algorithm for checking a TGRP
1 function TGRPAcc (Q,q0, TGRP = (FM ,IM ))
2 ∀s ∈ Q : S(s) := ({s}, ∅) // Initialize map

3 Visited := Dead := ∅ // Sets

4 R := ∅ // Roots stack of (acc, state) pairs

5 Fstates := {q0} // Cyclic list of init states

6 while ¬Fstates.isEmpty() do
7 s := Fstates.pickState()
8 if s < Dead then TGRPAccRecur(∅, s)
9 Fstates.removeState(s)

10 return // No Acc got reported in the search

11 function TGRPAccRecur (accs , s)
12 Visited := Visited ∪ {s}
13 R.push(accs , s)
14 forall (acct , t) ∈ suc(s) do
15 if t ∈ Dead then continue // Explored

16 else if t < Visited then // ‘New’ state
17 if acct ∩ FM , ∅ then // Avoid F
18 Fstates.addState(t)
19 else TGRPAccRecur(acct , t)
20 else if acct ∩ FM = ∅ then // Cycle
21 while S(s) , S(t) do
22 (accr , r ) := R.pop()
23 Unite(S, r ,R.top().state)
24 AddAcc(S, r , accr )
25 AddAcc(S, s, acct ) // Add acct to S(s)
26 if IM = S(s).acc then // Acc. cycle
27 report Acc and exit
28 if s = R.top() then // Completed SCC
29 Dead := Dead ∪ S(s).states
30 R.pop()

Detailed algorithm. The sequential algorithm for checking a
TGRP is presented in Algorithm 2. First, all data structures are
initialized in lines 2-5. Then, the algorithm continuously picks a
state s (initially q0) and calls the TGRPAccRecur procedure. This
procedure performs an SCC decomposition, similar to Dijkstra’s
algorithm [9]. After the TGRPAccRecur is finished, s is removed
from the Fstates list and a new state is picked from the list. If the
list is empty, we assume that the complete state-space has been
visited and since no Acc was reported, we can conclude that no
counterexample exists for this TGRP.

In the TGRPAccRecur procedure, state s is marked as visited
and pushed on top of the R stack, along with the accompanying
acceptance set accs (note that since there is no transition to the
initial state, the empty set is given in line 8). The R stack can be
regarded as an extension to the roots stack from Dijkstra’s SCC
algorithm [9]. All successors of s are considered in lines 14-27. For
each successor t we consider three cases:

• t ∈ Dead (line 15), this implies that t has already been
completely explored and can thus be disregarded.

• t is unvisited (lines 16-19), meaning that t has not been
encountered yet. If t is part of the Fin set, we add it to the

Fstates list and ignore it for the current search. Otherwise,
we recursively search t .

• t is not Dead but it has been visited before (lines 20-27).
This implies that there is some state r ′ on the R stack such
that t ∈ S(r ′).states and hence a cycle can be formed. The
algorithm then continuously takes the top two states from
the R stack and unites them (and adds the acceptance mark)
until S(s) and S(t) are the same. Finally, the acceptance
marks from acct are added. At line 26, S(s) contains all
states in the cycle from s to t and forms a partial SCC. S(s)
is then checked if it contains all Inf acceptance marks. If
so, an accepting SCC is found and is reported.

After all successors are explored, the algorithm backtracks. In case
s equals the top of the R stack (line 28), s is the last state of the SCC
and the entire SCC is marked as being fully explored by marking it
as Dead.

Outline of correctness. We argue that the TGRPAcc algorithm
decomposes the TGRP automaton in maximal SCCs when defined
over the transitions δ \ F and that it correctly reports accepting
cycles; it reports Acc when a reachable SCC contains a transition
from each I i sets, for 1 ≤ i ≤ ℓ, and no transition from F . Due to
the conditions of line 17 and 20, for a transition with acct ∩ F , ∅
it is not possible to start a recursive call with acct (thus acct
never appears on the R stack) nor is it possible to call AddAcc
with acct as an argument. All such transitions are ‘avoided’ and
unvisited successors are added to Fstates. We thus conclude that
no F transition can be contained in any formed SCC.

