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Abstract. Natural and synthetic discrete images are generally not well-
composed, leading to many topological issues: connectivities in binary
images are not equivalent, the Jordan Separation theorem is not true
anymore, and so on. Conversely, making images well-composed solves
those problems and then gives access to many powerful tools already
known in mathematical morphology as the Tree of Shapes which is of our
principal interest. In this paper, we present two main results: a character-
ization of 3D well-composed gray-valued images; and a counter-example
showing that no local self-dual interpolation satisfying a classical set of
properties makes well-composed images with one subdivision in 3D, as
soon as we choose the mean operator to interpolate in 1D. Then, we
briefly discuss various constraints that could be interesting to change to
make the problem solvable in nD.

Keywords: Digital topology, gray-level images, well-composed sets, well-
composed images

1 Introduction

Natural and synthetic images are usually not well-composed. This fact raises
many topological issues. As an example, the Jordan Separation theorem, stating
that a simple closed curve in R2 separates the space in only two components is
not true anymore for binary 2D discrete images [5]. To solve this problem, we
have to juggle with two complementary connectivities: 4 for the background and
8 for the foreground, or the inverse. 2D well-composed binary images have the
fundamental property that 4- and 8-connectivities are equivalent. Hence, such
topological issues vanish. In the same manner, well-composed nD images, with
n > 2, have 2n- and (3n − 1)-connectivities equivalent [11]. Other advantages of
well-composed images are for example the preservation of topological properties
by a rigid transform [10], simplification of thinning algorithms [8] and simplifi-
cation of graph structures resulting from skeleton algorithms [5]. Also, and it is
our most important goal, one can compute the Tree of Shapes [9,2] of a well-
composed image with a quasi-linear algorithm [3]. An introduction to the Tree
of Shapes in the continuous case can be found in [1].
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Section 2 recalls the definitions of 2D and 3D well-composed sets and gray-
valued images, and introduces a characterization of 3D gray-valued well-com-
posed images. Because we do not want to deteriorate the initial signal, we use
an interpolation that produces a well-composed image. Furthermore, in order to
treat in the same manner bright components on dark background and dark com-
ponents over bright background, this interpolation process will be self-dual. We
present in Section 3 a general scheme that recursively defines local interpolations
satisfying a classical set of properties with one subdivision. We show that such
interpolations, with the added property of being self-dual, fail in 3D (and then
further) to make well-composed images. We conclude in Section 4 with some
perspectives that could work in nD even if n > 2 (in local and non-local ways).

2 A characterization of 3D well-composed gray-valued
images

2.1 2D WC Sets and Gray-Valued Images

Let us begin by the definitions of a block of Zn. We will then be able to recall
the definition and the characterization of 2D well-composed sets and images.

A block in nD associated to z ∈ Zn is the set Sz defined such that Sz ={
z′ ∈ Zn

∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥ zi
}

(where zi represents the ith

coordinate of z). Moreover, we call blocks of D ⊆ Zn any element of the set{
Sz
∣∣∃z ∈ D, Sz ⊆ D}.

Definition 1 (2D WC Sets [5]) A set X is weakly well-composed if any 8-
component of X is a 4-component. X is well-composed if both X and its com-
plement Xc = Z2 \X are weakly well-composed.

Proposition 1 (Local Connectivity and No Critical Configurations [5])
A set X ⊆ Z2 is well-composed iff it is locally 4-connected. Also, a set X is well-

composed if none of the critical configurations

(
1 0
0 1

)
or

(
0 1
1 0

)
appears in X.

Definition 2 (Cuts in nD) For any λ ∈ R and any gray-valued map u : D ⊆
Zn 7→ R, we denote by [u > λ] and [u < λ] the sets [u > λ] =

{
M ∈ D

∣∣u(M) > λ
}

and [u < λ] =
{
M ∈ D

∣∣u(M) < λ
}

. We call them respectively upper strict cuts
and lower strict cuts [3].

We remark that an image u : D ⊆ Z2 7→ R with a finite domain D can only
be well-composed if D is itself well-composed (since [u < max(u) + 1] = D).

Definition 3 (Gray-valued WC 2D Maps [5]) A gray-level map u : Z2 7→
R is well-composed iff for every λ ∈ R, the strict cuts [u > λ] and [u < λ] result
in well-composed sets.

