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a b s t r a c t 

In previous work we proposed a combinatorial algorithm to “locally repair” the cubical 

complex Q ( I ) that is canonically associated with a given 3 D picture I . The algorithm con- 

structs a 3 D polyhedral complex P ( I ) which is homotopy equivalent to Q ( I ) and whose 

boundary surface is a 2 D manifold. A polyhedral complex satisfying these properties is 

called well-composed . In the present paper we extend these results to higher dimen- 

sions. We prove that for a given n -dimensional picture the obtained cell complex is well- 

composed in a weaker sense but is still homotopy equivalent to the initial cubical complex. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Ensuring that the boundary of an object in a discrete image is constructed from closed surfaces in R 

3 allows to

implement surface parameterization [10] . This is crucial for certain applications in geometric modeling [30] and computer

graphics [11] . For example, texture mapping can be used to enhance visual quality of polygonal models. Also, as discussed

in [12] , the computation of homology groups [16] and, in particular, the computation of homology generators on a sur-

face [7–9] , can be helpful for topology repairing, model editing and feature recognition . In discrete geometry , it is well-known

that the multigrid convergence of some geometrical estimators is slowed when there are “pinches” in the boundary of an

object in a discrete image [21,23] . Requiring that the boundary surface be a manifold avoids such problematic situations.

For all these reasons, well-composedness [4,24–26] (meaning that the boundary of a set is a topological manifold) is a good

topological property to be required. Thereafter, strong results such as the Jordan Curve Theorem can be applied on the

connected components of the boundary [19,33] in 2D. Moreover, the Jordan-Brouwer separation property [20,22] can be

applied in nD. Since nD signals appear more and more frequently in applications such as 3D Magnetic Resonance Imaging

and 4D Computerized Tomography scans, it is important to extend the theory of well-composedness to higher dimensions. 

In digital topology, two main families of methods are used to make 2D and 3D binary images well-composed: topological

reparation , which does not preserve the topology of the initial image in general; and well-composed interpolation , which

typically preserves the topology but requires an increase of resolution of the whole domain of the image. Regarding
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topological reparations, the first 2D method was introduced by Latecki [26] , the first 3D method by Siqueira et al. [34] and

the first nD method by Boutry et al. [3] . Regarding well-composed interpolations, one has to mention the 3D method of

Stelldinger and Latecki, called Majority Interpolation [35] , the nD min/max method of Mazo et al. [29] , and the nD self-dual

in-between method of Boutry et al. [2] . In the midst of these two families, Gonzalez-Diaz et al. [13] proposed a 3D method

to construct well-composed cell complexes that are homotopy equivalent to the 3D cubical complex canonically associated

to the given image. This can be very useful when computing (co)homological information of a set only based on its surface

(see [17] ). Furthermore, the cell complex resulting from this method, that is, the positions of the cells, their geometry, and

their boundary face relationships, can efficiently be stored into 3D binary images [14,15] . This method is strongly related to

boundary extraction methods , such as the marching cubes of Lorensen and Cline [27] and its nD extensions, due to Daragon

et al. [6] (which ensures that the boundary is a discrete surface ), and Lachaud and Montanvert [22] (which ensures that the

resulting boundary is a (pseudo-)manifold). However, whether or not these methods preserve the topology is unknown and

a procedure for efficiently storing the resulting complex into an nD binary image is also unknown. 

Finally, some other definitions of well-composedness such as the one based on the equivalence of connectivities [2] ,

digital well-composedness [2] , well-composedness in the sense of Alexandrov [2,5,32] , or well-composedness on arbitrary

grids [1,4,36] exist, but they do not ensure that the boundaries consist of surfaces in R 

n and their parameterization may not

be possible. 

Procedure 1: Obtaining the critical points in F J . 

Input : The picture I = (Z 

n , F I ) and the binary image J = (Z 

n , F J ) . 

Output : The set R of critical points in F J . 

V := ∅ ; R := ∅ ; 
for B ∈ B(4 Z 

n ) of dimension k ∈ � 2 , n � and p ∈ B do 

p ′ := antag B (p) ; 

if (F I ∩ B = { p, p ′ } or B \ F I = { p, p ′ } ) then 

p ∗ := 

p+ p ′ 
2 ; V := V ∪ D 

0 
F J 
(p ∗) 

end 

end 

for q ∈ F J such that D 

0 
F J 
(q ) ∩ V � = ∅ do 

R := R ∪ { q } 
end 

In this paper, we extend to any dimension the method presented in [13–15] . In brief, given an nD binary image I (also

called an nD picture), the nD cubical complex Q ( I ) canonically associated with I is constructed and stored as an nD binary

image J = (Z 

n , F J ) . Each point in the foreground F J of J is the barycenter of a cell of Q ( I ) (see Section 4.1 ). Then, using

Procedure 1 , we detect the critical points of F J that correspond to critical cells of Q ( I ) (i.e., cells that are involved in critical

configurations). By applying the repairing process given in Procedure 5 , we replace each critical point p of F J by a suitable

set S ( p ) of points (that depends only on the coordinates of p ), to obtain a new nD binary image L = (Z 

n , F L ) . By applying

Procedure 6 to the points of F L , we construct a simplicial complex P S ( I ) such that Q ( I ) is a deformation retraction of P S ( I ).

Finally, we prove that there always exists a face-connected path in P S ( I ) of n -simplices incident to a common vertex v ′ , join-

ing any two n -simplices σ and σ ′ incident to v ′ , that is, P S ( I ) is what we call weakly well-composed (wWC) . Fig. 1 graphically

illustrates the basic stages of our method. At the end of the paper we include a table with main notations used. 

2. nD well-composed pictures 

Latecki et al. introduced in [24] the notion of well-composedness for 2D pictures as those sets not containing any critical

configuration . Later, well-composedness was extended to 3D sets in [25] defining again forbidden subsets that make the

continuous analog of the picture have a boundary surface that is not a manifold. In [2] , the concept of critical configurations

(i.e., forbidden subsets) was extended to nD. In this section, after introducing some notations and definitions, we recall how

we can characterize critical configurations in nD. 

Definition 1 (nD picture) . Let n ≥ 2 be an integer and Z 

n the set of points with integer coordinates in nD space R 

n . An nD

binary image is a pair I = (Z 

n , F I ) where F I is a finite subset of Z 

n called foreground of I . If F I ⊂ 4 Z 

n (i.e., coordinates are

multiples of 4), we will say that I is an nD picture . 

We need the foreground F I included into 4 Z 

n (and not Z 

n ) because, as we will see later, in a first step we add new

points between the elements of F I to obtain F J , encoding the cubical complex associated to I , which justifies a scale factor

of 2; in a second step, during the reparation, we add new points between points of F J to obtain F L , encoding the repaired

complex, which justifies a second factor of 2. In fact, any given nD binary image image I 0 = (Z 

n , F I 0 ) can be transformed

into an nD picture I = (Z 

n , F I ) by setting F I := 4 F I 0 . 
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Fig. 1. Graphical diagram of the method: we start from an nD picture I = (Z n , F I ) (then F I ⊂ 4 Z n ). The set F J of points in Z n encodes the cells of the 

associated cubical complex Q ( I ) (blue is used for 0-cells, red for 1-cells and green for 2-cells). In this example, the set R of critical points is composed 

by the points encoding the vertex v and all the cells of Q ( I ) incident to v . Now, we “repair” F J to obtain a set F L of points in Z n . Then, we compute the 

simplicial complex P S ( I ) whose set of vertices is F L . Observe that for any two n -simplices σ and σ ′ incident to a common vertex v ′ in P S ( I ), there exists a 

face-connected path π of n -cells in P S ( I ) incident to v ′ , joining σ and σ ′ ; therefore, P S ( I ) is weak well-composed. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Notations used throughout the paper. 

Notation Definition/Explanation 

| K | Underlying polyhedron of the cell complex K 

A 

(� ) 
K 

(σ ) Set of � -cells incident to the cell σ in K 

σ ∗σ ′ Cone join of the simplices σ and σ ′ 
N M ( p ) { i ∈ � 1 , n � : x i ≡ N mod M } 
N 2 n (p) 

{
p ± 4 e i : i ∈ � 1 , n � 

}
N 

+ (p) 
{

p + 

∑ 

j∈ 0 2 (p) λ j e 
j : λ j ∈ { 0 , ±1 } }

S -block S ( p ) 
{

p + 

∑ 

j∈ 2 4 (p) λ j e 
j : λ j ∈ { 0 , ±1 } }

B (z, F ) Block associated to the point z and the family of vectors F
I = (Z n , F I ) An nD binary image (called picture when F I ⊂ 4 Z n ) 

Q ( I ) Cubical complex associated to I 

V The set of critical vertices in Q ( I ) 

Q S ( I ) The simplicial subdivision of Q ( I ) 

P S ( I ) Weakly well-composed simplicial complex over the picture I 

J = (Z n , F J ) nD binary image encoding the vertices of Q S ( I ) (i.e, the cells of Q ( I )) 

R The set of critical points in F J (which encode the critical cells of Q ( I )) 

L = (Z n , F L ) nD binary image encoding the vertices of P S ( I ) 

σ K ( p ) simplex in K encoded by p ( K = Q S (I) , p ∈ F J ; or K = P S (I) , p ∈ F L ) 
E � { p ∈ 2 Z n : Card (0 4 (p)) is � } , being � ∈ � 0 , n � 
O � { p ∈ Z n \ 2 Z n : Card (0 2 (p)) is � } , being � ∈ � 0 , n − 1 � 

C n (E n ∩ F L ) ∪ R 
C � ((E � \ R ) ∪ O � ) ∩ F L , being � ∈ � 0 , n − 1 � 

D + 
F J 
(p) 

{
p + 

∑ 

j∈ 0 4 (p) λ j e 
j : λ j ∈ { 0 , ±2 } } encodes the faces of σQ S (I) (p) 

A 

+ 
F J 
(p) 

{
p + 

∑ 

j∈ 2 4 (p) λ j e 
j : λ j ∈ { 0 , ±2 } } encodes the simplices incident to σQ S (I) (p) 

D + 
F L 
(p) Set of points used for the construction of P S ( I ). See Definition 30 

A 

+ 
F L 
(p) Set of points used to prove that P S ( I ) is weakly well-composed. See Definition 34 

X (p) X + (p) \ { p} for X ∈ {N , D F J , A F J , D F L , A F L } 
K D F J (p) Subcomplex of Q S ( I ) formed by the simplices whose vertices lie in D F J (p) 

K D F L (p) Subcomplex of P S ( I ) formed by the simplices whose vertices lie in D F L (p) 

 

Notation 2. For integers k ≤ k ′ , � k, k ′ � denotes the set { k, k + 1 , . . . , k ′ − 1 , k ′ } . 

Let B = { e 1 , . . . , e n } denote the canonical basis of Z 

n . Given a point z ∈ 4 Z 

n and a family of vectors F = { f 1 , . . . , f k } ⊆ B ,

we define the blockof dimension k associated to the couple (z, F ) (see Fig. 2 ) as: 

B (z, F ) = 

{ 

z + 

∑ 

i ∈ � 1 ,k � 
λi f i : λi ∈ { 0 , 4 } , ∀ i ∈ � 1 , k � 

} 

. 
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Fig. 2. Examples of blocks: in pink, B ((0, 4), ∅ ); in red, B ((4, 4), { e 1 }); in blue, B ((12, 0), { e 2 }); in green, B ((16, 0), { e 1 , e 2 }). (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A subset B ⊂ 4 Z 

n is called a block if there exists a couple (z, F ) ∈ 4 Z 

n × P(B ) 2 such that B = B (z, F ) . We will denote the set

of blocks of 4 Z 

n by B(4 Z 

n ) . 

Two points p, q belonging to a block B ∈ B(4 Z 

n ) are said to be antagonists in B if their distance equals the maximum

distance using the L 1 -norm 

3 between two points in B . The antagonist of a point p in a block B ∈ B(4 Z 

n ) containing p exists

and is unique. It is denoted by antag B ( p ). Note that when two points (x 1 , . . . , x n ) and (y 1 , . . . , y n ) are antagonists in a block

of dimension k ∈ � 0 , n � , then | x i − y i | = 4 for i ∈ { i 1 , . . . , i k } ⊆ � 1 , n � and x i = y i otherwise. 

Now, let I = (Z 

n , F I ) be an nD picture and B ∈ B(4 Z 

n ) a block of dimension k ∈ � 2 , n � . We say that I contains a primary

critical configuration of dimension k in the block B if F I ∩ B = { p, p ′ } , with p, p ′ being two antagonists in B . We say that I

contains a secondary critical configuration of dimension k in the block B if F I ∩ B = B \ { p, p ′ } , with p, p ′ being two antag-

onists in B . More generally, a critical configuration (CC) of dimension k ∈ � 2 , n � is either a primary or a secondary critical

configuration of dimension k . 

Definition 3 (DWC) . An nD picture is said to be digitally well-composed (DWC) if it does not contain any CC. 

The 2 n-neighborhood of a point p ∈ 4 Z 

n is the set N 2 n (p) = { p ± 4 e i : i ∈ � 1 , n � } . A sequence (p 1 , . . . , p k ) of elements of

4 Z 

n is said to be a 2n-path in 4 Z 

n if, for any i ∈ � 1 , k − 1 � , p i ∈ N 2 n (p i +1 ) . 

Proposition 4 ( [2] ) . Let I = (Z 

n , F I ) be an nD picture. If I is DWC then, for any pair of points p, p ′ of F I which are antagonists in

some block B ∈ B(4 Z 

n ) , there exists a 2 n-path in F I ∩ B joining p and p ′ . 

Proposition 5. Let I = (Z 

n , F I ) be an nD picture. If I is DWC then, for any block B ∈ B(4 Z 

n ) and for any two points p, q ∈ F I ∩ B,

there exists a 2 n-path in F I ∩ B joining p and q. 

Proof. Let B ∈ B(4 Z 

n ) be a block such that F I ∩ B is non-empty. For any two points p, q ∈ F I ∩ B , there exists a block B ′ ⊆ B

such that q = antag B ′ (p) . Then by Proposition 4 , there exists a 2 n -path joining p and q in F I ∩ B ′ ⊆ F I ∩ B . �

3. nD wWC cell complexes 

Roughly speaking, a regular cell complex K is a collection of cells (where k − cells are homeomorphic to k -dimensional

balls) glued together by their boundaries (faces), in such a way that a non-empty intersection of any two cells of K is a

cell in K . When the k -cells in K are k -dimensional cubes, we refer to K as a cubical complex . When they are k -dimensional

simplices (points, edges, triangles, tetrahedra, etc.), we refer to K as a simplicial complex . Regular cell complexes have

particularly nice properties, for example, their homology is effectively computable (see [28] ). 

Definition 6 (Face-connected path) . Let � ∈ � 1 , n � . Let S be a set of � -cells of K . We say that two � -cells σ and σ ′ are

face-connected in S if there exists a path π(σ, σ ′ ) = (σ1 = σ, σ2 , . . . , σm −1 , σm 

= σ ′ ) of � -cells of S such that for any i ∈
� 1 , m − 1 � , σ i and σi +1 share exactly one (� − 1) -cell of K . The set S is face-connected if any two � -cells σ and σ ′ in S are

face-connected in S . 