Because we do allow and explore all other (non-F ) transitions
during the search, assuming a correct SCC algorithm, the accep-
tance set of each SCC cannot be further extended without also
having to include an F transition.

Since all states that did not get visited were added to the Fstates
list, and each state from this list is eventually picked as an initial
state, we argue that the complete state-space has been explored
after the algorithm terminates on line 10.

Complexity. One can observe that every state and transition is
visited at most once in the algorithm. The TGRPAccRecur pro-
cedure will mark a state as visited and will never be called twice
for the same state. The bottleneck of the algorithm becomes main-
taining the S structure. From previous work [5] we know that the
union-find structure (without tracking acceptance marks) causes
the complete algorithm to operate in quasi-linear time. By assuming
that |M | (= 1 + ℓ) is a small constant (which can be assumed in
practice), tracking the acceptance can be achieved in constant time
per modification to the structure, hence the total time complexity
is upper bounded by O(|M | · |δ | · log(|δ |)) for each TGRP.

The space complexity is limited by the sizes of the R, S, and
Fstates structures. R may contain up to |Q | states and acceptance
marks in the worst case (by visiting every state in a single path). S
can be implemented as an array of length |Q | of structs that are of
constant size, plus |M | bits for tracking acceptance, and Fstates
can be implemented as an array of |Q | elements. In totalO(|Q | · |M |)
memory is used.
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Parallel implementation. Algorithm 2 can be parallelized by
swarming the search instances; by starting multiple worker in-
stances from the initial state and using a randomized successor
function to steer the workers towards different parts of the state-
space. The TGRPAccRecur function can be seen as an extension
to the multi-core SCC algorithm from Bloemen et al. [5, 6]. The
key to this algorithm is to globally communicate locally detected
cycles. This way, multiple workers can cooperatively decompose
SCCs. Additionally, (partly) unexplored states in an SCC are tracked
globally and once a worker fully explores a state, none of the other
workers have to explore this state again. Once all states of an SCC
are fully explored, the entire SCC must be fully explored and thus
can be marked Dead.

During Unite procedures, the involved parts of the union-find
structure are briefly locked to guarantee correctness. During this
locking phase, the acceptance set can be updated atomically without
interferingwith other parts. This is also implemented in our existing
TGBA checking algorithm [6].

The Fstates list is implemented by using a fine-grained locking
mechanism to add states to the list, such that all states remain
on the cycle. The reason for implementing Fstates as a cyclic
list becomes clear in the next example. Suppose the Fstates list
contains two states, u and v . To avoid contention, the algorithm
attempts to divide the workload by assigning half of the workers to
search fromu and the other half to search fromv . Now, assume that
u does not have any successors and a large part of the state-space is
reached from v . If the search from u completes, we ideally want to
let the workers aid in the search fromv . By maintaining Fstates as
a cyclic list, without much effort we can check which searches have
not been completed yet. The Fstates list is implemented similarly
as the cyclic list in the union-find structure, which is discussed
in [5].

The time complexity of the algorithm is in the worst case in-
creased by a factor P , for P workers, since the algorithm tracks a
bit per worker instance in the union-find structure. However, in
practice we observe an improvement over the sequential imple-
mentation. For the same reason the memory complexity is also
increased by P , and additionally every worker contains its own
R stack. Moreover, as mentioned in Section 3.1, if all TGRPs are
checked simultaneously, a copy of the global data structures has to
be made for each group of worker processing a different TGRP. As
a result, n times more memory is required for these structures in
case there are n TGRPs.

4 RELATEDWORK
Related work on checking Büchi automata. Explicit state on-the-

fly algorithms for checking can be distinguished in two classes,
namely Nested Depth-First Search (NDFS) and SCC-based algorithms.
Schwoon and Esparza provide a great overview on these tech-
niques [27]. The advantage of SCC-based algorithms over NDFS is
that they can handle generalized Büchi automata efficiently.

In a multi-core setting, we consider the CNDFS algorithm [14]
to be the state-of-the-art NDFS-like algorithm. It is based on swarm
verification [16] and operates by spawning multiple NDFS instances
and globally communicating ‘completed’ parts of the state-space.