We recall that the interval value of the couple (x, y) ∈ R2 is defined as
intvl(x, y) = [min(x, y),max(x, y)].
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Proposition 2 (Characterization of 2D WC maps [5]) A gray-level map

u : Z2 7→ R is well-composed iff for every 2D block S such that u
∣∣
S

=

(
a b
c d

)
,

the interval values satisfy intvl(a, d) ∩ intvl(b, c) 6= ∅.

2.2 3D WC Sets and Gray-Valued Maps

Fig. 1. Illustration of the bdCA of
a set containing a critical configu-
rations of type 1 (left), and of type
2 (right).

Fig. 2. A set locally 6-connected
but not well-composed.

As we will see, for n = 3, the equivalence between local connectivity and well-
composedness is no longer true. This led Latecki [4] to introduce the continuous
analog.

Definition 4 (CA and bdCA [4]) The continuous analog CA(z) of a point
z ∈ Z3 is the closed unit cube centered at this point with faces parallel to the
coordinate planes, and the continuous analog of a set X ⊆ Z3 is defined as
CA(X) =

⋃{
CA(x)

∣∣x ∈ X}. The (face) boundary of the continuous analog
CA(X) of a set X ⊆ Z3 is noted bdCA(X) and is defined as the union of
the set of closed faces each of which is the common face of a cube in CA(X) and
a cube not in CA(X).

Definition 5 (Well-composedness in 3D [4]) A 3D set X ⊆ Z3 is well-
composed iff bdCA(X) is a 2D manifold, i.e., a topological space which is locally
Euclidian.

Proposition 3 (No Critical Configurations [4]) A set X ⊆ Z3 is well-com-
posed iff the following critical configurations of cubes of type 1 or of type 2
(modulo reflections and rotations) do not occur in CA(X) or in CA(Xc) (see
Figure 1).

We remark that if a set X ⊆ Z3 is well-composed, then X is locally 6-
connected. The converse is false (see Figure 2).

Definition 6 (WC Gray-valued Maps) We say that a 3D real-valued map
u : D ⊆ Z3 7→ R is well-composed if its strict cuts [u > λ] and [u < λ], ∀λ ∈ R,
are well-composed.
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Fig. 3. The restriction
u
∣∣
S

of u to a 3D block S.
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Fig. 4. The ten characteristical relations of well-
composedness of a gray-valued image u restricted
to a 3D block S.

To characterize 3D gray-level well-composed images, we first give two lemmas
concerning the detection of the critical configurations of respectively type 1 and
type 2.

Lemma 1 The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S, such as depicted in Figure 3, do not contain any critical
configurations of type 1 iff the six following properties hold:
intvl(a, d)

⋂
intvl(b, c) 6= ∅ (P1), intvl(e, h)

⋂
intvl(g, f) 6= ∅ (P2)

intvl(a, f)
⋂

intvl(b, e) 6= ∅ (P3), intvl(c, h)
⋂

intvl(g, d) 6= ∅ (P4)
intvl(a, g)

⋂
intvl(e, c) 6= ∅ (P5), intvl(b, h)

⋂
intvl(f, d) 6= ∅ (P6)

Proof : Let us assume that one of these properties (Pi), i ∈ [1, 6], is false. Let
us say it is the case of (P1). Then two cases are possible: either max(a, d) <
min(b, c), and that means that there exists λ = (max(a, d) + min(b, c))/2 such
that [u < λ] contains the critical configuration {a, d} (of type 1), or min(a, d) >
max(b, c), and there exists λ = (min(a, d)+max(b, c))/2 such that one more time
[u > λ] contains the critical configuration {a, d}. The reasoning is the same for
all the other properties. Conversely, let us assume that there exists λ ∈ R such
that either [u > λ] or [u < λ] contains a critical configuration of type 1. That
means immediately that one of the 6 properties Pi, i ∈ [1, 6], corresponding to
each of the six faces of the block S, is false (see Figure 4 for the faces and the
corners concerned by the properties). ut

Recall that the span of a set of values E ⊆ R is span(E) = [inf(E), sup(E)].