The set of cells incident to a cell σ in K is denoted by A K (σ ) and the set of � -cells incident to σ , by A 

(� ) 
K 

(σ ) . A k-face μ

of a cell σ is a k -cell that is face of σ ; it is a proper face of σ if k < � and a maximal face of σ if k = � − 1 . A cell of K which

is not a proper face of any other cell of K is said to be a maximal cell of K . An external cell of K is a proper face of exactly

one maximal cell in K . A regular cell complex is pure if all its maximal cells have the same dimension. The rank of a cell

complex K is the maximal dimension of its cells. The boundary surface of a pure regular cell complex K , denoted by ∂K , is

the regular cell complex composed by the external cells of K together with all their faces. Observe that ∂K is also pure. 

Definition 7 (nD cell-complex) . An nD cell complex K is a pure regular cell complex of rank n embedded in R 

n . The under-

lying space (i.e., the union of the cells as subspaces of R 

n ) will be denoted by | K |. 

An nD cell complex K is said to be (continuously) well-composed if | ∂K | is an (n − 1) -manifold, that is, each point of | ∂K |

has a neighborhood homeomorphic to R 

n −1 into | ∂K |. 

Definition 8 (wWCness) . An nD cell complex K is weakly well-composed (wWC) if for any 0-cell μ in K , A 

(n ) 
K 

(μ) is face-

connected. 
2 The expression P(B ) represents the set of all the subsets of B . 
3 The L 1 -norm of a vector α = (x 1 , . . . , x n ) is || α|| 1 = 

∑ 

i ∈ � 1 ,n � | x i | . 
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We will see later, in Section 4 , that if an nD picture I is DWC, then the cubical complex Q ( I ) canonically associated to I

is wWC. 

Definition 9 (Cubical complex Q ( I )) . The nD cubical complex Q ( I ) canonically associated to an nD picture I = (Z 

n , F I ) is com-

posed by those size-4 n -dimensional cubes centered at each point in F I whose (n − 1) -faces are parallel to the coordinate

hyperplanes, together with all their faces. 

Roughly speaking, two topological spaces are homotopy equivalent if one can be continuously deformed into the other.

A specific example of homotopy equivalence is a deformation retraction of a space X onto a subspace A which is a family of

maps f t : X → X, t ∈ [0, 1], such that: f 0 (x ) = x, ∀ x ∈ X ; f 1 (X ) = A ; f t (a ) = a, ∀ a ∈ A and t ∈ [0, 1]. The family { f t : X → X } t ∈ [0, 1]

should be continuous in the sense that the associated map F : X × I → X , where F (x, t) = f t (x ) , is continuous. See [18] . 

Definition 10 (Cell complexes over nD pictures) . A cell complex over an nD picture I is an nD cell complex, denoted by K ( I ),

such that there exists a deformation retraction from K ( I ) onto Q ( I ). 

4. The cubical complex canonically associated to an nD picture I 

In Section 4.1 , we explain how to compute an nD digital image J = (Z 

n , F J ) encoding the nD cubical complex Q ( I ). We use

this codification to prove that if I is DWC then Q ( I ) is wWC. Later, in Section 4.2 we give a procedure to obtain the points

in F J encoding the critical cells of Q ( I ) responsible of Q ( I ) not being wWC. Finally, in Section 4.3 , we compute a simplicial

complex Q S ( I ) which is, in fact, homeomorphic to Q ( I ), and prove that Q S ( I ) is also weak-well-composed if I is DWC. 

4.1. The nD binary image J = (Z 

n , F J ) encoding Q ( I ) 

We say that J = (Z 

n , F J ) encodes Q ( I ) if F J is the set of barycenters of the cells in Q ( I ) 4 . We say that p ∈ F J encodes σ ∈ Q ( I )

if p is the barycenter of σ . In that case, we denote σ as σ Q ( I ) ( p ). 

Notation 11. Let N, M ∈ Z such that 0 ≤ N < M . Let p = (x 1 , . . . , x n ) ∈ Z 

n . Then N M 

( p ) denotes the set of indices

{ i ∈ � 1 , n � : x i ≡ N mod M } . 
Now notice that 2 Z 

n can be decomposed into the disjoint sets E � := { p ∈ 2 Z 

n : Card (0 4 (p)) 5 is � }. For example E n = 4 Z 

n

and E 0 = 2 Z 

n \ 4 Z 

n . 

Proposition 12. The set of points of F J encoding the faces of σ Q ( I ) ( p ) is: 

D F J (p) := D 

+ 
F J 
(p) \ { p} where D 

+ 
F J 
(p) = 

{ 

p + 

∑ 

j∈ 0 4 (p) 

λ j e 
j : λ j ∈ { 0 , ±2 } 

} 

. 

The subset of points encoding the i-faces of σ Q ( I ) ( p ) will be denoted by D 

i 
F J 
(p) . 

For example, if p ∈ F J ∩ E 0 then D F J 
(p) = ∅ . If p ∈ F J ∩ E n then D F J 

(p) = { p ′ ∈ F J such that || p − p ′ || ∞ 

= 2 } 6 
Proof. The following procedure computes the set of points encoding the faces of σ = σQ(I) (p) , for a point p ∈ F J with 0 4 (p) =
{ i 1 , . . . , i � } . 

Initialization (� = 0) : Then p ∈ E 0 and D 

+ 
F J 
(p) = { p} encodes σ plus its faces. 

Heredity (� ∈ � 1 , n � ) : We assume that for any point q ∈ E m 

∩ F J , with m ∈ � 0 , � − 1 � , D 

+ 
F J 
(q ) encodes σ plus its faces.

Then the set of faces of σ is the set of cells { σ m 

} m 

covered 

7 by σ and encoded by { q m 

} m 

:= { p + λ∗ e i k : k ∈ � 1 , � � and

λ∗ ∈ { ± 2}}. Thanks to the induction hypothesis: 

D 

+ 
F J 
(q m 

) = 

{ 

p + λ∗ e i k + 

∑ 

r∈ � 1 ,� � \{ k } 
λr e 

i r : λr ∈ { 0 , ±2 } 
} 

. 

Therefore, the cell σ and its faces are encoded by the points in the set: 

{ p} ∪ 

⋃ 

m 

D 

+ 
F J 
(q m 

) = 

{ 

p + 

∑ 

j∈ � 1 ,� � 
λ j e 

i j : λ j ∈ { 0 , ±2 } 
} 

= D 

+ 
F J 
(p) . 

By induction on � , for any p ∈ F J , D 

+ 
F J 
(p) encodes σ Q ( I ) ( p ) plus its faces. �
4 Observe that F J ⊂ 2 Z n . 
5 Card( S ) is the cardinality of the set S . 
6 The L ∞ -norm of a vector γ = (x 1 , . . . , x n ) is || γ || ∞ = max i ∈ � 1 ,n � | x i | . 
7 A cell σ 1 is covered by a cell σ 2 if σ 1 is a maximal face of σ 2 . 
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Proposition 13. If p encodes an � -cell σ ∈ Q ( I ), then the set of points encoding the cells in Q ( I ) incident to σ is: 

A F J (p) := A 

+ 
F J 
(p) \ { p} where A 

+ 
F J 
(p) = 

{ 

p + 

∑ 

j∈ 2 4 (p) 

λ j e 
j : λ j ∈ { 0 , ±2 } 

} 

∩ F J . 

Besides, the set of points encoding the n-cells incident to σ in Q ( I ) is A 

n 
F J 
(p) := F J ∩ 

{
p + 

∑ 

j∈ 2 4 (p) λ j e 
j : λ j ∈ {±2 } }. In general,

the � -cells incident to σ in Q ( I ) are encoded by the points in the set A 

� 
F J 
(p) := A F J 

(p) ∩ E � . 

Proof. Let p ∈ E � ∩ F J . Each point q = p + 

∑ 

j∈ 2 4 (p) λ j e 
j , where λj ∈ {0, ± 2}, lies in E k + � , being k the number of non-null

coefficients λj . If q ∈ F J , then q encodes a (k + � ) -cell incident to p in F J since p ∈ D F J 
(q ) . �

Lemma 14. For any p, p ′ in 2 Z 

n , we have the following equivalences: 

p ′ ∈ A 

+ 
F J 
(p) ⇔ p ′ = p + 

∑ 

j∈ 2 4 (p) 

λ j e 
j , λ j ∈ { 0 , ±2 } 

⇔ p = p ′ + 

∑ 

j∈ 0 4 (p ′ ) 
λ′ 

j e 
j , λ′ 

j ∈ { 0 , ±2 } ⇔ p ∈ D 

+ 
F J 
(p ′ ) . 

Proof. Only the central equivalence needs to be proved. Assume that p ′ = p + 

∑ 

j∈ 2 4 (p) λ j e 
j , λ′ 

j 
∈ { 0 , ±2 } . Then 0 4 (p ′ ) =

0 4 (p) ∪ { j ∈ 2 4 (p) : λ j � = 0 } . Define the coefficients λ′ 
j 
, j ∈ 0 4 ( p 

′ ), such that λ′ 
j 

:= 0 when j ∈ 0 4 ( p ) and λ′ 
j 

:= −λ j when

j ∈ 2 4 ( p ) and λj � = 0. Then p = p ′ + 

∑ 

j∈ 0 4 (p ′ ) λ′ 
j 
e j . The reasoning is dual for the converse implication. �

Remark 15. Let p , p ′ , p ′ ′ , p ′ ′ ′ ∈ F J such that p ′ ∈ D F J 
(p) . Then, (1) if p ′′ ∈ D F J 

(p ′ ) , then p ′′ ∈ D F J 
(p) ; (2) if p ′ , p ′′ ∈ D F J 

(p) ∩
A F J 

(p ′′′ ) , with 

p ′ = p + 

∑ 

j∈ 0 4 (p) 

λ′ 
j e 

j and p ′′ = p + 

∑ 

j∈ 0 4 (p) 

λ′′ 
j e 

j , where λ′ 
j , λ

′′ 
j ∈ { 0 , ±2 } 

and if λ′ 
j 
� = 0 � = λ′′ 

j 
, for some index j ∈ 0 4 ( p ), then λ′ 

j 
= λ′′ 

j 
. 

Proposition 16. If two points p and p ′ encoding two n-cells σ and σ ′ of Q ( I ) are 2 n-neighbors, then σ and σ ′ share exactly one

(n − 1) -cell. 

Proof. Since p, p ′ ∈ E n are 2 n -neighbors then p ′ = p + λ e i for some i ∈ � 1 , n � and λ∈ { ± 4}. Then q = 

1 
2 (p + p ′ ) ∈ E n −1 en-

codes the common (n − 1) -face. �

Now we are ready to prove the main result of this subsection. 

Proposition 17. If an nD picture I = (Z 

n , F I ) is DWC then, the associated nD cubical complex Q ( I ) is wWC. 

Proof. We assume that F I is DWC. Let p ∈ F J be a point of 2 Z 

n encoding a cell σ of Q ( I ). Then the set of points of 4 Z 

n

encoding the n -cells in Q ( I ) incident to σ is A 

n 
F J 
(p) . Since F I is DWC, it means, by Proposition 5 , that for any two points

q and q ′ belonging to A 

n 
F J 
(p) , there exists a 2 n -path (q = p 1 , p 2 , . . . , p k −1 , p k = q ′ ) of points in A 

n 
F J 
(p) encoding n -cells of

Q ( I ) incident to σ such that, for each i ∈ � 1 , k − 1 � , p i ∈ N 2 n (p i +1 ) . By Proposition 16 , (σQ(I) (p 1 ) , . . . , σQ(I) (p k )) is a path of

n -cells such that, for any i ∈ � 1 , k − 1 � , σ Q ( I ) ( p 
i ) and σQ(I) (p i +1 ) share exactly one (n − 1) -face of Q ( I ). Since this is true for

any pair of n -cells incident to σ Q ( I ) ( p ), for any p ∈ F J , then Q ( I ) is wWC. �

4.2. Critical cells in Q ( I ) 

In this subsection, we define the notion of critical cells of Q ( I ) that are derived from the notion of critical configurations

given in Section 2 and give a procedure to compute the points in F J that encode them. 

Definition 18 (Critical cells) . Let I = (Z 

n , F I ) be an nD picture and Q ( I ) its associated cubical complex. At each block B ∈
B(4 Z 

n ) such that F I ∩ B is a primary or a secondary critical configuration, let p and p ′ be two antagonists in B . Then, the cell

centered at p+ p ′ 
2 is defined as a full-critical cell of Q ( I ), its vertices as critical vertices , and each cell containing at least one

critical vertex will be called critical . 

We say that a point p in F J is critical if p encodes a critical cell of Q ( I ) (see Fig. 3 ). Procedure 1 computes the set R of

critical points in F J : starting from the nD picture I , for each block B ∈ B(4 Z 

n ) in the domain of the image, it checks if there

exists a couple of antagonists { p, p ′ } ∈ B such that either F I ∩ B = { p, p ′ } (primary configuration) or B \ F I = { p, p ′ } (secondary

configuration). Then the intersection of the continuous analogs of the cells encoded by p and p ′ is a “pinch” (in the sense

that the boundary of the continuous analog will not be homeomorphic to R 

n −1 ). This pinch, encoded by p ∗ = 

p+ p ′ 
2 , is then

a full-critical cell of Q ( I ). Consequently, all the vertices of Q ( I ) contained in D 

0 
F J 
(p ∗) are critical, and all the cells of Q ( I )
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Fig. 3. Left: a critical vertex (in red) resulting from a 2D CC in a 2D space. Middle: a “full” critical edge resulting from a 2D CC in a 3D space and its 

corresponding critical vertices (in red). Right: a critical vertex (in red) resulting from a 3D CC in a 3D space. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Three examples of cone joins. 

 

 

 

 

 

 

 

 

 

containing a critical vertex are critical cells. We obtain then that V encodes the critical vertices of Q ( I ) and R encodes the

critical cells of Q ( I ). Note that a discussion about the complexity of a similar algorithm, able to verify that an image is DWC,

is discussed in [1] ; summarily, the complexity of this algorithm is linear with respect to the number of blocks contained in

the smallest hyperrectangle containing F I , and is particularly fast in small dimensions. 

Remark 19. If a point p ∈ E � ∩ R, with � ∈ � 0 , n � , then any point p ′ ∈ A F J 
(p) is in R . Conversely, if a point p ∈ E � \ R, then no

point p ′ ∈ D F J 
(p) lies in R . 

4.3. Computing the simplicial complex Q S ( I ) over I 

In this subsection we explain how the simplicial complex Q S ( I ) (which is, in fact, a subdivision of Q ( I )) is constructed. 

Definition 20. [31] The cone (join) on a simplicial complex K with vertex v , denoted by v ∗K is the simplicial complex whose

simplices have the form 〈 v 0 , . . . , v � , v 〉 (where 〈 v 0 , . . . , v � 〉 is a simplex of K spanned by the set of points { v 0 , . . . , v � } ), along

with all faces of such simplices. 

Procedure 2: Obtaining the simplicial complex Q S ( I ). 

Input : The point set F J . 

Output : The simplicial complex Q S (I) . 

Q S (I) := 

{〈 p〉 : p ∈ E 0 ∩ F J 
}

; 

for � ∈ � 1 , n � do 

for p ∈ E � ∩ F J do 

compute the subcomplex K D F J 
(p) of Q S (I) formed by the simplices of Q S (I) such that all their vertices lie in 

D F J 
(p) ; 

Q S (I) := Q S (I) ∪ (p ∗ K D F J 
(p)) 

end 

end 

Some examples of cone joins are depicted in Fig. 4 . 