For state-of-the-art multi-core SCC-based algorithms, in prior
work we showed that the algorithm from Bloemen et al. [6] out-
performs other techniques and performs similar to the CNDFS
algorithm. The algorithm is also based on swarmed searches, and
detected partial SCCs are communicated globally and maintained
in a shared structure. Notable related multi-core SCC algorithms
are the ones from Renault et al. [26] and Lowe [23].

Related work on checking Rabin automata. As mentioned in Sec-
tion 1, when checking LTL properties for probabilistic systems,
the automaton needs to be deterministic [3]. Chatterjee et al. [7]
present an algorithm to check deterministic TGRA conditions in
the context of (offline) probabilistic model checking. The idea is to
consider each generalized Rabin pair (Fi , {I1

i , . . . , I
li
i }) separately

and for each pair: (1) remove the set of states Fi from the state space,
(2) Compute the maximal end-component (MEC) decomposition,
and (3) check which MECs have a non-empty intersection with
every I

j
i , for j = 1, . . . , li . These sets are then used for computing

maximal probabilities. The paper reports significant improvements
over checking a degeneralized variant of deterministic TGRAs. They
also present improvements for computing a winning strategy in
LTL(F,G) games by using a fixpoint algorithm for generalized Rabin
pairs. Our algorithm is different in that it operates on-the-fly and
in a multi-core setting.

Wijs [29] recently presented a on-the-fly GPU algorithm for
checking LTL properties for non-generalized deterministic Rabin
automata. Here, the choice for (deterministic) Rabin automata, in-
stead of non-deterministic Büchi automata, is motivated by the
observations that it can speed up the successor construction and
that it can reduce the state space of the cross-product. In that paper,
a BFS-based search is used, in particular a variation on the heuristic
piggybacking search [15, 17]. This approach is incomplete due to
situations referred to as shadowing and blocking, but these cases can
be detected and resolved with a depth-bounded DFS. Our approach
differs in that we allow (generalized) TGRAs and do not require
repair procedures.

Related work on checking different automata. Emerson and
Lei [12] show that the emptiness check of an ω-automaton with
arbitrary acceptance condition is NP-complete. They also present a
polynomial algorithm for the case where the acceptance condition
is provided as a disjunction of Streett acceptance conditions. Streett
acceptance is the negation of Rabin acceptance, a conjunction of
Fin(I )∨Inf(F ) instances (or equivalent, Inf(I ) ⇒ Inf(F )), and Streett
acceptance closely relates to fairness checking.

Duret-Lutz et al. [11] present a sequential algorithm for check-
ing Streett objectives by performing an SCC decomposition and
tracking thresholds to prevent ‘rejecting’ cycles from occurring in
the SCCs. In a multi-core setting, the algorithm by Liu et al. [22]
performs an initial SCC decomposition and for every SCC a new
instance is launched in parallel that ignores certain transitions.

5 EXPERIMENTS
5.1 Experimental Setup
All experiments were performed on a machine with 4 AMD
Opterontm 6376 processors, each with 16 cores, forming a total of
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64 cores. There is a total of 512GB memory available. We performed
all experiments using 16 cores.

Implementation. The TGRA checking algorithm is implemented
in the LTSmin toolset [18]. We used several external tools and
libraries for generating and parsing the automata:

• Spot v2.3 [10]. We used some tools from Spot: ltl2tgba
for generating TGBAs, and autfilt for converting au-
tomata with other accepting conditions into TGRAs.

• cpphoafparser v0.99.24. We used this library to parse a
HOA automaton [1] and create an internal representation
for LTSmin.

• Rabinizer v3.1 [13, 19]. We used this tool to generate
deterministic transition-based generalized Rabin automata.

• LTL3DRA v0.2.4 [2]. We used this tool to also generate
deterministic automata with transition-based generalized
Rabin acceptance, but LTL3DRA only supports a subset of
LTL, called LTL\GUX in [4], which is slightly stricter than
the set of LTL formulas where no until (U) operator may
occur in the scope of any always (G) operator.

• LTL3HOA v1.0.1 [24]5. We used this tool to gener-
ate nondeterministic automata with an arbitrarily com-
plex transition-based acceptance. We then used Spot’s
autfilt --generalized-rabin to convert these au-
tomata to TGRAs.