Lemma 2 The strict cuts [u > λ] and [u < λ], λ ∈ R, of a gray-valued image
u defined on a block S such as depicted in Figure 3, do not contain any critical
configuration of type 2 iff the four following properties are true:
intvl(a, h)

⋂
span{b, c, d, e, f, g} 6= ∅ (P7)

intvl(b, g)
⋂

span{a, c, d, e, f, h} 6= ∅ (P8)
intvl(c, f)

⋂
span{a, b, d, e, g, h} 6= ∅ (P9)

intvl(d, e)
⋂

span{a, b, c, f, g, h} 6= ∅ (P10)

Proof : Let us assume that one of these properties (Pi), i ∈ [7, 10], is false.
Let us say it is the case of (P7). Then two cases are possible:
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- either max(a, h) < min(b, c, d, e, f, g). Then there exists λ = (max(a, h) +
min(b, c, d, e, f, g))/2 such that [u < λ] contains the critical configuration {a, h}
(of type 2),
- or min(a, h) > max(b, c, d, e, f, g). Then there exists λ = (max(b, c, d, e, f, g) +
min(a, h))/2 such that (again) [u > λ] contains the critical configuration {a, h}.
The reasoning is the same for all the other properties.
Conversely, let us assume that there exists λ ∈ R such that either [u > λ] or
[u < λ] contains a critical configuration of type 2. That means immediately that
one of the 4 properties Pi, i ∈ [7, 10], corresponding to each of the four diagonals
of the block S, is false (see Figure 4). ut

We are now ready to state the main theorem of this section, characterizing
the well-composedness on a 3D gray-valued image.

Theorem 1 (Characterization of well-composedness in 3D) Let us sup-
pose that D is a hyperrectangle in Z3. A gray-valued 3D image u : D 7→ R
is well-composed on D iff on any block S ⊆ D, u

∣∣
S

satisfies the properties
(Pi), i ∈ [1, 10].

3 Local interpolations

a b

c

i i+1

j

j+1
d

a b

d

i i+1

j

j+1
c

ab

cd

ac abcd bd

Fig. 5. Illustration of the subdivision process on
a block S.

(i+½,j+½)

(i,j) (i+1,j) (i,j+1) (i+1,j+1)

(i+½,j) (i+1,j+½)(i,j+½) (i+½,j+1)

Fig. 6. s(S) ⊆
(Z
2

)n
as a

poset.

Using interpolations with one subdivision does not deteriorate the initial
signal. The size of the original image is multiplied by a factor of 2n, where n
is the dimension of the space of the image. Figure 5 illustrates this subdivision
process.

3.1 Subdivision of a Domain and
(Z
2

)n
as a poset

The subdivision of a block allows us to provide an order to the elements. Using
this order, the subdivided space is a poset.

Let z be a point in Zn, and Sz its associated block. We define the subdivision
of Sz as s(Sz) = {z′ ∈

(Z
2

)n ∣∣||z − z′||∞ ≤ 1 and ∀i ∈ [1, n], z′i ≥ zi}. The
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subdivision of a domain D ⊆ Zn is the union of the subdivisions of the blocks
contained in D, i.e., s(D) =

⋃
S⊆D s(S).

Definition 7 (Order of a point of
(Z
2

)n
) Assume ei is a fixed basis of Zn.

We note 1
2 (z) = {i ∈ [1, n]

∣∣zi ∈ Z
2 \ Z}. The sets Ek, for k ∈ [0, n], are defined

such that Ek = {z ∈
(Z
2

)n ∣∣ ∣∣ 1
2 (z)

∣∣ = k} (where
∣∣E∣∣ denotes the cardinal of the

set E), and represent a partition of
(Z
2

)n
. We call order of a point z the value

k such that z ∈ Ek and we note it o(z).

Definition 8 (Parents in
(Z
2

)n
) Let z be a point of

(Z
2

)n
. The set of the par-

ents of z ∈
(Z
2

)n
, noted P(z), is defined by P(z) = ∪i∈ 1

2 (z)
{z − ei

2 , z + ei
2 }. The

parents of z ∈
(Z
2

)n
of order 0 are P0(z) = {z} and of order k > 0 are defined

recursively by Pk(z) = ∪p∈P(z)P
k−1(p).

Definition 9 (G(z) and A(z)) Let z be a point of
(Z
2

)n
. The ancestors of z ∈(Z

2

)n
are A(z) = Po(z)(z). We set G(z) = ∪k∈[0,o(z)]Pk(z).

