A Study of Well-composedness in n-D

Nicolas Boutry^{1,2}

nicolas.boutry@lrde.epita.fr

Advisors: Laurent Najman² & Thierry Géraud¹

(1) EPITA Research and Development Laboratory, LRDE, France

(2) Université Paris-Est, LIGM, Équipe A3SI, ESIEE, France

2016-12-14

Digital topology has topological issues on cubical grids.

These topological issues results from critical configurations:

We are looking for a new representation of signals with **no** topological issues.

1 Cubical grids in digital topology lead to topological issues

- 2
- Usual solutions to get rid of topological issues on cubical grids
- B How to make a self-dual representation in *n*-D without topological issues
- Theoretical Results and Application
- Conclusion

< fi > <

- Cubical grids in digital topology lead to topological issues
- 2
- Usual solutions to get rid of topological issues on cubical grids
- How to make a self-dual representation in n-D without topological issues
- Theoretical Results and Applications
- Conclusion

- Cubical grids in digital topology lead to topological issues
- 2
- Usual solutions to get rid of topological issues on cubical grids
- Bow to make a self-dual representation in *n*-D without topological issues
 - 4 Theoretical Results and Application
 - Conclusion

- Cubical grids in digital topology lead to topological issues
- 2
- Usual solutions to get rid of topological issues on cubical grids
- Bow to make a self-dual representation in *n*-D without topological issues
 - 4 Theoretical Results and Applications
 - Conclusion

- Cubical grids in digital topology lead to topological issues
- 2
- Usual solutions to get rid of topological issues on cubical grids
- Bow to make a self-dual representation in *n*-D without topological issues
 - Theoretical Results and Applications

- Cubical grids in digital topology lead to topological issues
- Usual solutions to get rid of topological issues on cubical grids
- 3 How to make a self-dual representation in n-D without topological issues
- 4 Theoretical Results and Applications
- Conclusion

Our choice (1/2)

Simplicial complexes

Cubical complexes

Polyhedral complexes

< ロ > < 同 > < 回 > < 回 >

Triangular tilings

Hexagonal tilings

Cubical tilings/grids

Khalimsky tilings

Our choice (1/2)

Simplicial complexes

Cubical complexes

Polyhedral complexes

< ロ > < 同 > < 回 > < 回 >

Triangular tilings

Hexagonal tilings

Cubical tilings/grids

Khalimsky tilings

Our choice (2/2)

Cubical signals

- many sensors are cubical
- they are easy to process
- they are easy to store

• ...

How to get rid of critical configurations in 2D

2D digitization by intersection:

 \sim there exists a small enough ρ in 2D.

∍⊳

Any 3D digitization leads to critical configurations

 \sim even regular objects lead to critical configurations in 3D+.

Critical configurations lead to topological issues

discrete topological issues

 \rightsquigarrow object counting?

continuous topological issues

manifoldness not preserved ("pinch")

Cross-section topology

Threshold sets/binarizations of $u : \mathcal{D} \to \mathbb{Z}$:

$$\forall \lambda \in \mathbb{R}, \ [u \ge \lambda] = \{ x \in \mathcal{D} \ ; \ u(x) \ge \lambda \}, \\ \forall \lambda \in \mathbb{R}, \ [u < \lambda] = \{ x \in \mathcal{D} \ ; \ u(x) < \lambda \}.$$

 \sim extension from set operators to graylevel operators ("stacking method").

The Tree of Shape of an image

[Monasse & Guichard 2000, Caselles & Monasse 2009]:

Shapes:

$$\mathcal{US} = \{ \operatorname{Sat}(\Gamma) ; \ \Gamma \in CC([u \ge \lambda], \lambda \in \mathbb{R}) \}, \\ \mathcal{LS} = \{ \operatorname{Sat}(\Gamma) ; \ \Gamma \in CC([u < \lambda]), \lambda \in \mathbb{R} \},$$

- Shape boundaries = level lines,
- To compute of the tree of shapes (ToS)...

...a necessary condition is: level lines shall be Jordan curves.

III-definedness of the ToS on cubical grids

ToS with the same connectivity for lower/upper shapes [Géraud et al. 2013]:

2	2	2	2	2	2
2	2	0	0	0	2
2	0	1	2	0	2
2	2	0	0	2	2
2	2	2	2	2	2

We have "intersecting \Leftrightarrow nested" \Rightarrow the ToS does **not** exist.

Usual solutions to get rid of topological issues on cubical grids

How to make a self-dual representation in n-D without topological issues

Theoretical Results and Applications

Conclusion

Solutions to get rid of topological issues

Many solutions exist:

- topological reparations
- interpolations
- mixed methods

Their motivations:

- no "pinches" in the boundary (manifoldness)
- no connectivity ambiguity (determinism)
- both at the same time

Topological reparations in \mathbb{Z}^n

Methodology: "remove" critical configurations.

Problem: "propagation" of the critical configurations.