We used the algorithm from Bloemen et al. [6] to model check
TGBAs, and used the algorithm presented in this paper for checking
TGRAs, both are implemented in LTSmin. The algorithms make
use of LTSmin’s internal shared hash tables [21], and the same
randomized successor distribution method is used throughout. The
shared hash table is initialized to store up to 228 states.

Experiments. We took models and LTL formulas from the 2015
Model Checking Contest [20]. We restricted this set of over 44,000
pairs of models and formulas to those that do not describe obliga-
tion properties [25] because using non-Büchi acceptance cannot
help producing smaller automata on this class. This selection is
further reduced by selecting only the instances where the ‘TGRA
generators’ (LTL3DRA, Rabinizer 3 and LTL3HOA) create TGRAs
with at least one non-empty Fin set. Otherwise, a TGRP is the same
as a TGBA, and hence the TGBA emptiness check could be used
instead. For this selection, we report results on the experiments
(118 in total) for which the time to model check using the TGBA
checking algorithm is between 1 second and 10 minutes. We remark
that this selection is in favor of the TGBA checking algorithm, since
all cases where timeouts and memory errors occurred in the TGBA
algorithm were filtered out as a result of our selection criteria.

For each pair of model M and formula φ we solved the model
checking task L (M ⊗ A¬φ ) = ∅ using 5 configurations that were
repeated 10 times. The configurations were: ltl2tgba using the
TGBA checking algorithm, LTL3DRA, Rabinizer 3, LTL3HOA trans-
lated to TGRA, and ltl2tgba translated to a TGRA, where the
latter four cases used the TGRA checking algorithm introduced in
this paper. Every task was run with a timeout of 10 minutes. In
total the experiments took approximately 5 days to complete.

4Available on http://automata.tools/hoa/cpphoafparser.
5Available on https://github.com/jurajmajor/ltl3hoa.

All our results and means to reproduce the results are available
on https://github.com/utwente-fmt/Rabin-SPIN2017.

5.2 Main results
The main results of the experiments are presented in Figure 4 and
are summarized in Table 1. One thing to note is that the results
are presented on a log-log scale. The (16-core) experiments for the
TGBA checking algorithm are provided on the x-axis and the results
for the four TGRP checking experiments are given on the y-axis.
The time for each experiment was repeated 10 times and averaged.
All TGRAs are checked by considering each TGRP sequentially,
i.e., all workers are assigned to the first TGRP and continue to the
second pair (if there is one) when the first TGRP is fully explored.

We encountered a couple of errors in the experiments. There
were two instances that resulted in a memory error, meaning that
too much memory was allocated during the model checking proce-
dure. These errors only occurred for the TGRA checks and were
caused by the additional allocation of the Fstates data structure.
There are also two instances that resulted in timeouts for some of
the configurations. These both contain counterexamples and sug-
gest that having Fin acceptance instead of only Inf can sometimes
lead to bad performance for the TGRA checking algorithm.

Comparison with Rabinizer 3 and LTL3DRA. We observe that
most of the results for Rabinizer 3 and LTL3DRA (and to some
extent also LTL3HOA) are similar to each other. This could be ex-
plained by the fact that both translators produce (deterministic)
TGRAs that likely do not differ much. We observe that on aver-
age, in Table 1, the TGBA checking algorithm performs 19% faster
when compared to Rabinizer 3 and 16% faster when compared to
LTL3DRA. We highlight a couple of instances.

Arguably the worst performing model is the one at (x,y) posi-
tion (116,517) in the top-right scatter plot, meaning that the TGRA
checking algorithm took 517 seconds to complete, while the TGBA
checking algorithm performed 4.6 times faster. The corresponding
TGBA consists of 1 acceptance set and the TGRA is a single pair
with a nonempty Fin set and no Inf sets (i.e., a co-Büchi automaton).
On further analysis we find that the TGRA even contains fewer
transitions, namely 1.05 · 109 compared to 1.23 · 109 of the TGBA.
However, over 15% of the transitions in the TGRA are part of the
Fin set. As a result, the performance deficit is likely caused by the
overhead of maintaining the Fstates in the algorithm. This in-
stance can be found in the comparisons with Rabinizer 3 and
LTL3HOA as well, with similar results.