Notice that A(z) ⊆ Zn and that any point z ∈ Ek, k ∈ [1, n], has its parents
in Ek−1. Hence {Ek}k∈[0,n] is a (hierarchical) partition of

(Z
2

)n
, and (

(Z
2

)n
,P)

is a poset (see Figure 6).

Definition 10 (Opposites) Let z be a point of
(Z
2

)n
. The (set of) opposites

of z ∈
(Z
2

)n
is the family of pairs of points opp(z) = ∪i∈ 1

2 (z)

{
{z − ei

2 , z + ei
2 }
}

.

3.2 Interpolations with one subdivision

Let us recall that the convex hull convhull(Z) of a set ofm points Z = {z1, . . . , zm} ⊆
Zn is:

convhull(Z) =

{
m∑
i=1

αiz
i
∣∣ m∑
i=1

αi = 1 and ∀i ∈ [1,m], αi ≥ 0

}

Definition 11 (Subdivision of edges, faces, and cubes) Let E = {z1, z2}
be an edge in Zn. The subdivision of E is s(E) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(E)}.
The subdivision of a face F = {z1, z2, z3, z4} is s(F) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(F)}.
The subdivision of a cube C = {z1, . . . , z8} is s(C) = {z ∈

(Z
2

)n ∣∣z ∈ convhull(C)}.

3.3 A set of properties that an interpolation has to satisfy

An interpolation of a map u : D ⊆ Zn 7→ R to a map I(u) : s(D) ⊆
(Z
2

)n 7→ R
is a transformation such that I(u)

∣∣
S

= u
∣∣
S

for any block S ⊆ D.

Let u : D ⊆ Z3 7→ R be any 3D gray-valued image. We say that an inter-
polation I : u 7→ I(u) is self-dual iff I(−u) = −I(u). A self-dual interpolation
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does not overemphasize bright components at the expense of the dark ones, or
conversely.

An interpolation I : u 7→ I(u) in 3D is said ordered if the new values are
inserted firstly at the centers of the subdivided edges, secondly at the centers of
the subdivided faces, and finally at the centers of the subdivided cubes.

An ordered interpolation is said in between iff it puts the values at a point z
in between the values of its parents P(z).

Finally, we say that an interpolation is well-composed iff the image I(u) re-
sulting from the interpolation of u is well-composed for any given image u.

We are interested in interpolations I with the following properties.

(P)⇔


I is invariant by translations, π

2 ’s rotations and axial symmetries
I is ordered
I is in-between
I is self-dual
I is well-composed

3.4 The scheme of local interpolations verifying P

A local interpolation I is an interpolation such as for any block S ⊆ D, I(u)
on s(S) is computed only from its nearest neighbours belonging to E0 (we see
an image as a graph). For convenience, we will write u′ instead of I(u) for local
interpolations in the sequel.

9 11 15

7 1 13

3 5 3

9 10 11 13 15

8 8 6 12 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 10 11 13 15

8 7 6 10 14

7 4 1 7 13

5 4 3 4 8

3 4 5 4 3

9 9 9 11 11 15 15

9 9 9 11 11 15 15

7 7 1 1 1 13 13

7 7 1 1 1 13 13

3 3 1 1 1 3 3

3 3 3 5 3 3 3

3 3 3 5 3 3 3

9 9 11 11 15 15 15

9 9 11 11 15 15 15

9 9 11 11 15 15 15

7 7 7 1 13 13 13

7 7 7 5 13 13 13

3 3 5 5 5 3 3

3 3 5 5 5 3 3

Fig. 7. From left to right: an image, and its interpolations with the median, the
mean/median, the min and the max.

Lemma 3 (Local interpolation scheme) Any local interpolation I on
(Z
2

)n
verifying P can be characterized by a set of functions {fk}k∈[1,n] such that:

∀ z ∈
(
Z
2

)n
, u′(z) =

{
u(z) if z ∈ E0

fk(u
∣∣
A(z)

) if z ∈ Ek, k ∈ [1, n]

We denote such an interpolation If1,...,fn .

Proof : The interpolation process on the subdivided edges depends only on
the values of u at the vertices of the original edges due to the locality of the
method. Furthermore it has to be invariant by axial symmetries and rotations.
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Hence, there is a unique function f1 characterizing the interpolation on the sub-
divided edges. The reasoning is the same on the faces and the cubes respectively
for f2 and f3. ut

Notice that it is an implication and not an equivalence: an interpolation
verifying this scheme does not verify all the properties in P.