The simplicial complex Q S ( I ) is constructed using Procedure 2 recursively with the cone join operation. 

Observe that | Q 

(0) 
S 

(I) | = F J and | Q S (I) | = | Q(I) | . By construction, any � -simplex σ ∈ Q S ( I ), with � ∈ � 0 , n � , can be defined

by an (ordered) list of its vertices 〈 v 0 , . . . , v � 〉 satisfying that v i ∈ D 

i 
F J 
(v j ) for 0 ≤ i < j ≤ � . Besides, if σ is an n -simplex of Q S ( I )

then there always exists a set of points { v i ∈ E i ∩ F J : i ∈ � 0 , n � } such that σ = 〈 v 0 , . . . , v n 〉 . 
Remark 21. Next tips help to construct simplices incident to a given simplex: 

• Let v ∈ E � with � ∈ � 0 , n − 1 � . If w = v ± 2 e i , with i ∈ 2 4 ( v ), then w ∈ E � +1 . Furthermore, when w belongs to F J , then v ∈
D 

� 
F J 
(w ) . Additionally, when � ∈ � 1 , n � , if z = v ± 2 e j , with j ∈ 0 4 ( v ), then z ∈ D 

� −1 
F J 

(v ) . 
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• Let v � ∈ E � ∩ F J with � ∈ � 1 , n � . Then, there exist subindices 1 ≤ i 1 < ��� < i � ≤ n , such that { i 1 , . . . , i � } = 0 4 (v � ) . For j de-

creasing from � − 1 to 0, define v j := v j+1 + λ j+1 e 
i j+1 , where λj ∈ { ± 2}. Then, σQ S (I) (v � ) = 〈 v 0 , . . . , v � 〉 is an � -simplex in

A Q S (I) (〈 v � 〉 ) . 
• Let � ∈ � 1 , n � , k ∈ � 0 , n − � � , v k + � ∈ E k + � ∩ F J and v k ∈ D 

k 
F J 
(v k + � ) . Then, there exist subindices 1 ≤ i k +1 < · · · < i k + � ≤ n with

i j ∈ 2 4 ( v k ) and λ∗
j 
∈ {±2 } , for j ∈ � k + 1 , k + � � , such that v k + � = v k + 

∑ 

j∈ � k +1 ,k + � � λ∗
j 
e i j . 

For j increasing from k + 1 to k + � − 1 , define v j := v j−1 + λ∗
j 
e i j . Then, σQ S (I) (v k , v k + � ) = 〈 v k , . . . , v k + � 〉 is an � -simplex in

A Q S (I) (〈 v k , v k + � 〉 ) . 
Example 22. Let us consider I = (Z 

4 , F I ) such that F I = { (0 , 0 , 0 , 0) } . Then Q ( I ) consists in a 4-size 4-dimensional cube cen-

tered at (0,0,0,0) and Q S ( I ) is a subdivision of the cube in 4-simplices, all of them incident to vertex v = (0 , 0 , 0 , 0) . Let

k = 0 , � = 3 , v 0 = (2 , −2 , 2 , −2) ∈ E 0 ∩ F J and v 3 = (2 , 0 , 0 , 0) ∈ E 3 ∩ F J . Then, v 3 = v 0 + 2 e 2 − 2 e 3 + 2 e 4 . Define v 1 := v 0 + 2 e 2

and v 2 := v 0 + 2 e 2 − 2 e 3 . Then, σQ S (I) (v 0 , v 3 ) = 〈 v 0 , v 1 , v 2 , v 3 〉 ∈ Q S (I) . 

Procedure 3: Obtaining a face-connected path in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) , for a given vertex v � ∈ E � ∩ F J , � ∈ � 1 , n � , joining two 

different � -sim plices σ = 〈 v 0 , . . . , v � −1 , v � 〉 and σ ′ = 〈 v ′ 
0 
, . . . , v ′ 

� −1 
, v � 〉 in Q S ( I ), where v i , v ′ i ∈ E i ∩ F J for i ∈ � 0 , � − 1 � . 

Input : σ = 〈 v 0 , . . . , v � −1 , v � 〉 and σ ′ = 〈 v ′ 
0 
, . . . , v ′ 

� −1 
, v � 〉 in Q S (I) with v � ∈ E � ∩ F J and σ � = σ ′ . 

Output : A face-connected path in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) joining σ and σ ′ . 
Let j ∈ � 0 , � − 1 � such that v j � = v ′ 

j 
and for each s ∈ � j + 1 , � � , v s = v ′ s ; 

if j = 0 then 

σ and σ ′ share exactly the (� − 1) -face 〈 v 1 , . . . , v � 〉 
else 

v j = v j+1 + λe r and v ′ 
j 
= v j+1 + λ′ e r ′ for some r, r ′ ∈ 0 4 (v j+1 ) and λ, λ′ ∈ {±2 } ; 

if r � = r ′ then 

v ′′ 
j−1 

:= v j+1 + λe r + λ′ e r ′ ∈ D 

j−1 
F J 

(v j ) ∩ D 

j−1 
F J 

(v ′ 
j 
) ; 

Let σQ S (I) (v ′′ j−1 
) = 〈 v ′′ 

0 
, . . . , v ′′ 

j−1 
〉 obtained using Remark 21; 

α := 〈 v ′′ 0 . . . , v 
′′ 
j−1 

, v j , v j+1 , . . . , v � 〉 and α′ := 〈 v ′′ 0 , . . . , v 
′′ 
j−1 

, v ′ 
j 
, v j+1 , . . . , v � 〉 share the (� − 1) -face 

〈 v ′′ 
0 
, . . . , v ′′ 

j−1 
, v j+1 , . . . , v � 〉 ; 

if σ and α (resp. α′ and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α (resp. α′ and σ ′ ) 
end 

else 

r = r ′ and λ � = λ′ .Take λ∗ ∈ {±2 } and r ′′ ∈ 0 4 (v j+1 ) , r 
′′ � = r, r ′ ; 

v ′′ 
j 

:= v j+1 + λ∗e r 
′′ ∈ D 

j 
F J 
(v j+1 ) ; 

σQ S (I) (v ′′ j 
) = 〈 v ′′ 0 , . . . , v 

′′ 
j 
〉 obtained using Remark 21; 

α := 〈 v ′′ 
0 
, . . . , v ′′ 

j 
, v j+1 , . . . , v � 〉 ; 

if σ and α (resp. α and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α (resp. α and σ ′ ) 
end 

end 

end 

An example of Procedure 3 computing a face-connected path in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) , joining two different � -simplices σ and σ ′ 
is depicted in Fig. 5 . 

Proof of Proc 3. Let v � ∈ E � ∩ F J , with � ∈ � 1 , n � . Let σ = 〈 v 0 , . . . , v � −1 , v � 〉 , σ ′ = 〈 v ′ 0 , . . . , v ′ � −1 , v � 〉 ∈ A 

(� ) 
Q S (I) 

(〈 v � 〉 ) with σ � = σ ′ . 
Let us prove property (P � ) : “there exists a face-connected path π ( σ , σ ′ ) in A 

(� ) 
Q S (I) 

( 〈 v � 〉 ) joining σ and σ ′ and whose

vertices are all in D 

+ 
F J 
(v � ) ”. 

Initialization (� = 1) : two different 1-sim plices σ = 〈 v 0 , v 1 〉 and σ ′ = 〈 v ′ 0 , v 1 〉 are joined by the face-connected path ( σ ,

σ ′ ) in A 

(1) 
Q S (I) 

(〈 v 1 〉 ) . 
Heredity (� ∈ � 1 , n � ) : assume that (P m 

) is true for m ∈ � 0 , � − 1 � . Let j ∈ � 0 , � − 1 � such that v j � = v ′ 
j 

and for any

i ∈ � j + 1 , � − 1 � , v i = v ′ 
i 
. Now, let λ, λ′ ∈ { ± 2} and r, r ′ ∈ 0 4 (v j+1 ) such that v j = v j+1 + λe r and v ′ 

j 
= v j+1 + λ′ e r ′ . Then, two

cases are possible: 
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Fig. 5. Let Q S ( I ) be the simplicial subdivision of a 4-size 2-dimensional cube. Starting from two simplices σ = 〈 v 0 , v 1 , v 2 〉 (in dark blue) and σ ′ = 〈 v ′ 0 , v ′ 1 , v 2 〉 
(in light blue) in Q S ( I ) sharing a vertex v 2 ∈ E 2 , we look for a face-connected path joining σ and σ ′ in A 

(2) 
Q S (I) 

(〈 v 2 〉 ) . Using Procedure 3 , we define an 

intermediary simplex α = 〈 v ′′ 0 , v 
′′ 
1 , v 2 〉 (in green) since we are in the case r = r ′ . Then we reiterate the procedure on ( σ , α) and on ( α, σ ′ ) defining μ (in 

yellow) and μ′ (in orange) to get the path π = (σ, μ, α, μ′ , σ ′ ) joining σ and σ ′ in A 

(2) 
Q S (I) 

(〈 v 2 〉 ) . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 6. A path in A 

(2) 
Q S (I) 

(〈 v 2 〉 ) (light gray) induces a path in A 

(1) 
Q S (I) 

(〈 v 1 〉 ) (dark gray). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) When r � = r ′ , we define v ′′ 
j−1 

:= v j+1 + λe r + λ′ e r ′ and deduce v ′′ 0 , . . . , v 
′′ 
j−2 

such that σQ S (I) (v ′′ j−1 
) = 〈 v ′′ 0 , . . . , v 

′′ 
j−1 

〉 . We

define then α := 〈 v ′′ 
0 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . , v � 〉 and α′ := 〈 v ′′ 

0 
, . . . , v ′′ 

j−1 
, v ′ 

j 
, v j+1 , . . . , v � 〉 . Since α and α′ share the face

〈 v ′′ 
0 
, . . . , v ′′ 

j−1 
, v j+1 , . . . , v � 〉 , then π ( α, α′ ) := ( α, α′ ). By (P j ) ( j < � ) there exists a face-connected path π ( μ, μ′ ) in

A 

( j) 
Q S (I) 

(〈 v j 〉 ) joining μ := 〈 v 0 , . . . , v j−1 , v j 〉 and μ′ := 〈 v ′′ 0 , . . . , v 
′′ 
j−1 

, v j 〉 . We can rewrite each i th element of π ( μ, μ′ )
such that: π(μ, μ′ )(i ) = 〈 ξ i 

0 
, . . . , ξ i 

j−1 
, v j 〉 , where for each i , ξ i 

k 
∈ E k where k belongs to � 0 , j − 1 � . From this path,

we can deduce (see Fig. 6 ) a face-connected path π ( σ , α) in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) joining σ and α based on π ( μ, μ′ ):
∀ i, π(σ, α)(i ) := 〈 ξ i 

0 
, . . . , ξ i 

j−1 
, v j , v j+1 , . . . , v � 〉 . The reasoning is similar for α′ and σ ′ , so we can obtain π ( α′ , σ ′ ).

Using the concatenation operator ∧ , we obtain that a face-connected path in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) joining σ and σ ′ is π ( σ ,

α) ∧ π ( α, α′ ) ∧ π ( α′ , σ ′ ). 
(2) When r = r ′ , between σ and α (respectively, α and σ ′ ), we can apply (1), from which we deduce π ( σ , α) and π ( α,

σ ′ ) in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) , and then a path joining σ and σ ′ in A 

(� ) 
Q S (I) 

(〈 v � 〉 ) is π ( σ , α) ∧ π ( α, σ ′ ). 

By induction on � , we deduce that (P � ) is true for any � ∈ � 1 , n � . �

Example 23. Let I = (Z 

4 , F I ) and F I = { (0 , 0 , 0 , 0) } . Let v 3 = (2 , 0 , 0 , 0) , v 0 = (2 , 2 , 2 , 2) , v 1 = (2 , 2 , 2 , 0) , v 2 = (2 , 2 , 0 , 0) ,

v ′ 
0 

= (2 , −2 , −2 , 2) , v ′ 
1 

= (2 , −2 , 0 , 2) and v ′ 
2 

= (2 , −2 , 0 , 0) . Let us apply Procedure 3 to obtain a face-connected path in

A 

(3) 
Q S (I) 

(〈 v 3 〉 ) joining σ = 〈 v 0 , v 1 , v 2 , v 3 〉 , and σ ′ = 〈 v ′ 0 , v ′ 1 , v ′ 2 , v 3 〉 . 
• Take σ and σ ′ , then j = 2 , v 2 = v 3 + 2 e 2 and v ′ 

2 
= v 3 − 2 e 2 . We are in case (2): r = 2 = r ′ . Let v i 

2 
:= v 3 − 2 e 3 =

(2 , 0 , −2 , 0) , v i 
1 

:= (2 , 2 , −2 , 0) and v i 
0 

:= (2 , 2 , −2 , 2) . Let α1 := 〈 v i 
0 
, v i 

1 
, v i 

2 
, v 3 〉 . 

• Take σ and α1 , then j = 2 , v 2 = v 3 + 2 e 2 and v i 
2 

= v 3 − 2 e 3 . Let v ii 
1 

:= v 3 + 2 e 2 − 2 e 3 = (2 , 2 , −2 , 0) = v i 
1 
, v ii 

0 
:= v i 

0 
, α2 :=

〈 v i 
0 
, v i 

1 
, v 2 , v 3 〉 and α′ 

2 := 〈 v i 
0 
, v i 

1 
, v i 

2 
, v 3 〉 = α1 , then α2 and α1 share a 2-face. 

• Take σ and α2 , then j = 1 , v 1 = v 2 + 2 e 3 and v i 
1 

= v 2 − 2 e 3 . Let v iii 
1 

:= v 2 + 2 e 4 = (2 , 2 , 0 , 2) , v iii 
0 

:= (2 , 2 , 2 , 2) = v 0 and

α3 := 〈 v 0 , v iii 1 
, v 2 , v 3 〉 , then σ and α3 share a 2-face. 

• Take α3 and α2 , then j = 1 , v iii 
1 

= v 2 + 2 e 4 and v i 
0 

= v 2 − 2 e 3 . Let v i v 
0 

= v 2 + 2 e 4 − 2 e 3 = (2 , 2 , −2 , 2) = v ii 
0 
, α4 :=

(v ii 
0 
, v iii 

1 
, v 2 , v 3 ) and α′ 

4 := (v ii 
0 
, v ii 

1 
, v 2 , v 3 ) = α2 , then α3 and α4 (resp. α4 and α2 ) share a 2-face. 

• Take α1 and σ ′ , then j = 2 , v i 
2 

= v 3 − 2 e 3 and v ′ 2 = v 3 − 2 e 2 . Let v v 1 := v 3 − 2 e 3 − 2 e 2 = (2 , −2 , −2 , 0) , v v 0 :=
(2 , −2 , −2 , 2) = v ′ 

0 
, α5 := 〈 v ′ 

0 
, v v 

1 
, v i 

2 
, v 3 〉 and α′ 

5 
:= 〈 v ′ 

0 
, v v 

1 
, v ′ 

2 
, v 3 〉 , then α5 and α′ 

5 
(resp. α′ 

5 
and σ ′ ) share a 2-face. 