A better instance is the one at (9.1,6.3) in the top-right scatter
plot. In this case, we also have a TGBA with 1 acceptance set and a
TGRA that equals a co-Büchi automaton. While we again have that
the number of Fstates forms a significant part of the total number
of transitions (15%), the difference here is that the total number
of transitions is much smaller. In total, the TGBA has 1.5 · 106

transitions and the TGRA has 0.6 · 106 transitions. This significant
difference with the previous instance is explained by a costly suc-
cessor function. We argue that the TGRA checking algorithm takes
advantage of the reduced state-space in this instance to outperform
the TGBA checking algorithm.

http://automata.tools/hoa/cpphoafparser
https://github.com/jurajmajor/ltl3hoa
https://github.com/utwente-fmt/Rabin-SPIN2017
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Table 1: Comparison of the geometricmean execution times (in seconds). The numbers between parentheses denote howmany
times faster the TGBA checking algorithm is compared to the other configuration. We only used the experiments that were
checked in all configurations (51 in total, of which 5 counterexamples).

LTL3HOA LTL3DRA Rabinizer 3 TGBA-TGRA TGBA

Counterexample 4.19 (0.48) 10.06 (1.14) 11.38 (1.29) 8.53 (0.97) 8.80
No counterexample 10.68 (1.50) 8.30 (1.17) 8.38 (1.18) 7.14 (1.00) 7.12

Total 9.74 (1.34) 8.46 (1.16) 8.64 (1.19) 7.27 (1.00) 7.27
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Figure 4: Time (in seconds) comparisons of the TGBA (x-axis) and the TGRA emptiness checks (y-axis), for various LTL to
TGRA translations. Each point represents the time to perform an emptiness check using 16 cores, averaged over 10 runs. The
TGRA algorithm performed faster for instances below the x=y line.

Comparison with LTL3HOA. We consider a comparison with the
automata produced by LTL3HOA different from the previous two
discussed configurations, since LTL3HOA produces automata with a
generic acceptance that are not necessarily deterministic.

The results show instances that perform very poorly compared
to the TGBA checking algorithm, but there are also cases, especially
counterexamples, that are solvedmuch faster by the TGRA checking
algorithm when the LTL3HOA translator is used.

One remarkable instance is the one at (13.2,1.7) in the top-left
scatter plot. The corresponding TGBA is a single-state automaton
with one acceptance set, and the TGRA is a single-state automaton
with two pairs; one pair with a nonempty Fin set, and the other pair

is equal to the TGBA. The TGRA checking algorithm detects the
counterexample while still searching in the first pair (the second
pair is never considered), thus the co-Büchi acceptance leads to
an almost 8 times improvement. The TGRA algorithm visits on
average 62 · 103 unique transitions, while the TGBA version visited
110 · 106 transitions, more than a 1,000× difference. For the TGRA,
about half of the transitions were part of the Fin set.

Cross-validation with TGBA seen as TGRA. Since any TGBA can
be trivially rewritten into a TGRA with an empty Fin set, we can
use this to cross-validate our algorithm. The bottom-right scatter
plot of Figure 4 shows the results for this comparison. Aside from



Explicit State Model Checking with Generalized Büchi and Rabin Automata SPIN’17, July 2017, Santa Barbara, CA, USA

Table 2: Geometric mean sizes of the automata and products.
|Aut| denotes the number of states in the LTL automaton,
|Pairs| the number of TGRPs in the TGRA, and |States|
and |Trans| provide the sizes of the product automaton. We
only used data from experiments that without a counterex-
ample and were checked in all configurations (46 in total).

|Aut| |Pairs| |States| |Trans|

LTL3HOA 1.03 1.41 1.11·106 5.34·106

LTL3DRA 1.02 1.02 0.78·106 3.78·106

Rabinizer 3 1.53 1.03 0.80·106 3.84·106

TGBA-TGRA 1.44 1.00 0.88·106 4.40·106

TGBA 1.44 1.00 0.88·106 4.40·106

one memory error (caused by unnecessarily allocating the data
structure for Fstates, since there are no Fin sets), there are hardly
any differences in the model checking times. It is not too surpris-
ing that the results are almost equal, since the TGRA checking
algorithm does not have to track any Fstates as there are no Fin
transitions in a TGBA. This means that the algorithm reduces to
an SCC decomposition that tracks the acceptance marks, which
is almost equal to the TGBA checking algorithm that we used to
compare with.