3.5 I0, IWC , and Isol for local interpolations

Let us introduce some useful sets to express recursively the local interpolations
satisfying the properties P.

Definition 12 (I0 and definition of a local in-between interpolation) Let
u : D 7→ R be a gray-valued map, let z be a point of s(D) \ E0, and let I be a
given local interpolation. We define the set I0(u, z) associated to I by:

I0(u, z)
(def)

=
⋂

{z−,z+}∈opp(z)

intvl(u′(z−), u′(z+))

Then, an ordered local interpolation I is said in-between iff u′(z) ∈ I0(u, z) for
any image u : D 7→ R and z ∈ s(D) \E0.

Definition 13 (IWC and Isol) Let u : D 7→ R be a gray-valued image, z be
a point of s(D) \ E0, and I be a given local interpolation. We define the set
IWC(u, z) associated to I such as for any z ∈ E1, IWC(u, z) = R and for any
z ∈ Ek with k ≥ 2:

IWC(u, z) = { v ∈ R | u′(z) = v ⇒ u′
∣∣
G(z) is well-composed }

Last, let us denote Isol(u, z) = I0(u, z) ∩ IWC(u, z).

The following scheme is necessary to satisfy P (but not sufficient).

Theorem 2 Any local interpolation I satisfying P is such that:

∀z ∈
(Z
2

)n
, u′(z) =

{
u(z) if z ∈ E0

fk(u
∣∣
A(z)

) ∈ Isol(u, z) if z ∈ Ek, k ∈ [1, n]

Notice that such a local interpolation I is ordered, in-between, well-compo-
sed, but not necessarily self-dual.

3.6 Determining f1 for self-dual local interpolations

Let us begin with the study of f1, i.e., the function setting the values at the
centers of the subdivided edges. This function has to be self-dual, symmetrical,
and in-between. We choose one of the most common function satisfying these
constraints: the mean operator f1 : R2 7→ R : (v1, v2) 7→ f1(v1, v2) = (v1 + v2)/2.
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Fig. 8. The 3 possible
configurations in 2D
(modulo reflections and
rotations).

a b

dc

(a+b)/2

(c+d)/2

(a+c)/2 m (b+d)/2

Fig. 9. u′∣∣
G(z)

for z ∈ E2 for any self-dual

local interpolation after the application of
f1 (with m any value ∈ R).

3.7 Equations of f2 for self-dual local interpolations

Concerning f2, i.e., the function which sets the values of u′ at the centers of the
subdivided faces, let us compute I0(u, z) and IWC(u, z) for any given z ∈ E2 to
deduce Isol(u, z). Their values depend on the configurations of u

∣∣
A(z)

.

Let us assume that u
∣∣
A(z)

=

(
a b
c d

)
. Then a total of 4! = 24 increasing

orders are possible for these 4 values. Modulo reflections and axial symmetries,
we obtain a total of 3 possible configurations: the α-configurations correspond
to the relation a ≤ d < b ≤ c, the U -configurations to a ≤ b ≤ d ≤ c, and the
Z-configurations to a ≤ b ≤ c ≤ d (see Figure 8).

Lemma 4 Let z be a point in E2. Modulo reflections and symmetries, an α-
configuration implies that u

∣∣
A(z)

is not well-composed, whereas a U - or Z-configu-

ration implies that u
∣∣
A(z)

is well-composed.

a+c

a+b

b+d

c+d

2

2 2

2

a+c

a+b

b+d

c+d
2

2

2

2

Fig. 10. The Hasse diagrams for the α- and the U -configurations (left) and for the
Z-configuration (right).

Let us begin with the computation of I0(u, z) for z ∈ E2. From the values
already set in u′ on P(z) ⊆ E1 by f1 during the recursive process (see Fig-
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ure 9), we can compute I0(u, z) using the Hasse diagram3 for each configuration
(see Figure 10). We obtain finally that I0(u, z) = intvl(a+c2 , b+d2 ) for the three
configurations, with one important property: the median value of u

∣∣
A(z)

always

belongs to I0(u, z).
Let us follow with the computation of IWC(u, z), where u′

∣∣
G(z) (see Figure 9)

satisfies four conditions:

intvl(a,m) ∩ intvl((a+ b)/2, (a+ c)/2) 6= ∅, (1)

intvl((a+ b)/2, (b+ d)/2) ∩ intvl(m, b) 6= ∅, (2)

intvl((a+ c)/2, (c+ d)/2) ∩ intvl(m, c) 6= ∅, (3)

intvl(m, d) ∩ intvl((c+ d)/2, (b+ d)/2) 6= ∅. (4)