• Take α1 and α5 , then j = 1 , v i 
1 

= v i 
2 

+ 2 e 2 and v v 1 = v i 
2 

− 2 e 2 . Let v v i 
1 

:= v i 
2 

+ 2 e 4 = (2 , 0 , −2 , 2) , v v i 
0 

:= (2 , 2 , −2 , 2) = v i 
0

and α6 := 〈 v i 
0 
, v v i 

1 
, v i 

2 
, v 3 〉 , then α1 and α6 share a 2-face. 

• Take α6 and α5 , then j = 1 , v v i 
1 

= v i 
2 

+ 2 e 4 and v v 
1 

= v i 
2 

− 2 e 2 . Let v v ii 
0 

:= v i 
2 

+ 2 e 4 − 2 e 2 = (2 , −2 , −2 , 2) = v ′ 
0 
, α7 :=

〈 v ′ 
0 
, v v i 

1 
, v i 

2 
, v 3 〉 and α′ 

7 
:= 〈 v ′ 

0 
, v v 

1 
, v i 

2 
, v 3 〉 = α5 , then α6 and α7 (resp. α7 and α5 ) share a 2-face. 

′ ′ 
Finally, the resulting face-connected path is (σ, α3 , α4 , α2 , α1 , α6 , α7 , α5 , α5 
, σ ) . 
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Proof of Procedure 4. Let σ = 〈 v k , . . . , v k + � −1 , v k + � 〉 and σ ′ = 〈 v k , v ′ k +1 
, . . . , v ′ 

k + � −1 
, v k + � 〉 , σ � = σ ′ . Let us prove property

(P 

′ 
� ) : “there exists a face-connected path π ( σ , σ ′ ) in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) whose vertices are all in A 

+ 
F J 
(v k ) ∩ D 

+ 
F J 
(v k + � ) , joining

σ and σ ′ ”. 

Initialization (� = 2) : Observe that σ = 〈 v k , v k +1 , v k +2 〉 and σ ′ = 〈 v k , v ′ k +1 
, v k +2 〉 share the 1-face 〈 v k , v k +2 〉 . Then

π(σ, σ ′ ) = (σ, σ ′ ) . 
Heredity (� ∈ � 3 , n � ) : we assume that (P 

′ 
m 

) is true for m ∈ � 2 , � − 1 � . We want to prove that (P 

′ 
� ) is true. We define

α := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . , v k + � 〉 and α′ := 〈 v k , v ′′ k +1 

, . . . , v ′′ 
j−1 

, v ′ 
j 
, v j+1 , . . . , v k + � 〉 . It follows that α and α′ share an

(� − 1) -face. Since j ∈ � k + 1 , k + � − 1 � , then j − k ≤ � − 1 . Then (by (P 

′ 
j−k 

) ), the ( j − k ) -simplices μ = 〈 v k , v k +1 , . . . , v j−1 , v j 〉
and μ′ = 〈 v k , v ′′ k +1 

, . . . , v ′′ 
j−1 

, v j 〉 are joined by a face-connected path π ( μ, μ′ ) in A 

( j−k ) 
Q S (I) 

(〈 v k , v j 〉 ) . By rewriting each

i th element of π ( μ, μ′ ): π(μ, μ′ )(i ) = 〈 v k , ξ i 
k +1 

, . . . , ξ i 
j−1 

, v j 〉 , we deduce the i th element of a new path π ( σ , α):

π(σ, α)(i ) = 〈 v k , ξ i 
k +1 

, . . . , ξ i 
j−1 

, v j , v j+1 , . . . , v k + � 〉 , in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) joining σ and α. We proceed similarly with α′

and σ ′ to obtain π ( α′ , σ ′ ) in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) . We obtain the path we were looking for, using the concatenation operator

∧ : π ( σ , σ ′ ) := π ( σ , α) ∧ π ( α, α′ ) ∧ π ( α′ , σ ′ ). 
By induction on � ∈ � 2 , n � , (P 

′ 
� ) is true for any � ∈ � 2 , n � and k ∈ � 0 , n − � � . �

Remark 24. Given vertices v � ∈ E � ∩ F J and v n , v ′ n ∈ A 

n 
F J 
(v � ) , there exist subindices 1 ≤ i 1 < ��� < i � ≤ n and 1 ≤ i � +1 < · · · < i n ≤

n, such that { i 1 , . . . , i � } = 0 4 (v � ) and { i � +1 , . . . , i n } = 2 4 (v � ) . We have 

v n = v � + 

∑ 

j∈ � � +1 ,n � 

λ j e 
i j and v ′ n = v � + 

∑ 

j∈ � � +1 ,n � 

λ′ 
j e 

i j , where λ j , λ
′ 
j 
∈ {±2 } . 

For j ∈ � 0 , � − 1 � , define v j := v j+1 + λ j+1 e 
i j+1 , being λj ∈ { ± 2}. We have v j ∈ D 

j 
F J 
(v j+1 ) , for all j ∈ � 0 , � − 1 � . 

(P1) If v n , v ′ n are 2 n -neighbors, then there exists r ∈ � � + 1 , n � such that λr � = λ′ 
r and λ j = λ′ 

j 
, for all j � = r . Suppose, without

loss of generality, that r = n . Define v n −1 := 

1 
2 (v n + v ′ n ) . For j ∈ � � + 1 , n − 2 � , define v j := v j+1 + λ j+1 e 

i j+1 . Then σ :=
〈 v 0 , . . . , v n −1 , v n 〉 and σ ′ := 〈 v 0 , . . . , v n −1 , v ′ n 〉 are n -simplices in A Q S (I) (〈 v � 〉 ) sharing a common (n − 1) -face. 

(P2) Any two n -simplices μ and μ′ in Q S ( I ) incident to v n are face-connected in A 

(n ) 
Q S (I) 

(〈 v n 〉 ) by Procedure 3 . 

(P3) Any two n -simplices μ = 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −1 , v n 〉 and μ′ := 〈 v ′ 
0 
, . . . , v ′ 

� −1 
, v � , v ′ � +1 

, . . . , v ′ 
n −1 

, v n 〉 are face-

connected in A 

(n ) 
Q S (I) 

(〈 v � , v n 〉 ) : 
Let μ′′ := 〈 v ′ 

0 
, . . . , v ′ 

� −1 
, v � , v � +1 , . . . , v n −1 , v n 〉 . By Procedure 3 (resp. by Procedure 4 ), μ and μ′ ′ (resp. μ′ ′ and μ′ ) are

face-connected in 

A 

(n ) 
Q S (I) 

(〈 v � , v n 〉 ) . 

Procedure 4: Obtaining a face-connected path in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) , with � ∈ � 2 , n � , k ∈ � 0 , n − � � , v k + � ∈ E k + � ∩ F J and 

v k ∈ D 

k 
F J 
(v k + � ) , joining two different simplices σ and σ ′ in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) . 
Input : σ = 〈 v k , v k +1 , . . . , v k + � −1 , v k + � 〉 and σ ′ = 〈 v k , v ′ k +1 

, . . . , v ′ 
k + � −1 

, v k + � 〉 in Q S (I) ,with σ � = σ ′ . 
Output : A face-connected path in A 

(� ) 
Q S (I) 

(〈 v k , v k + � 〉 ) joining σ and σ ′ . 
Let j ∈ � k + 1 , k + � − 1 � such that v j � = v ′ 

j 
and v s = v ′ s for each s ∈ � j + 1 , k + � − 1 � ; 

if j = k + 1 then 

σ and σ ′ sharethe (� − 1) -face 〈 v k , v k +2 , . . . , v k + � −1 , v k + � 〉 
else 

v j = v j+1 + λe r and v ′ 
j 
= v j+1 + λ′ e r ′ for some r, r ′ ∈ 0 4 (v j+1 ) with r � = r ′ and λ, λ′ ∈ {±2 } (by Remark 15); 

v ′′ 
j−1 

:= v j+1 + λe r + λ′ e r ′ ; 
let σQ S (I) (v k , v ′′ j−1 

) = 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
〉 obtained using Remark 21; 

α := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . , v k + � 〉 and α′ := 〈 v k , v ′′ k +1 

, . . . , v ′′ 
j−1 

, v ′ 
j 
, v j+1 , . . . , v k + � 〉 ; 

if σ and α (resp. α′ and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α(resp. α′ and σ ′ ) 
end 

end 

Now let us prove the main result in this subsection (depicted in Fig. 7 ). 

Proposition 25. If I is DWC then Q ( I ) is wWC. 
S 
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Fig. 7. From left to right: an nD picture I = (Z n , F I ) ; its corresponding simplicial complex Q S ( I ); two 2-simplices σ and σ ′ of Q S ( I ) incident to a vertex 

v � and a 2 n -path π2 n := (v 0 n , v 1 n , v 2 n ) of points in A 

n 
F J 
(v � ) ; the face-connected path of 2-simplices (σ (0 , −) , σ (0 , +) , σ (1 , −) , σ (1 , +) , σ (2 , −) , σ (2 , +) ) (in light gray, 

yellow, orange, red, green, and light gray) in A 

(n ) 
Q S (I) 

(〈 v � 〉 ) computed from π2 n using Remark 24 . (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

Proof. Assume that I is DWC. Let � ∈ � 0 , n � and v � ∈ E � ∩ F J . Let σ = 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n 〉 and σ ′ =
〈 v ′ 

0 
, . . . , v ′ 

� −1 
, v � , v ′ � +1 

, . . . , v ′ n 〉 be two different n -sim plices of Q S ( I ) incident to v � . We want to prove property (P) :

“there exists a face-connected path in A 

(n ) 
Q S (I) 

(〈 v � 〉 ) joining σ and σ ′ ”. 

When � = n, then v ′ n = v n , and (P) is true by Remark 24 .(P2). 

Now, when � ∈ � 0 , n − 1 � , since I is DWC, then there exists a 2 n -path in A 

n 
F J 
(v � ) denoted π2 n := (v 0 n :=

v n , v 1 n , . . . , v m −1 
n , v m 

n := v ′ n ) joining v n and v ′ n . For each pair (v i n , v i +1 
n ) , where i belongs to � 0 , m − 1 � , we obtain, using

Remark 24 .(P1), the n -simplices σ (i, +) and σ (i +1 , −) in A 

(n ) 
Q S (I) 

(〈 v � 〉 ) sharing an (n − 1) -face. Since, by Remark 24 .(P3), there

are face-connected paths: 

π(σ = σ (0 , −) , σ (0 , +) ) in A 

(n ) 
Q S (I) 

(〈 v � , v 0 n 〉 ) , 
π(σ (i, −) , σ (i, +) ) in A 

(n ) 
Q S (I) 

(〈 v � , v i n 〉 ) , for i ∈ � 1 , m − 1 � , 

π(σ (m, −) , σ (m, +) = σ ′ ) in A 

(n ) 
Q S (I) 

(〈 v � , v m 

n 〉 ) , 
(where π ( a, b ) means that there is a face-connected path of n -simplices joining a and b ). Then σ and σ ′ are face-connected

by a path resulting from the concatenation of the paths described above: 

π(σ, σ ′ ) := π(σ 0 , −, σ 0 , + ) ∧ π(σ 0 , + , σ 1 , −) ∧ · · · ∧ π(σ m −1 , + , σ m, −) ∧ π(σ m, −, σ m, + ) , 

in A 

(n ) 
Q S (I) 

(〈 v � 〉 ) . Since (P) is true for any pair of n -simplices σ and σ ′ in A 

(n ) 
Q S (I) 

(〈 v � 〉 ) and for any v � in Q S ( I ), then Q S ( I ) is

wWC. �

5. Combinatorial method to obtain the weak well-composed simplicial complex P S ( I ) over an nD picture I 

The aim of this section is to compute a wWC simplicial complex P S ( I ) over I . For doing this, we first “enlarge” the nD

binary image J = (Z 

n , F J ) , encoding Q ( I ), around the critical points and compute a new nD binary image L = (Z 

n , F L ) . Then,

we construct the simplicial complex P S ( I ) and prove later that P S ( I ) is a wWC simplicial complex over I . For the sake of

clarity, the proofs of the results presented in this section are given in an annex at the end of this document. 

5.1. Computing the nD binary image L = (Z 

n , F L ) 

In this subsection we give a procedure to obtain the nD binary image L = (Z 

n , F L ) that will be used later to compute the

simplicial complex P S ( I ). 

Notation 26. The set Z 

n \ 2 Z 

n can be decomposed into the disjoint sets: 

O � := { p ∈ Z 

n \ 2 Z 

n : Card (0 2 (p)) is � } , 
where � ∈ � 0 , n − 1 � . Then, Z 

n = (� i ∈ � 0 ,n � E i ) 
⊔ 

(� i ∈ � 0 ,n −1 � O i ) . 

Definition 27 ( S -Block) . Let p ∈ 2 Z 

n . The S -block S ( p ) is the set: 

S(p) := 

{ 

p + 

∑ 

j∈ 2 4 (p) 

λ j e 
j : λ j ∈ { 0 , ±1 } 

} 

. 

Observe that if p ∈ E � then S(p) \ { p} ⊆ ⊔ 

i ∈ � 0 ,� � O i and, for any point q ∈ S ( p ), it is satisfied that || p − q || ∞ 

≤ 1 . For

example, if p encodes a 0-cell, then S(p) = { q ∈ Z 

n : || p − q || ∞ 

≤ 1 } . If p encodes an n -cell, then S(p) = { p} . 
The following result establishes that Z 

n = 

⊔ 

p∈ 2 Z n S(p) . 
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Fig. 8. Computing F L from F J , where F J (showed on the left) encodes two 2-cubes sharing a vertex (as in Fig. 1 ). The blue, red and green points on the 

left figure belong, respectively, to E 0 , E 1 and E 2 . Black points in the middle are critical. The blue, red and green points on the right belong, respectively, to 

((E 0 \ R ) ∪ O 0 ) ∩ F L , ((E 1 \ R ) ∪ O 1 ) ∩ F L and (E 2 ∩ F L ) ∪ R . Note that each red rectangle, admitting a center called p , encloses the set S ( p ). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

Remark 28. For any point q ∈ Z 

n the only p ∈ 2 Z 

n such that q ∈ S ( p ) is: 

p = q + 

∑ 

j∈ 1 2 (q ) 

μ j e 
j , where μ j = 1 if j ∈ 1 4 (q ) or −1 if j ∈ 3 4 (q ) . 

Procedure 5 is used to compute the nD binary image L = (Z 

n , F L ) , by adding the S -block S ( p ) to J = (Z 

n , F J ) , for each

Procedure 5: Computing the nD binary image L = (Z 

n , F L ) . 

Input : The nD binary image J = (Z 

n , F J ) encoding Q(I) and the set R of critical points of F J . 

Output : An nD binary image L = (Z 

n , F L ) . 

F L := F J // initial points are preserved; 

foreach p ∈ R do 

F L := F L ∪ S(p) // we enlarge J around the critical points 

end 

critical point p (see Fig. 8 ). 

Observe that since p ⊆ S ( p ), initial points are preserved, and, since S(p) ∩ S(q ) = ∅ if p � = q by Remark 28 , then the entire

set S ( p ) is added to F L . 