We can avoid allocating memory for the Fstates data structure
in case there are no Fin sets in the TGRA. Then, this TGRA empti-
ness check can be used instead of the TGBA emptiness check as
there is no reason to keep both algorithms if they perform equally.

5.3 Additional results
Sizes of the automata and products. Table 2 summarizes informa-

tion on the state-spaces from the experiments that do not contain a
counterexample (thus the complete state-space is explored). One
can see that the number of states and transitions in the product
automata is, on average, smaller for the LTL3DRA and Rabinizer
3 versions compared to TGBA.

We observe that while the Rabinizer 3 TGRAs generally tend to
have a larger |Aut| compared to TGBAs, but the product automata
are smaller on average, indicating that determinism can help to
reduce the state-space of the product automaton. Interestingly,
while LTL3DRA also produces deterministic automata, it produces
both the smallest LTL automata and the smallest product automata.

The product automata from LTL3DRA and Rabinizer 3 are gen-
erally smaller than those from TGBAs. If the TGRA checking al-
gorithm would be improved to be (almost) as efficient as a TGBA
checking one, there would be no reason to keep using TGBAs in-
stead of TGRAs.

Checking TGRPs in parallel. In a number of cases we observe
that the TGRA consists of 2 TGRPs (we have not encountered an
instance that contained more than two pairs). In Section 3.1 we
suggested that these pairs could be checked in parallel instead of
sequentially. We performed experiments to compare the two. In the
case for products without counterexamples, therewas no observable
difference. In case there were counterexamples, the results varied
more, but there does not seem to be a clear winner. Because the
‘parallel’ version does allocate significantly more memory (the
memory consumption was almost doubled), we prefer checking

the TGRPs sequentially. Future work that checks more complicated
TGRAs may suggest reasons for choosing the alternative approach.

Scalability. Our existing TGBA checking algorithm [5, 6]
achieves good scalability when increasing the number of workers,
at least up to 64 cores. Initial experiments for the TGRA checking
algorithm showed similar improvements, but the performance im-
provement starts to drop when increasing beyond 16 cores. The
bottleneck of the algorithm is most likely caused by inserting and
selecting states from the Fstates list. Future work could investi-
gate whether the Fstates list can be further improved, or point
out whether the bottleneck is a structural problem in the algorithm.

6 CONCLUSION
We introduced a multi-core, on-the-fly algorithm for explicit check-
ing of emptiness on TGRAs. We showed that the algorithm is ef-
ficient in the sense that every state and transition only has to be
visited once and reduces to an SCC decomposition in case there are
no Fin sets in the TGRA.

Experiments show that, in general, a TGBA checking algorithm
outperforms our new algorithm. This seems to be true in particular
for cases where a large proportion of the product state-space is
part of a Fin set for the TGRA. In general we conclude that using
TGRAs is not advantageous over TGBAs for checking emptiness,
when using our algorithms.

Our experiments do suggest that using TGRAs for emptiness
checks is advantageous in some scenarios. The product automaton
for a TGRA is on average smaller than that of a TGBA, in particular
when deterministic LTL to TGRA translators are used (LTL3DRA
and Rabinizer 3). The results also suggest, presumably as a con-
sequence, that our algorithm can outperform a TGBA checking
algorithm if the successor computation procedure is a costly op-
eration. The TGRA checking algorithm also seems beneficial in
instances where only a small fraction of the state-space is part of
a Fin set. Finally, the TGRA checking algorithm can be used as a
replacement for a TGBA checking one, since the performance on
checking TGBAs is practically equal.

Future work includes further improving the TGRA checking
algorithm (there are several variations possible), performing ad-
ditional experiments, and comparing this technique (in different
contexts) with related work. Perhaps a preprocessing step could
suggest when the algorithm should be applied on a TGRA and when
on a TGBA. Another direction for future work is to investigate a
variation of the proposed algorithm to check fairness or Streett
automata.
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