In the case of the α-configuration, (2)⇒ m ≤ b+d
2 and (4)⇒ m ≥ b+d

2 . That

implies thatm = b+d
2 , which also satisfies (1) and (3). Consequently, IWC(u, z) =

{med{u
∣∣
A(z)
}}, and because IWC(u, z) ⊆ I0(u, z), Isol(u, z) = {med{u

∣∣
A(z)
} in

the not well-composed case.
In the cases of the U - and the Z-configurations, we obtain that IWC(u, z) =

[a+b2 , c+d2 ] ⊇ I0(u, z), so we conclude that Isol(u, z) = I0(u, z).

Theorem 3 Given an image u : D 7→ R, any local interpolation If1,f2,f3 satis-
fying P is such that ∀ z ∈ s(D) ∩E2:

f2(u
∣∣
A(z)

) = med{u
∣∣
A(z)
} if u

∣∣
A(z)

is not W.C.,

f2(u
∣∣
A(z)

) ∈ I0(u, z) otherwise.

Let z be a point in s(D)∩E2. Amongst the applications f2 satisfying P, there
exists (at least) the median method (see Figure 7), consisting in setting the value
of u′(z) at med{u

∣∣
A(z)
} (in this case f2 is an operator and not only a function),

the mean/median method of Latecki [6] consisting in setting the value u′(z) at
mean{u

∣∣
A(z)
} in the well-composed case and to med{u

∣∣
A(z)
} otherwise, and also

the min/max method, consisting in setting the value u′(z) at 1
2 (min{u

∣∣
A(z)
} +

max{u
∣∣
A(z)
}) in the well-composed case and to med{u

∣∣
A(z)
} otherwise.

3.8 Equations of f3 for local self-dual interpolations

Theorem 4 No local interpolation satisfies P for n ≥ 3 with one subdivision as
soon as we chose the mean operator to interpolate in 1D.

Proof : Let z be the center of a subdivided cube. We have u′
∣∣
A(z)

as in the

Figure 11 (on the left). We apply the first interpolating function f1, i.e., we set

3 Recall that a Hasse diagram is used to represent finite partially ordered sets with
the biggest elements at the top
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Fig. 11. A counter-example proving that a local interpolation satisfying P with one
subdivision can not ensure well-composedness (the values of u′ on E0 are in green, the
ones on E1 are in blue, the ones on E2 are in red, and the ones on E3 are in purple).

the values of u′ at the centers of the subdivided edges at the mean of the values
on the vertices. Then we apply the second interpolating function f2, which fixes
the values of u′ at the centers of the subdivided faces at the median of the values
of u′ at the four corresponding corners (because u is well-composed on none of
the faces of the cube). Finally, referring to the properties that a function u′ has to
satisfy to be well-composed (see theorem 1), f3 must also satisfy the constraints
c ≥ 3 and c ≤ 1 (both are constraints of type 2) that are incompatible. So, no
local interpolation of this sort can satisfy the set of constraints P as soon as
n ≥ 3. ut

4 Conclusion

In this paper, we have presented a characterization of well-composedness for 3D
gray-valued images. We proved that no local interpolation satisfying P with one
subdivision is able to make 3D well-composed images as soon as we choose the
mean operator as interpolation in 1D.

Although our formalism is developped in the continuous domain (the inter-
polations take their values in R), it is in fact a discrete setting. Indeed, the image
u′ can easily be computed in Z as soon as the space image of u is also Z. We
just have to multiply the values of the original image u by a factor k ∈ Z where
k depends on the interpolation we use (e.g., k = 2 for the median method and
k = 4 for the mean/median method in 2D). Another way to deal with images
having values in Z/k is to use a generic image processing library [7].

Future research should tackle the two following directions. The first direction
is to use an alternative to f1 such as (a, b) 7→ med(a, b, c) (where c is the center of
the space of the image u). The second direction is to use a non-local approach,
e.g., a front propagation algorithm. In that case, we do not have to use any
systematic operator f1 anymore, nor to use an ordered interpolation. First results
in this second direction are promising.
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