5.2. The intermediary sets D F L 
(p) and A F L 

(p) for any p ∈ F L 

In this subsection, we first define a partition of F L into the sets C � for � ∈ � 0 , n � . Second, for each point p ∈ C � , we define

the sets D F L 
(p) (used to compute P S ( I )) and A F L 

(p) (used to prove that P S ( I ) is wWC). 

In [13–15] , in 3D context, C � would encode the � -cells of a 3D polyhedral complex over I ; D F L 
(p) would encode the set

of faces of the cell encoded by p ; and A F L 
(p) would encode the set of cells incident to p . 

Remark 29. The set F L can be decomposed into the disjoint sets: 

C n := (E n ∩ F L ) ∪ R and C � := ((E � \ R ) ∪ O � ) ∩ F L for � ∈ � 0 , n − 1 � . 

Definition 30. For p ∈ F L , define the set D F L 
(p) := D 

+ 
F L 
(p) \ { p} where: 

• If p ∈ C 0 then D 

+ 
F L 
(p) = { p} . 

• If p ∈ E � \ R, for � ∈ � 1 , n � , then p ∈ C � and D 

+ 
F L 
(p) := D 

+ 
F J 
(p) ; 

• If p ∈ E � ∩ R, for � ∈ � 1 , n � , then p ∈ C n and 

D 

+ 
F L 
(p) := S(p) � (D F J (p) \ R ) � 

⊔ 

r∈D F J (p) ∩ R 
(S(r) ∩ N (p)) . 

• If p ∈ O � , for � ∈ � 1 , n − 1 � , then p ∈ C � and ∃ q ∈ R s.t. p ∈ S ( q ). We have: 

D 

+ 
F L 
(p) := (S(q ) ∩ N 

+ (p)) � (D F J (q ) \ R ) � 

⊔ 

r∈D F J (q ) ∩ R 
(S(r) ∩ N (p)) , 

with N 

+ (p) := 

{
p + 

∑ 

j∈ 0 2 (p) λ j e 
j : λ j ∈ { 0 , ±1 } } and N (p) := N 

+ (p) \ { p} . 
For p ∈ C � , � ∈ � 1 , n � and j ∈ � 0 , � − 1 � , D 

j 
F L 
(p) denotes the set D F L 

(p) ∩ C j . 

Notice that if p ∈ 2 Z 

n then N (p) = { q ∈ Z 

n : || p − q || ∞ 

= 1 } . 
The intermediary steps for computing D F L 

(p) are depicted in Fig. 9 . 

Proposition 31. If p ∈ C � then D F L 
(p) ⊆ ⊔ 

i ∈ � 0 ,� −1 � C i . 

Example 32. Let p ∈ C � with � ∈ � 1 , n � . 
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Fig. 9. From left to right: The set F L from Fig. 8 ; computation of D F L (p) (blue points) for a (red) point p ∈ E 1 \ R ; D 1 F L 
(p) (in red) for a (green) point 

p ∈ E 2 ∩ R ; D F L (p) (in blue) for a (red) point p ∈ O 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

 

. 

 

• Suppose p = (0 , � . . . , 0 , 2 , n −� . . . , 2) ∈ E � \ R . Then D 

+ 
F L 
(p) = { (x 1 , . . . , x � , 2 , 

n −� . . . , 2) : x i ∈ { 0 , ±2 }} . 
• Suppose p = (0 , � . . . , 0 , 2 , n −� . . . , 2) ∈ E � ∩ R . We have S(p) = { (0 , � . . . , 0 , x � +1 , . . . , x n ) : x i ∈ { 2 , 2 ± 1 }} and D F J 

(p) \ R =
{ (x 1 , . . . , x � , 2 , 

n −� . . . , 2) : x i ∈ { 0 , ±2 }} \ R. 

Now, if, for example, r = (0 , � ′ . . . , 0 , 2 , n −� ′ . . . , 2) ∈ D F J 
(p) ∩ R, with � ′ < � , then S(r) ∩ N (p) = 

{
(0 , � ′ . . . , 0 , 1 , � −� ′ . . . , 1 ,

x � +1 , . . . , x n ) : x i ∈ { 2 , 2 ± 1 } }. 

• Suppose p = (0 , k . . . , 0 , 2 , � −k . . . , 2 , 1 , n −� . . . , 1) ∈ O � , k ∈ � 0 , � � and � < n . We have q = (0 , k . . . , 0 , 2 , � −k . . . , 2 , 2 , n −� . . . , 2) ∈ E k is the

only point such that p ∈ S ( q ). We have S(q ) ∩ N 

+ (p) = { (0 , k . . . , 0 , x k +1 , . . . , x � , 1 , 
n −� . . . , 1) : x i ∈ { 2 , 2 ± 1 }} and D F J 

(q ) \ R =
{ (x 1 , . . . , x k , 2 , 

n −k . . . , 2) : x i ∈ { 0 , ±2 }} \ R. 

Now, if, for example, r = (0 , k ′ . . . , 0 , 2 , k −k ′ . . . , 2 , 2 , n −k . . . , 2) ∈ D F J 
(q ) ∩ R, with k ′ < k , then S(r) ∩ N (p) = { (0 , k ′ . . . , 0 , 1 , k −k ′. . . 

, 1 , x k +1 , . . . , x � , 1 , 
n −� . . . , 1) : x i ∈ { 2 , 2 ± 1 }} . 

Remark 33. Let p ∈ F L . 

• If p ∈ E � \ R then p ∈ C � . A point p ′ lies in D 

� −1 
F L 

(p) (for � ∈ � 1 , n � ) iff: 

p ′ = p + λ e j , with λ ∈ {±2 } and j ∈ 0 4 (p) . 

• If p ∈ E � ∩ R then p ∈ C n . A point p ′ lies in D 

n −1 
F L 

(p) iff one of the following cases holds for p ′ (corresponding to each of

the sets in Definition 30 ): 

p ′ = p + λ e j , with λ ∈ {±1 } and j ∈ 2 4 (p) ;
p ′ = p + λ e j , with λ ∈ {±2 } and j ∈ 0 4 (p) s.t. p + λ e j ∈ E n −1 \ R ;
p ′ = p + λ e j , with λ ∈ {±1 } and j ∈ 0 4 (p) s.t. p + 2 λ e j ∈ R. 

• If p ∈ O � , then p ∈ C � and ∃ q ∈ 2 Z 

n s.t. p ∈ S ( q ) (by Remark 28 ). Therefore, a point p ′ lies in D 

� −1 
F L 

(p) (for � ∈ � 1 , n − 1 � ) iff

one of the following cases holds (corresponding to each of the sets in Definition 30 ): 

p ′ = p + λ e j , with λ ∈ {±1 } and j ∈ 2 4 (p) ;
p ′ = q + λ e j , with λ j ∈ {±2 } and j ∈ 0 4 (p) s.t. q + λ e j ∈ E � −1 \ R ;
p ′ = p + λ e j , with λ j ∈ {±1 } , and j ∈ 0 4 (p) s.t. q + 2 λ e j ∈ R. 

Definition 34. Define the set A F L 
(p) := A 

+ 
F L 
(p) \ { p} for p ∈ C � , where: 

• If � = n then A 

+ 
F L 
(p) = { p} . 

• If � < n and p ∈ E � \ R then A 

+ 
F L 
(p) := (A 

+ 
F J 
(p) \ R ) � 

⊔ 

q ∈A F J (p) ∩ R S(q ) . 

• If � < n and p ∈ O � then A 

+ 
F L 
(p) := F L ∩ 

{
p + 

∑ 

j∈ 1 2 (p) λ j e 
j : λ j ∈ { 0 , ±1 } }. 

The set A F L 
(p) ∩ C � +1 , for p ∈ C � and � ∈ � 0 , n − 1 � , is denoted by A 

� +1 
F L 

(p) . 

Example 35. Let p ∈ C � for � ∈ � 0 , n − 1 � . 

• Suppose p = (0 , � . . . , 0 , 2 , n −� . . . , 2) ∈ E � \ R . Then A 

+ 
F J 
(p) = { (0 , � . . . , 0 , x � +1 , . . . , x n ) : x i ∈ {2, 2 ± 2}}. 

Now, if, for example, q = (0 , � ′ . . . , 0 , 2 , n −� ′ . . . , 2) ∈ A F J 
(p) ∩ R, with � ′ > � , then S(q ) = 

{ 

(0 , � ′ . . . , 0 , x � ′ +1 , . . . , x n ) : x i ∈ { 2 , 2 ± 1 } 
}

• Suppose p = (0 , k . . . , 0 , 2 , � −k . . . , 2 , 1 , n −� . . . , 1) ∈ O � , we have A 

+ 
F L 
(p) = F L ∩ { (0 , k . . . , 0 , 2 , � −k . . . , 2 , x � −k +1 , . . . , x n ) : x i ∈ { 1 , 1 ± 1 }} . 

Proposition 36. If p ∈ C � for � ∈ � 0 , n − 1 � , then A F L 
(p) ⊆ ⊔ 

i ∈ � � +1 ,n � C i and p ′ ∈ A F L 
(p) iff p ∈ D F L 

(p ′ ) . 

Remark 37. Let p ∈ C � and p ′′ ∈ D 

k 
F L 
(p) , where � ∈ � 1 , n � and k ∈ � 0 , � − 1 � . The expression of a point p ′ ∈ D 

� −1 
F L 

(p) ∩ A 

� −1 
F L 

(p ′′ )
can be deduced from Remark 33 and Definition 34 : 
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Fig. 10. From left to right: the set F L ; the corresponding set C 0 (in blue); adding (p ∗ K D F L (p)) for each (red) point p ∈ C 1 ; adding (p ∗ K D F L (p)) for each 

(green) point p ∈ C 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

• If p ′′ ∈ O k , then p ′ ∈ O � −1 and p ∈ O � or p ∈ E � ′ ∩ R, for some � ′ (this last case only if � = n ). In any case, since p ′ ∈
D 

� −1 
F L 

(p) , then p ′ = p + λe j , for λ∈ { ± 1} and j ∈ 0 2 ( p ). Now, since p ′ ∈ A 

� −1 
F L 

(p ′′ ) , j ∈ 1 2 ( p 
′ ′ ). Therefore, p ′ = p + λe j for

λ∈ { ± 1} and j ∈ 0 2 ( p ) ∩ 1 2 ( p 
′ ′ ). 

• Else p ′′ ∈ E k \ R . Since p ′ ∈ D 

� −1 
F L 

(p) , by Remark 33 , p ′ = z + λe j for z ∈ { p, q } (being q the point in 2 Z 

n such that p ∈ S ( q )),

λ∈ { ± 1, ± 2} and j ∈ 0 2 ( p ). Moreover, p ′ ∈ A 

� −1 
F L 

(p ′′ ) , so, necessarily j ∈ 0 2 ( p ) ∩ 2 4 ( p 
′ ′ ). 

5.3. Computing the wWC simplicial complex P S ( I ) over I 

The aim of this section is to compute a simplicial complex P S ( I ) whose vertex set is F L and prove that it is wWC over I . 

First, P S ( I ) is constructed using the cone join operation as follows. 

As in the case of Q S ( I ), any simplex σ ∈ P S ( I ) is given by an (ordered) list its vertices 〈 v 0 , . . . , v � 〉 such that v i ∈ D F L 
(v j )

for 0 ≤ i < j ≤ n . In particular, if σ is an n -simplex, then σ = 〈 v 0 , . . . , v n 〉 where v i ∈ C i for all i ∈ � 0 , n � . An example of

computation of P S ( I ) from F L is given in Fig. 10 . 

Remark 38. [31] Let K 1 , K 2 be simplicial complexes and f : K 

(0) 
1 

→ K 

(0) 
2 

a map such that if 〈 v 0 , . . . , v k 〉 in K 1 then

f (v 0 ) , . . . , f (v k ) are vertices of a simplex of K 2 . Then f can be extended to a continuous map g : | K 1 | → | K 2 |. 

Proposition 39. There exists a deformation retraction of | P S ( I )| onto | Q S ( I )| . 

Proof. The maps f t : | P S ( I )| → | P S ( I )|, t ∈ [0, 1], are defined as follows: 

For any v ∈ F L , let f t (v ) := v + t(p − v ) , where p ∈ F J is such that v ∈ S ( p ). 

We have that: 

• f t (v ) = v for any v ∈ F J and t ∈ [0, 1] (because if v ∈ F J then v ∈ S ( v )). 

• Let us see that if σ = 〈 v 0 , . . . , v k 〉 is a simplex of P S ( I ) then f 1 (v 0 ) , . . . , f 1 ( v k ) are vertices of a simplex of Q S ( I ): Since

σ ∈ P S ( I ), then v i ∈ C � for � ∈ � 0 , k � and v j ∈ A F L 
(v i ) for 0 ≤ i < j ≤ k . Now, given i ∈ � 0 , k − 1 � : 

— If v i ∈ E i \ R then f 1 (v i ) = v i . 
— If v i ∈ O i then there exits p i ∈ R such that v i ∈ S ( p i ). Moreover, 

∗ If k < n then v j ∈ O j ∩ S(p j ) for j ∈ � 0 , k � and p j ∈ R ∩ A F J 
(p i ) . 

∗ If k = n, then v n ∈ A F J 
(p i ) and f 1 (v n ) = v n . 

Then, f 1 : F L → F J can be extended to a continuous map f 1 : | P S ( I )| → | Q S ( I )| by Remark 38 . 

• f 0 (x ) = x and f 1 ( x ) ∈ | Q S ( I )|, for any x ∈ | P S ( I )|; 

• f t (y ) = y, for any y ∈ | Q S ( I )| and for any t ∈ [0, 1]. 

Then, F : | P S ( I )| × [0, 1] → | P S ( I )|, given by F (x, t) = f t (x ) , is a deformation retraction of | P S ( I )| onto | Q S ( I )|. �

Proposition 40. Let � ∈ � 1 , n � and k ∈ � 0 , n − � � . 

• For any v � ∈ C � , there exists an � -simplex σP S (I) (v � ) = 〈 v 0 , . . . , v � 〉 such that v i ∈ C i for all i ∈ � 0 , � � . 

• For any v k ∈ C k and v k + � ∈ A 

k + � 
F L 

(v k ) , there exists an � -simplex σP S (I) (v k , v k + � ) = 〈 v k , . . . , v k + � 〉 such that v i ∈ C i for all i ∈
� k, k + � � . 

Procedure 7 is depicted in Figs. 11 and 12 . 

Let � ∈ � 0 , n − 1 � and v � ∈ C � . We have the following results. 

Remark 41. Any two n -simplices are face-connected in A 

(n ) 
P S (I) 

(〈 v � , v n 〉 ) . 
Proposition 42. Let v n , v ′ n ∈ A 

n 
F L 
(v � ) such that v n ∈ E k ∩ R and v ′ n ∈ A F J 

(v n ) for some k ∈ � 0 , n − 1 � . There exist two n-simplices

(one incident to v n and the other incident to v ′ n ) in A P S (I) (〈 v � 〉 ) sharing a common (n − 1) -face. 

Proposition 43. Let w n , w 

′ 
n ∈ E n ∩ A 

n 
F L 
(v � ) . If w n and w 

′ 
n are 2 n-neighbors, then there exist two n-simplices (one incident to w n 

and the other incident to w 

′ 
n ) face-connected in A 

(n ) 
P (I) 

(〈 v � 〉 ) . 

S 
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Procedure 6: Obtaining the simplicial complex P S ( I ). 

Input : The point set F L . 

Output : The simplicial complex P S (I) . 

P S (I) := {〈 p〉 : p ∈ C 0 } ; 
for � ∈ � 1 , n � do 

for p ∈ C � do 

let K D F L 
(p) be theset ofsimplices whose vertices liein D F L 

(p) ; 

P S (I) := P S (I) ∪ (p ∗ K D F L 
(p)) 

end 

end 

Fig. 11. Computing a face-connected path (using Procedure 7 ) joining two simplices of P S ( I ) which are incident to v 1 ∈ C 1 . Blue points belong to C 0 , red 

points to C 1 and green ones to C 2 . In Case A and Case B, we start from σ = 〈 v 0 , v 1 〉 and σ ′ = 〈 v ′ 0 , v 1 〉 and we deduce directly the face-connected path 

π = (σ, σ ′ ) in A 

(1) 
P S (I) 

(〈 v 1 〉 ) , since σ and σ ′ share v 1 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 12. Computing a face-connected path (using Procedure 7 ) joining two simplices of P S ( I ) incident to v 2 ∈ C 2 . Blue points belong to C 0 , red points to C 1 
and green ones to C 2 . Case A: let σ = 〈 v 0 , v 1 , v 2 〉 and σ ′ = 〈 v ′ 0 , v ′ 1 , v 2 〉 . Then z = w 2 = v 2 . Since i = i ′ , there exists t ∈ 0 4 ( v 2 ). Let w 

′′ 
1 = v 2 + λ′′ e t , from which 

we compute v ′′ 1 , and then v ′′ 0 . We obtain then α = 〈 v ′′ 0 , v 
′′ 
1 , v 2 〉 and α′ = 〈 v ′′ 0 , v 

′ 
1 , v 2 〉 which share a 1-face. Since σ and α do not share a 1-face, we again 

apply the procedure to obtain the face-connected path joining them. Case B: let σ = 〈 v 0 , v 1 , v 2 〉 and σ ′ = 〈 v ′ 0 , v ′ 1 , v 2 〉 . Then z = w 2 = v 2 . Since i � = i ′ and 

λ � = λ′ , we compute w 

′′ 
0 ∈ C 0 , and then v ′′ 0 = w 

′′ 
0 . We deduce α = 〈 v ′′ 0 , v 1 , v 2 〉 and α′ = 〈 v ′′ 0 , v 

′ 
1 , v 2 〉 . We obtain the face-connected path ( σ , α, α′ , σ ′ ) joining 

σ and σ ′ in A 

(2) 
P S (I) 

(〈 v 2 〉 ) . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

Finally, the main result of the paper ensures that the simplicial complex P S ( I ) previously constructed is always wWC.

This proof is illustrated in Fig. 13 . 

Theorem 44. The simplicial complex P S ( I ) is always wWC. 

In Fig. 14 a diagram of the proof of Th. 44 is given. A 4D example is depicted in Fig. 15 (in fact, the projections on the

fourth coordinate t , from t = −2 to t = 6 ). 

6. Complexity 

Starting from an nD binary image I 0 = (Z 

n , F I 0 ) whose domain is contained in an n D rectangle of M 0 pixels, we scale it

by a factor of 4 to obtain the new image I = (Z 

n , F I ) contained in an n D rectangle of M = 4 n · M 0 pixels. 

The time complexity of {E � } � ∈ � 0 ,n � , {O � } � ∈ � 0 ,n −1 � and the 0 4 , 2 4 , 0 2 and 1 2 operators is θ ( n · M ). With p ∈ Z 

n , when

0 (p) = � 1 , n � , we obtain N 

+ (p) by setting all the values λ to {0, ± 1} in the expression p + λ e 1 + · · · + λn e 
n . The time
2 i 1 
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Procedure 7: Computing a face-connected path in A 

(� ) 
P S (I) 

(〈 v � 〉 ) for v � ∈ C � , and � ∈ � 1 , n � , joining two different simplices 

σ and σ ′ in A 

(� ) 
P S (I) 

(〈 v � 〉 ) . 
Input : Two different � -simplices σ = 〈 v 0 , . . . , v � −1 , v � 〉 and σ ′ = 〈 v ′ 

0 
, . . . , v ′ 

� −1 
, v � 〉 in P S (I) s.t. v i , v ′ i ∈ C i , for all 

i ∈ � 0 , � − 1 � and v � ∈ C � . 
Output : A face-connected pathin A 

(� ) 
P S (I) 

(〈 v � 〉 ) joining σ and σ ′ . 
Let j ∈ � 0 , � − 1 � such that v j � = v ′ 

j 
and for each s ∈ � j + 1 , � � , v s = v ′ s ; 

if j = 0 then 

σ and σ ′ share the (� − 1) -simplex 〈 v 1 , . . . , v � 〉 
else 

v j+1 ∈ S(w r ) for some w r ∈ E r and r ∈ � 0 , j + 1 � ; 

v j = z + λ e i and v ′ 
j 
= z ′ + λ′ e i ′ ,where i, i ′ ∈ 0 2 (v j+1 ) , λ, λ′ ∈ {±1 , ±2 } and z, z ′ ∈ { v j+1 , w r } (by Remark 33); 

if i � = i ′ then 

if | λ| = | λ′ | then 

v ′′ 
j−1 

:= z + λ e i + λ′ e i ′ ∈ D 

j−1 
F L 

(v j ) ∩ D 

j−1 
F L 

(v ′ 
j 
) 

else 

(suppose | λ| = 1 and | λ′ | = 2 ) w 

′′ 
j−1 

:= w r + 2 λ e i + λ′ e i ′ ; 
if w 

′′ 
j−1 

∈ C j−1 then 

v ′′ 
j−1 

:= w 

′′ 
j−1 

∈ D 

j−1 
F L 

(v j ) ∩ D 

j−1 
F L 

(v ′ 
j 
) 

else 

v ′′ 
j 

:= v j+1 + λ e i + 

1 
2 λ

′ e i ′ ∈ D 

j−1 
F L 

(v j ) ∩ D 

j−1 
F L 

(v ′ 
j 
) 

end 

end 

By Proposition 40,there exists v ′′ t ∈ C t , t ∈ � 0 , j − 2 � , s.t. α := 〈 v ′′ 
0 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . , v � 〉 andl α′ := 〈 v ′′ 

0 
, . . . , v ′′ 

j−1 
, 

v ′ 
j 
, v j+1 , . . . , v � 〉 are � -simplices in A P S (I) (〈 v � 〉 ) sharinga common (� − 1) -face; 

if σ and α (resp. α′ and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α(resp. α′ and σ ′ ) 
end 

else 

∃ i ′′ ∈ 0 2 (v j+1 ) , i 
′′ � = i , s.t. v ′′ 

j 
:= z ′′ + λ′′ e i ′′ ∈ D 

j 
F L 
(v j+1 ) for some z ′′ ∈ { v j+1 , w r } and λ′′ ∈ {±1 , ±2 } (by Remark 33); 

By Proposition 40, there exist v ′′ t ∈ C t , t ∈ � 0 , j − 1 � , such that α := 〈 v ′′ 0 , . . . , v 
′′ 
j 
, v j+1 , . . . , v � 〉 is an � -simplex 

in A P S (I) (〈 v � 〉 ) ; 
if σ and α (resp. α and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α(resp. α and σ ′ ) 
end 

end 

end 

Fig. 13. From left to right: an nD picture I = (Z n , F I ) ; its corresponding simplicial complex P S ( I ) (blue points belong to C 0 , red points to C 1 and green ones 

to C 2 ), a vertex v and two n -simplices σ and σ ′ of P S ( I ) incident to v ; looking for a path in A 

(2) 
P S (I) 

(〈 v 〉 ) joining σ = 〈 v , v 1 , v 2 〉 and σ ′ = 〈 v , v ′ 1 , v ′ 2 〉 : since 

v 2 ∈ E 1 ∩ R and v ′ 2 ∈ E 1 ∩ R then k = k ′ = 1 ; since Card(0 4 )( v ) is 0 then � ′ = 0 and there exists only one ω ∈ E 0 ∩ R such that v ∈ S ( ω); we deduce the path 

(σ (0 , −) = σ, σ (0 , +) , σ (1 , −) , σ (1 , +) , σ (2 , −) , σ (2 , +) = σ ′ ) joining σ and σ ′ . (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 14. Diagram of the proof of Th. 44 . 

Fig. 15. A primary 4D CC X = { p, p ′ } , with p = (0 , 0 , 0 , 0) and p ′ = (4 , 4 , 4 , 4) , repaired into a wWC cell complex by the implementation of the method 

proposed in the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

complexity of N 

+ (p) is O (3 n · n 2 ). We can compute the values of N 

+ (p) only for p ∈ � −1 , 2 � n (by periodicity). This way, we

obtain a time complexity of O (3 n · n 2 · 4 n ) for computing N 

+ . The same reasoning holds for S and D F J 
. Let us now estimate

the complexity of Procedure 1 . As detailed in [1] , detecting CCs in an nD image of M pixels can be done in O (5 n · M )

and a slight modification of this method will give the coordinates of the center p ∗ of each CC in I . The union of V and

D 

0 
F J 
(p ∗) needs at most 3 n · M operations, which means a total of O (3 n · M 

2 · 5 n ) operations for the first loop of Procedure 1 .

Concerning the second loop, we have to check if D 

0 
F J 
(q ) ∩ V is empty, which means a maximum of 3 n · M operations for

each q . The time complexity of the second loop is O (3 n · M 

2 ). The time complexity of Procedure 1 is then O (15 n · M 

2 ). Since

D F J 
(p) and S ( p ) are known, the computation of F J and of F L can be done in O ( M ) each. The time complexity of C � ∈ � 0 ,n � is

O ( M · n ) and the time complexity of D F L 
is O (3 n · M 

2 + 27 n · M) . About the computation of P S ( I ) in Procedure 6 , for each

� ∈ � 1 , n � and p ∈ C � , we have a maximum of A (n ) simplices in P S ( I ), which is less or equal to 2 2 
n · M and a maximum

of 3 n vertices in D F L 
(p) . Since we check if the vertices of each simplex of P S ( I ) belong to D F L 

(p) , we proceed to make

at most A (n ) · (n + 1) · 3 n · n operations. The time complexity of p ∗ K D F L 
(p) is O (3 n · n ), and the one of the union with

P S ( I ) is O (3 n · A (n )) . The time complexity of the computation of P S ( I ) is then O (A (n ) · 3 n · n 2 · M) . The time complexity for

computing P S ( I ) is then T comp (M 0 , n ) = O (2 2 
n · 48 n · n 2 · M 

2 
0 

+ 108 n · M 0 ) . 

In terms of storage, F I , F J , and F L are matrices of size M . The sets {E � } � ∈ � 0 ,n � and {O � } � ∈ � 0 ,n −1 � need one matrix of size 4 n

each. By periodicity, the 0 4 , 2 4 , 0 2 and 1 2 operators can be stored as matrices of lists, and then will use an amount of space

not greater than 4 n · n . Then, the sets N 

+ (p) and D F J 
(p) can be stored using matrices of 4 n lists, which makes an amount

of 4 n · 3 n · n bytes. The sets V, R , and the elements of the family { C � } � ∈ � 0 ,n � will be stored in one matrix of size M each. For

each p , the sets D F L 
(p) will be stored as matrices of size 3 n of elements of n coordinates, which means a total of M · 3 n · n

bytes at most. Finally, the set P S ( I ) uses an amount of memory not greater than A (n ) simplices times a maximal number of

(n + 1) points made of n coordinates. Then, the final storage cannot be greater than A (n ) · (n + 1) · n . The total amount of

memory needed is then T stor (M , n ) = O (2 2 
n · n 2 · 4 n · M ) . 
0 0 
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When the dimension n is a constant, the time complexity and the amount of memory needed to compute P S ( I ) are,

respectively, quadratic and linear w.r.t. the number of pixels of I . 

Procedure 8: Computing a face-connected path in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) , for v k + � ∈ C k + � , v k ∈ D 

k 
F L 
(v k + � ) , � ∈ � 2 , n � and k ∈ 

� 0 , n − � � , joining two different simplices σ and σ ′ in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) . 
Input : Two different � -simplices σ = 〈 v k , v k +1 , . . . , v k + � −1 , v k + � 〉 and σ ′ = 〈 v k , v ′ k +1 

, . . . , v ′ 
k + � −1 

, v k + � 〉 in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) . 
Output : A face-connected path in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) joining σ and σ ′ . 
Let j ∈ � k + 1 , k + � − 1 � such that v j � = v ′ 

j 
and for each s ∈ � j + 1 , k + � − 1 � v s = v ′ s ; 

if j = k + 1 then 

σ and σ ′ share the (� − 1) -simplex 〈 v k , v k +2 , . . . , v k + � 〉 
else 

v j+1 ∈ S(w r ) ∩ A 

j+1 
F L 

(v k ) for some r ∈ � 0 , j + 1 � and w r ∈ E r ; 
v j = z + λ e i and v ′ 

j 
= z ′ + λ′ e i ′ where λ, λ′ ∈ {±1 , ±2 } , i, i ′ ∈ 2 4 (v k ) ∩ 0 2 (v j+1 ) and z, z ′ ∈ { v j+1 , w r } (by Remark 37); 

if i � = i ′ then 

if | λ| = | λ′ | then 

v ′′ 
j−1 

:= z + λ e i + λ′ e i ′ 

else 

(suppose | λ| = 1 and | λ′ | = 2 ) v ′′ 
j−1 

:= w r + 2 λ e i + λ′ e i ′ 

end 

by Proposition 40, there exists v ′′ t ∈ C t , t ∈ � k + 1 , j − 2 � , such that α := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . , v � 〉 

and α′ := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v ′ 

j 
, v j+1 , . . . , v k + � 〉 are in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) ; 
if σ and α (resp. α′ and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α(resp. α′ and σ ′ ) 
end 

else 

by Remark 37, ∃ i ′′ � = i s.t. v ′′ 
j 

:= z ′′ + λ′′ e i ′′ ∈ D 

j 
F L 
(v j+1 ) ∩ A 

j 
F L 
(v k ) for some z ′′ ∈ { v j+1 , w r } and λ′′ ∈ {±1 , ±2 } ; 

if v k ∈ O k then 

i ′′ ∈ 0 2 (v j+1 ) ∩ 1 2 (v k ) 
else if v k ∈ E k \ R and v j+1 ∈ E j+1 \ R then 

i ′′ ∈ 0 4 (v j+1 ) ∩ 2 4 (v k ) 
else 

i ′′ ∈ 0 2 (v j+1 ) ∩ 2 4 (v k ) 
end 

by Proposition 40, there exists v ′′ t ∈ C t , for t ∈ � k + 1 , j − 1 � , such that α := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j 
, v j+1 , . . . , v k + � 〉 

isin A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) ; 
if σ and α (resp. α and σ ′ ) do not share an (� − 1) -face then 

repeat the process for σ and α(resp. α and σ ′ ) 
end 

end 

end 

7. Conclusion 

The method presented in this paper extends a 3D method presented in [13–15] to any dimension. Starting from an nD

cubical complex Q ( I ) that is not well-composed, we “topologically repair” it by computing a simplicial complex P S ( I ) which is

homotopy equivalent to Q ( I ) and wWC. In subsequent work, our goal is to prove that P S ( I ) is (continuously) well-composed.

One way is to prove that P S ( I ) is a subdivision of a cell complex P ( I ) that generalizes the one computed in [13,14] and that

can be efficiently stored as an nD binary image by storing one point per n -cell, as in the 3D case studied in [15] . 
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Appendix. Annex: Proofs of the results presented in Section 5 

Proof of Proposition 31. If p ∈ E � \ R, the assertion is true by Proposition 12 . If p ∈ E � ∩ R, then p ∈ C n and S(p) \
{ p} ⊆ � i ∈ � �,n −1 � O i . If q ∈ D F J 

(p) , then q ∈ � i ∈ � 0 ,n −1 � E i and S(q ) \ { q } ⊂ � i ∈ � 0 ,� −1 � O i . Finally, if p ∈ O � , � < n , let k ∈ � 0 , � � be

Card(0 4 ( p )): If p ∈ S ( q ), then q ∈ E k and D F J 
(q ) ⊂ � i ∈ � 0 ,k −1 � E i . Besides, S(q ) ⊂ E k � (� i ∈ � k,n −1 � O i ) and N(p) ⊂ � i ∈ � 0 ,� −1 � O i , so

S(q ) ∩ N(p) ⊂ � i ∈ � k,l−1 � O i . In the case that k = �, one can check that S(q ) ∩ N(p) = ∅ . Since D F J 
(q ) ⊂ � i ∈ � 0 ,k −1 � E i , if r ∈ D F J 

(q )

then S(r) ⊂ (� i ∈ � 0 ,k � E i ) � (� j∈ � i,n −1 � O j ) and then S(r) ∩ N(p) ⊂ � j∈ � k −1 ,� −1 � O j . �

Proof of Proposition 36. For each p ∈ C � , let p ′ be a point in A F L 
(p) . Let us prove first that p ′ ∈ 

⊔ 

i ∈ � � +1 ,n � C i and that

p ∈ D F L 
(p ′ ) . 

If p ∈ E � \ R : 
• If p ′ ∈ A F J 

(p) \ R, then p ′ = p + 

∑ 

j∈ 2 4 (p) λ j e 
j for some λj ∈ {0, ± 2}, not all null, so p ′ ∈ E l+ k ( k is the number of coeffi-

cients λj � = 0). By Lemma 14 , p ∈ D F J 
(p ′ ) . Since p ′ �∈ R, D F J 

(p ′ ) = D F L 
(p ′ ) . Hence p ∈ D F L 

(p ′ ) . 
• If p ′ ∈ � q ∈A F J (p) ∩ R S(q ) , let q = p + 

∑ 

j∈ 2 4 (p) λ
∗
j 

e j be the point in E l+ k ∩ R such that λ∗
j 
= 2 or −2 for specific subset of k

indices in 2 4 ( p ) and λ∗
j 
= 0 for the rest. The points in S ( q ) are those with the form p + 

∑ 

j∈ 2 4 (p) λ
∗
j 

e j + 

∑ 

j∈ 2 4 (q ) λ j e 
j

with λj ∈ {0, ± 1}, so they lie in E k + � if all the coefficients λj are null (the point q itself) or in O n −k ′ , with k ′ being the

number of non-null coefficients λj . Since 1 ≤ k ′ ≤ n − � − k, we know S(q ) ⊂ E k + � � 

⊔ 

i ∈ � k + �,n −1 � O i . In the case that p ′ =
q ∈ E k + � ∩ R, the point p ′ + 

∑ 

j∈ 0 4 (p ′ ) ∩ 2 4 (p) −λ∗
j 

e j is p , which is, therefore, a point in D F J 
(p ′ ) \ R ⊂ D F L 

(p ′ ) ; if p ′ ∈ S ( q ) �{ q },

with q ∈ A F J 
(p) ∩ R, then p ∈ D F J 

(q ) by Lemma 14 , and hence, p ∈ D F J 
(q ) \ R ⊂ D F L 

(p ′ ) . 

If p ∈ O � , let q be the point such that p ∈ S ( q ). Let � 1 := Card(0 4 ( p )), then q ∈ E � 1 and � 1 ≤ � . Let p ′ be a point in A F L 
(p) .

Then, p ′ = p + 

∑ 

j∈ 1 2 (p) λ j e 
j , with λ j = 1 or −1 for a specific subset of k indices in 1 2 ( p ) ( 1 ≤ k ≤ n − � ) and λ j = 0

otherwise. For 1 ≤ k ≤ n − � − 1 , p ′ ∈ O � + k , that is, p ′ ∈ � i ∈ � � +1 ,n −1 � C i . For k = n − �, p ′ ∈ E � ′ where � ′ is Card(0 4 ( p 
′ )), which

satisfies that � 1 ≤ � ′ , since some of the odd coordinates in p may have become congruent with 0 mod 4 in p ′ . Notice that,

in this case, p ′ ∈ A F J 
(q ) , since both p ′ and q are points in 2 Z 

n and 0 4 ( q ) ⊂ 0 4 ( p 
′ ), but then, p ′ ∈ R by Remark 19 , since q ∈ R .

Hence, p ′ ∈ E � ′ ∩ R ⊂ C n . Let us prove now that p ∈ D F L 
(p ′ ) . 

• If 1 ≤ k ≤ n − � − 1 , p ′ ∈ O k + � . Let q ′ be the point such that p ′ ∈ S ( q ′ ). Notice that q ′ ∈ E � 1 + k 1 , for some 0 ≤ k 1 ≤ n − � −
1 , which is Card(0 4 ( p 

′ )) �Card(0 4 ( p )). If p and p ′ lie in the same S -block, that is, q = q ′ (which happens when k 1 = 0 ),

then p ∈ S ( q ′ ) ∩ N ( p ′ ), so p ∈ D F L 
(p ′ ) . On the other hand, if q � = q ′ then q ′ ∈ E � 1 + k 1 , with 1 ≤ k 1 ≤ k . Since q ∈ E � 1 ∩ R, by

Remark 19 , q ′ ∈ E � 1 + k 1 ∩ R and ∃ r ∈ D F J 
(q ′ ) ∩ R such that p ∈ S ( r ) ∩ N ( p ′ ), which is r = q . So p ∈ D F L 

(p ′ ) . 
• If k = n − �, p ′ ∈ E � ′ with � 1 ≤ � ′ . There are two cases: if � ′ = � 1 , then p ′ = q and since p ∈ S ( q ), p ∈ D F L 

(p ′ ) ; if � ′ > � 1 , then

by Remark 19 , p ′ ∈ E � ′ ∩ R since p ′ ∈ A F J 
(q ) and q ∈ R . Also, p ∈ N ( p ′ ) and there exists a point q ′ ∈ D F J 

(p ′ ) ∩ R such that

p ∈ S ( q ′ ), which is q ′ = q . So p ∈ D F L 
(p ′ ) . 

Now, let us prove the converse. 

If p ′ ∈ E � \ R, then D F L 
(p ′ ) = D F J 

(p ′ ) ⊂ E k \ R, with k < � (by Remark 19 ). If p ∈ D F J 
(p ′ ) , then p ′ ∈ A F J 

(p) \ R ⊂ A F L 
(p) . 

If p ′ ∈ E � ∩ R and p ∈ D F L 
(p ′ ) , we have the following cases: 

• p ∈ S ( p ′ ) �{ p ′ }, then p = p ′ + 

∑ 

j∈ 2 4 (p ′ ) λ j e 
j , with λj ∈ {0, ± 1}, not all null, so p ∈ O n −k , k being the number of coefficients

λj � = 0, k ∈ � 1 , n − � � . Then points in A F L 
(p) are under the form p + 

∑ 

j∈ 1 2 (p) μ j e 
j , with μj ∈ {0, ± 1} not all null. Since

{ j ∈ 2 4 (p ′ ) : λ j � = 0 } = 1 2 (p) , we have p ′ = p + 

∑ 

j∈ 1 2 (p) (−λ j ) e 
j and hence p ′ ∈ A F L 

(p) . 

• p ∈ D F J 
(p ′ ) \ R, then p = p ′ + 

∑ 

j∈ 0 4 (p ′ ) λ j e 
j , for some coefficients λj ∈ {0, ± 2}, not all null, such that p �∈ R . Then p ∈

E � −k \ R, k being the number of coefficients λj � = 0, 1 ≤ k ≤ � . Since p ′ ∈ A F J 
(p) ∩ R, then S(p ′ ) ⊂ A F L 

(p) and hence, p ′ ∈
A F L 

(p) . 

• p ∈ 

⊔ 

r∈D F J (p ′ ) ∩ R (S(r) ∩ N(p ′ )) . Let r = p ′ + 

∑ 

j∈ 0 4 (p ′ ) λ∗
j 

e j , with λ∗
j 
∈ { 0 , ±2 } , not all null, be a point in D F J 

(p ′ ) ∩ R, such

that p = p ′ + 

∑ 

j∈ 0 4 (p ′ ) 
1 
2 λ

∗
j 

e j + 

∑ 

j∈ 2 4 (p ′ ) λ j e 
j , for some coefficients λj ∈ {0, ± 1}. Hence p ∈ O n −k −k ′ , where k and k ′ are,

respectively, the number of coefficients λ∗
j 
� = 0 and λj � = 0. Thus p ′ = p + 

∑ 

j∈ 1 2 (p) μ j e 
j , with μ j = − 1 

2 λ
∗
j 

for the indices j

such that λ∗
j 
� = 0 , and μ j = −λ j for those j such that λj � = 0, what means that p ′ ∈ A F L 

(p) (being p ∈ O n −k −k ′ ) . 

If p ′ ∈ O � , let q ′ be the point such that p ′ ∈ S ( q ′ ). We have q ′ = p ′ + 

∑ 

j∈ 1 2 (p ′ ) μ∗
j 

e j , with μ∗
j 
= 1 , if j ∈ 1 4 ( p 

′ ) and μ∗
j 
= −1

if j ∈ 3 4 ( p 
′ ). For a point p ∈ D F L 

(p ′ ) , we have the following cases: 

• If p ∈ S ( q ′ ) ∩ N ( p ′ ), then p = p ′ + 

∑ 

j∈ 2 4 (p ′ ) λ j e 
j , for some coefficients λj ∈ {0, ± 1}, not all null. Now, p ∈ O � −k , k being the

number of coefficients λj � = 0. Now, p ′ can be expressed as p ′ = p + 

∑ 

j∈ 1 2 (p) μ j e 
j with μ j = −λ j (and μ j = 0 for the

indices j for which λj was not defined), so p ′ ∈ A F L 
(p) . 

• If p ∈ D F J 
(q ′ ) \ R, then q ′ ∈ A F J 

(p) (by Lemma 14 ); or, since p ′ ∈ S ( q ′ ), q ′ ∈ R . Hence, q ′ ∈ A F J 
(p) ∩ R and p ′ ∈ S ( q ′ ), so p ′ ∈

A F L 
(p) . 
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• If p ∈ 

⊔ 

r∈D F J (q ′ ) ∩ R (S(r) ∩ N(p ′ )) . Let r = q ′ + 

∑ 

j∈ 0 4 (q ′ ) λ∗
j 

e j , with λ∗
j 
∈ { 0 , ±2 } , not all null, such that r ∈ R . Then p = p ′ +∑ 

j∈ 0 4 (p ′ ) 
1 
2 λ

∗
j 

e j + 

∑ 

j∈ 2 4 (p ′ ) λ j e 
j , for some coefficients λj ∈ {0, ± 1}. Then p ∈ O � −k −k ′ where k and k ′ are, respectively, the

number of coefficients λ∗
j 
� = 0 and λj � = 0. Then p ′ = p + 

∑ 

j∈ 1 2 (p) μ j e 
j , with μ j = − 1 

2 λ
∗
j 

for the indices j such that λ∗
j 
� = 0

and μ j = −λ j for those j such that λj � = 0, so p ′ ∈ A F L 
(p) (being p ∈ O � −k −k ′ ) . �

Proof of Proposition 40. Let � ∈ � 1 , n � and k ∈ � 0 , n − � � . 

Let us see how to construct σP S (I) (v � ) . Let w r ∈ E r , r ∈ � 0 , � � , s.t. v � ∈ S ( w r ). There exist subindices 1 ≤ i 1 < ��� < i r ≤ n

and 1 ≤ i r+1 < · · · < i � ≤ n such that { i 1 , . . . , i r } = 0 4 (v � ) and { i r+1 , . . . , i � } = 2 4 (v � ) . From j = � − 1 to j = r, let

v j := v j+1 + λ j+1 e 
i j+1 , λ j+1 ∈ {±1 } . From j = r − 1 to j = 0 , let w j := w j+1 + λ j+1 e 

i j+1 , λ j+1 ∈ {±2 } . Then: 

• If w j �∈ R, let v j := w j . 

• Else, w j = w r + 

∑ 

s ∈ � j+1 ,r� λ
∗
s e 

i s where λ∗
s ∈ {±2 } , for s ∈ � j + 1 , r� ; let v j := v r + 

∑ 

s ∈ � j+1 ,r� 
1 
2 λ

∗
s e 

i s . 

Then v j ∈ D 

j 
F L 
(v j+1 ) and σP S (I) (v � ) := 〈 v 0 , . . . , v � 〉 ∈ P (� ) 

S 
(I) . 

Let us see now how to construct σP S (I) (v k , v k + � ) . 

• If v k ∈ O k then there exist subindices 1 ≤ i k +1 < · · · < i k + � ≤ n such that { i k +1 , . . . i k + � } = 0 2 (v k + � ) ∩ 1 2 (v k ) and v k = v k + � +∑ 

j∈ � k +1 ,k + � � μ∗
j 
e i j , where μ∗

j 
∈ {±1 } . From j = k + � − 1 to j = k + 1 , let v j := v j+1 + μ∗

j+1 
e i j+1 . 

• If v k + � ∈ E k + � \ R, then there exist subindices 1 ≤ i k +1 < · · · < i k + � ≤ n such that { i k +1 , . . . i k + � } = 0 4 (v k + � ) ∩ 2 4 (v k ) and

v k = v k + � + 

∑ 

j∈ � k +1 ,k + � � λ∗
j 
e i j , where λ∗

j 
∈ {±2 } . From j = k + � − 1 to j = k + 1 , let v j := v j+1 + λ∗

j+1 
e i j+1 . 

• Else, v k ∈ E k \ R, and there exists unique w r ∈ E r , with r ∈ � k, k + � � , such that v k + � ∈ S(w r ) and subindices 1 ≤ i k +1 < · · · <

i r ≤ n and 1 ≤ i r+1 < · · · < i k + � ≤ n, such that { i k +1 , . . . , i r } = 0 4 (v k + � ) ∩ 2 4 (v k ) , and { i r+1 , . . . , i k + � } = 2 4 (v k + � ) ∩ 2 4 (v k ) .
Then v k = w r + 

∑ 

j∈ � k +1 ,r� λ
∗
j 
e i j where λ∗

j 
∈ {±2 } . From j = k + � − 1 to j = r, let v j := v j+1 + μ j+1 e 

i j+1 where μ ∈ { ± 1}.

From j = r − 1 to j = k + 1 , let w j := w j+1 + λ∗
j+1 

e i j+1 . If w j ∈ C j , let v j := w j . Else, v j := v r + 

∑ 

s ∈ � j+1 ,r� 
1 
2 λ

∗
s e 

i s . 

Then v j ∈ D 

j 
F L 
(v j+1 ) ∩ A 

j 
F L 
(v k ) and σP S (I) (v k , v k + � ) := 〈 v k , . . . , v k + � 〉 ∈ P (� ) 

S(I) 
. �

Proof of Procedure 7. Let � ∈ � 1 , n � , v � ∈ C � , σ = 〈 v 0 , . . . , v � −1 , v � 〉 , σ ′ = 〈 v ′ 
0 
, . . . , v ′ 

� −1 
, v � 〉 in A 

(� ) 
P S (I) 

(〈 v � 〉 ) . Let us prove prop-

erty (P � ) : “there exists a face-connected path π ( σ , σ ′ ) in A 

(� ) 
P S (I) 

(〈 v � 〉 ) joining σ and σ ′ ”. 

Initialization (� = 1) : two different 1-simplices σ = 〈 v 0 , v 1 〉 and σ ′ = 〈 v ′ 0 , v 1 〉 in P S ( I ), with v 1 ∈ C 1 are joined by the path

π ( σ , σ ′ ) := ( σ , σ ′ ) in A 

(1) 
P S (I) 

(〈 v 1 〉 ) . 
Heredity (� ∈ � 2 , n � ) : we assume that (P m 

) is true for m ∈ � 1 , � − 1 � , let us prove that (P � ) is true. Let us define

j ∈ � 0 , � − 1 � such that v j � = v ′ 
j 

and for any i ∈ � j + 1 , � − 1 � , v i = v ′ 
i 
. Then, we have σ = 〈 v 0 , . . . , v j , v j+1 , . . . , v � 〉 and

σ ′ = 〈 v ′ 
0 
, . . . , v ′ 

j 
, v j+1 , . . . , v � 〉 . Now, v j+1 ∈ S(w r ) for some r ∈ � 0 , j + 1 � and w r ∈ E r . Let λ, λ′ ∈ { ± 1, ± 2}, i, i ′ ∈ 0 2 (v j+1 ) and

z, z ′ ∈ { v j+1 , w r } such that v j = z + λe i and v ′ 
j 
= z ′ + λ′ e i ′ . Then, the following cases hold: 

(1) If i � = i ′ , then we define v ′′ 
j−1 

∈ D 

j−1 
F L 

(v j ) ∩ D 

j−1 
F L 

(v ′ 
j 
) and we deduce σP S (I) (v ′′ j−1 

) := 〈 v ′′ 0 , . . . , v ′′ 
j−1 

〉 ∈ P S (I) by

Proposition 40 . We then define α := 〈 v ′′ 0 , . . . , v 
′′ 
j−1 

, v j , v j+1 , . . . , v � 〉 , and α′ := 〈 v ′′ 0 , . . . , v 
′′ 
j−1 

, v ′ 
j 
, v j+1 , . . . , v � 〉 . Then π ( α,

α′ ) := ( α, α′ ) is a face-connected path in A 

(� ) 
P S (I) 

(〈 v � 〉 ) . By (P j ) where j < � , we know that there exists a path π ( μ, μ′ )
joining μ = 〈 v 0 , . . . , v j−1 , v j 〉 and μ′ = 〈 v ′′ 0 , . . . , v 

′′ 
j−1 

, v j 〉 in A 

( j) 
P S (I) 

(〈 v j 〉 ) . From this path, we can deduce a path π ( σ ,

α) in A 

(� ) 
P S (I) 

(〈 v � 〉 ) joining σ and α. Similarly, we obtain π(α′ , σ ′ ) ∈ A 

(� ) 
P S (I) 

(〈 v � 〉 ) . By concatenation, we obtain a face-

connected path in A 

(� ) 
P S (I) 

(〈 v � 〉 ) joining σ and σ ′ . 
(2) When i = i ′ , we define v ′′ 

j 
∈ D 

j 
F L 
(v j+1 ) . We deduce σP S (I) (v ′′ j 

) := 〈 v ′′ 0 , . . . , v 
′′ 
j 
〉 ∈ P S (I) by Proposition 40 , and define

α := 〈 v ′′ 0 , . . . , v 
′′ 
j 
, v j+1 , . . . , v � 〉 joining σ and α (respectively joining α and σ ′ ). We can apply (1) to obtain two face-

connected paths π ( σ , α) and π ( α, σ ′ ) in A 

(� ) 
P S (I) 

(〈 v � 〉 ) , and then a face connected path in A 

(� ) 
P S (I) 

(〈 v � 〉 ) joining σ and

σ ′ . 

By induction on � , the property (P � ) is true for any � ∈ � 1 , n � . �
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Proof of Procedure 8. Let � ∈ � 2 , n � , v k + � ∈ C k + � and v k ∈ D 

k 
F L 
(v k + � ) . Let σ = 〈 v k , . . . , v k + � 〉 and σ ′ =

〈 v k , v ′ k +1 
, . . . , v ′ 

k + � −1 
, v k + � 〉 be two � -simplices of A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) . Let us prove property (P 

′ 
� ) : “there exists a face-connected

path π ( σ , σ ′ ) of � -simplices in A P S (I) (〈 v k , v k + � 〉 ) joining σ and σ ′ ”. 

Initialization (� = 2) : The 2-simplices σ = 〈 v k , v k +1 , v k +2 〉 and σ ′ = 〈 v k , v ′ k +1 
, v k +2 〉 share the 1-face 〈 v k , v k +2 〉 . 

Heredity (� ∈ � 3 , n � ) : we assume that (P 

′ 
m 

) is true for m ∈ � 2 , � − 1 � , and we want to prove that (P 

′ 
� ) is true. By hypoth-

esis, we have the four following � -simplices: σ = 〈 v k , v k +1 , . . . , v j−1 , v j , v j+1 , . . . , v k + � 〉 , α := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v j , v j+1 , . . . ,

v k + � 〉 , α′ := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v ′ 

j 
, v j+1 , . . . , v k + � 〉 , σ ′ = 〈 v k , v ′ k +1 

, . . . , v ′ 
j−1 

, v ′ 
j 
, v j+1 , . . . , v k + � 〉 . Then α and α′ share an

(� − 1) -face. Now, since j belongs to � k + 1 , k + � − 1 � then j − k ≤ � − 1 . From that, we can deduce by (P 

′ 
j−k 

) that the

( j − k ) -simplices: μ := 〈 v k , v k +1 , . . . , v j−1 , v j 〉 and μ′ := 〈 v k , v ′′ k +1 
, . . . , v ′′ 

j−1 
, v j 〉 are joined by a face-connected path π ( μ, μ′ )

in A 

( j−k ) 
P S (I) 

( 〈 v k , v j 〉 ). By rewriting each i th element of π ( μ, μ′ ) we can deduce the i th element of a new path π ( σ , α) in

A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) joining σ and α. We proceed similarly with α′ and σ ′ to obtain π ( α′ , σ ′ ) in A 

(� ) 
P S (I) 

(〈 v k , v k + � 〉 ) . We finally

obtain a face-connected path joining σ and σ ′ concatenating the previous paths. 

By induction on � ∈ � 2 , n � , (P 

′ 
� ) is true for any � ∈ � 2 , n � and k ∈ � 0 , n − � � . �

Proof of Proposition 42. First, since v � ∈ C � , there exists an � -simplex 〈 v 0 , . . . , v � −1 , v � 〉 in P S ( I ) by Proposition 40 . Second,

since v n ∈ E k ∩ R and v ′ n ∈ A F J 
(v n ) , v ′ n ∈ E k ′ ∩ R for some k ′ ∈ � k + 1 , n � and v n = v ′ n + 

∑ 

j∈ � k +1 ,k � λ
∗
j 
e 

i ∗
j , where λ∗

j 
∈ {±2 } and

{ i ∗
k +1 

, . . . , i ∗
k ′ } ⊆ 0 4 (v ′ n ) . There exist subindices 1 ≤ i k ′ +1 < · · · < i n ≤ n and 1 ≤ i k +1 < · · · < i k ′ ≤ n such that { i k ′ +1 , . . . , i n } =

2 4 (v ′ n ) and { i k +1 , . . . , i k ′ } = 2 4 (v n ) ∩ 0 4 (v ′ n ) . Now, since v � ∈ D F L 
(v n ) ∩ D F L 

(v ′ n ) : 

• If v � ∈ O � then v � = v ′ n + 

∑ 

j∈ � � +1 ,n � μ j e 
i j where: if � ∈ � 0 , k − 1 � then μj ∈ { ± 1} when j ∈ � � + 1 , k � ∪ � k ′ + 1 , n � and μ j =

1 
2 λ

∗
j 

when j ∈ � k + 1 , k ′ � ; if � ∈ � k, k ′ − 1 � then μj ∈ { ± 1} when j ∈ � k ′ + 1 , n � and μ j = 

1 
2 λ

∗
j 

when j ∈ � � + 1 , k ′ � ; if � ∈
� k ′ , n − 1 � then μj ∈ { ± 1} when j ∈ � � + 1 , n � . 

From j = n − 1 to j = � + 1 , let v j := v j+1 + μ j+1 e 
i j+1 . 

• If v � ∈ E � then v � �∈ R since � < n . Therefore, � ∈ � 0 , k − 1 � and v � = v n + 

∑ 

j∈ � � +1 ,k � λ j e 
i j where λj ∈ { ± 2} when j ∈ � � +

1 , k � . Additionally, there exist subindices 1 ≤ i 1 < ��� < i � ≤ n such that { i 1 , . . . , i � } = 0 4 (v � ) . For j ∈ � � + 1 , k − 1 � , let

w j := v n + 

∑ 

s ∈ � j+1 ,k � λ
∗
s e 

i s , where λ∗
s ∈ {±2 } . Now, if w j ∈ C j , then v j := w j . Else v j := 

∑ 

s ∈ � � +1 ,k ′ � 
1 
2 λ

∗
s e 

i s + 

∑ 

s ∈ � k ′ +1 ,n � μs e 
i s ,

where μs ∈ { ± 1}. For j ∈ � k, k ′ − 1 � , let v j := 

∑ 

s ∈ � j+1 ,k ′ � 
1 
2 λ

∗
s e 

i s + 

∑ 

s ∈ � k ′ +1 ,n � μs e 
i s where μs ∈ { ± 1}. For j ∈ � k ′ , n � , let

v j := 

∑ 

s ∈ � j+1 ,n � μs e 
i s where μs ∈ { ± 1}. 

Then 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −1 , v n 〉 and 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −1 , v ′ n 〉 are two n -simplices incident to v � in P S ( I )

sharing a common (n − 1) -face. �

Proof of Proposition 43. Let w n −1 := 

1 
2 (w n + w 

′ 
n ) . Then w n −1 ∈ E n −1 ∩ F L . We have to consider two cases: 

If w n −1 �∈ R then w n −1 ∈ C n −1 and D F L 
(w n −1 ) = D F J 

(w n −1 ) . Following the process given in Remark 24 .(P1), one can

compute an (n − 1) -simplex μ := 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −2 , w n −1 〉 ∈ P S (I) . Then μ is shared by the two n -simplices

σ = 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −2 , w n −1 , w n 〉 and σ ′ = 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −2 , w n −1 , w 

′ 
n 〉 in A P S (I) (〈 v � 〉 ) . 

If w n −1 ∈ R then w n −1 ∈ C n . Therefore: 

• There exist two n -simplices, σ (incident to w n ) and μ := 〈 v 0 , . . . , v � −1 , v � , v � +1 , . . . , v n −1 , w n −1 〉 (incident to w n −1 ), in

A P S (I) (〈 v � 〉 ) sharing a common (n − 1) -face by Proposition 42 . 

• There exist two n -simplices, μ′ := 〈 v ′ 
0 
, . . . , v ′ 

� −1 
, v � , v ′ � +1 

, . . . , v ′ 
n −1 

, w n −1 〉 (incident to w n −1 ) and σ ′ (incident to w 

′ 
n ), in

A P S (I) (v � ) sharing a common (n − 1) -face by Proposition 42 . 

• By Remark 41 , there exists a face-connected path of n -simplices (μ0 = μ, μ1 , . . . , μm −1 , μm = μ′ ) in A 

(n ) 
P S (I) 

(〈 v � , w n −1 〉 )
joining μ and μ′ . 

Finally, the face-connected path joining σ (incident to w n ) and σ ′ (incident to w 

′ 
n ) in A 

(n ) 
P S (I) 

(〈 v � 〉 ) is (σ, μ0 = μ, . . . , μm =
μ′ , σ ′ ) . �

Proof of Th 44. Let v ∈ F L . We have v ∈ C � for some � ∈ � 0 , n � . Let us prove property (P) : σ = 〈 v 0 , . . . , v � −1 , v , v � +1 , . . . , v n 〉
and σ ′ = 〈 v ′ 

0 
, . . . , v ′ 

� −1 
, v , v ′ 

� +1 
, . . . , v ′ n 〉 are face-connected in A 

(n ) 
P S (I) 

(〈 v 〉 ) . If � = n then σ and σ ′ are face-connected in

A 

(n ) 
P S (I) 

(〈 v 〉 ) by Procedure 7 . Else, � ∈ � 0 , n − 1 � : 

• If v ∈ E � \ R, then each w ∈ A 

n 
F L 
(v ) satisfies that w ∈ E n \ R . Therefore, there exists a 2 n -path π := (p 0 := v n , p 1 , . . . , p m −1 ,

p m := v ′ n ) in A 

n 
F L 
(v ) ∩ (E n \ R ) joining v n and v ′ n . 

• Else, v ∈ O � . Let � ′ := Card(0 4 ( v )). Then v n ∈ E k ∩ R, v ′ n ∈ E k ′ ∩ R for some k, k ′ ∈ � � ′ , n � and there exists unique w ∈ E � ′ ∩ R

such that v ∈ S ( w ). Since v ∈ D F L 
(v n ) ∩ D F L 

(v ′ n ) then w ∈ D 

+ 
F J 
(v n ) ∩ D 

+ 
F J 
(v ′ n ) . Let π := (p 0 := v n , p 1 := w, p 2 := v ′ n ) . 

Now, for i ∈ � 1 , m � : 
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• If p i −1 , p i are 2 n -neighbors, then by Proposition 43 there exist simplices σ (i −1 , +) (incident to 〈 p i −1 〉 ) and σ (i, −) (incident

to 〈 p i 〉 ) that are face-connected in A 

(n ) 
P S (I) 

(〈 v 〉 ) . 
• If p i −1 ∈ D F J 

(p i ) ∩ R or p i −1 ∈ A F J 
(p i ) ∩ R then, by Proposition 42 , there exist simplices σ (i −1 , +) (incident to 〈 p i −1 〉 ) and

σ (i, −) (incident to 〈 p i 〉 ) in A P S (I) (〈 v 〉 ) sharing a common (n − 1) -face. 

Finally, let σ (0 , −) := σ and σ (m, +) := σ ′ . Then, each pair (σ (i, −) , σ (i, +) ) for i ∈ � 0 , m � is face-connected in A 

(n ) 
P S (I) 

(〈 v 〉 ) by

Remark 41 . Since (P) is true for any v in P S ( I ) and σ , σ ′ in A 

(n ) 
P S (I) 

(〈 v 〉 ) , then P S ( I ) is wWC. �
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