- [Latecki et al. 1998/2000] (2D, binary),
 → minimal number of modifications (case-by-case study).
- [Siqueira *et al.* 2005/2008] (3D, binary). $\sim \frac{3}{2} \times Card (CCs)$ modifications (randomized method).

However, modifying the data destroys the topology of the set/ binary image.

Topological reparation of cubical complexes

[Gonzalez-Diaz *et al.* 2011]: the topological reparation of cubical complexes in a homotopy equivalent polyhedral complex.

Application: (co)homology computation and recognition tasks.

However, the new structure is not cubical.

Interpolations with no topological issues (1/2)

• [Rosenfeld *et al.* 1998] (2D): image magnification + C.C. elimination (simple deformations)

Property: topology preserving (adjacency tree).

• [Latecki *et al.* 2000] (2D): resolution doubling $+ 0 \rightarrow 1$

Property: sets of black/white/boundary points are WC.

- [Stelldinger & Latecki 2006] (3D): "Majority Interpolation" ("counting process")
- \rightsquigarrow this techniques work on sets, not on graylevel images.

Interpolations with no topological issues (2/2)

[Latecki et al. 2000]: 2D, mean/median method (self-dual),

[Géraud et al. 2015]: 2D, median method (self-dual),

[Mazo et al. 2012]: n-D, min-/max-based interpolations (not self-dual),

Strong property: they "preserve" the topology of the initial image ("no new extrema").

State-of-the-Art

	2D	3D	n-D	graylevel	self-dual	cubical	topopr.
Latecki <i>et al.</i> 98	•	•	•	•	٠	•	•
Siqueira <i>et al.</i> 2005	•	•	•	•	•	•	•
Gonzalez-Diàz et al. 2011	•	•	•	•	•	•	•
Rosenfeld <i>et al.</i> 98	•	•	•	•	•	•	•
Latecki <i>et al.</i> 2000 (1)	•	•	•	•	•	•	•
Stelldinger et al. 2006	•	•	•	•	•	•	•
Latecki <i>et al.</i> 2000 (2)	•	•	•	•	•	•	•
Géraud et al. 2015	•	•	•	•	•	•	•
Mazo <i>et al.</i> 2012	•	•	•	•	•	•	•

《口》《聞》《臣》《臣》

- Cubical grids in digital topology lead to topological issues
- Usual solutions to get rid of topological issues on cubical grids
- Bow to make a self-dual representation in *n*-D without topological issues
 - 4 Theoretical Results and Applications
 - Conclusion

About self-duality

In practice, no contrast is known a priori:

- different objects of various contrasts in a same image
- more complex: nested objects

 \sim need for a contrast-invariant representation.

Necessary properties of the new representation

Usual cubical signals present topological issues

→ a new representation is needed:

- *n*-dimensionality $(n \ge 2)$,
- self-duality,
- no new extrema (in-between),
- no topological issues (no critical configurations).

A generalization of DWCness to n-D

э.

A generalization of DWCness to n-D

글 🕨 🖌 글

How to make a self-dual representation in n-D without topological issues

A generalization of DWCness to n-D

Critical configurations:

...

A generalization of DWCness to n-D

Critical configurations:

Definition ([Boutry et al. ISMM 2015])

A digital set $X \subset \mathbb{Z}^n$, $n \ge 2$, is said (digitally) well-composed (DWC) iff it does not contain any critical configuration.

. . .

Well-composedness for images

Definition ([Boutry et al. ISMM 2015])

A digital image $u : \mathcal{D} \subset \mathbb{Z}^n \to \mathbb{Z}$, $n \ge 2$, is said DWC iff its threshold sets are DWC.

Theorem ([Boutry et al. ISMM 2015])

An image
$$u : \mathcal{D} \to \mathbb{R}$$
 is DWC iff $\forall p, p' \in \mathcal{D}$ s.t. $p' = \operatorname{antag}_{S}(p)$:

 $\operatorname{intvl}(u(p), u(p')) \cap \operatorname{Span}\{u(q) ; q \in S \setminus \{p, p'\}\} \neq \emptyset.$

 \rightsquigarrow no need to check the DWCness of each threshold set.

Computation of a local self-dual DWC *n*-D interpolation? (1/2)

DWC = local phenomenon (local 2n-connectivity)

- \rightsquigarrow a local interpolation should be adapted ...
- \rightarrow usual properties of a local DWC interpolation:
 - Iocality,
 - DWC,
 - ordered,
 - in-between,
 - self-duality,
 - translation- $/\pi/2$ -rotation-invariance.

Computation of a local self-dual DWC *n*-D interpolation? (2/2)

[Boutry et al. DGCI 2014]:

No self-dual local interpolation can make images DWC in *n*-D ($n \ge 3$).

Threshold sets of Interval-valued maps

Let $U : \mathcal{D} \to I_{\mathbb{R}}$ be an interval-valued map. We define its threshold sets s.t. $\forall \lambda \in \mathbb{R}$:

- $[U \triangleright \lambda] = \{x \in \mathcal{D} ; \forall v \in U(x), v > \lambda\},\$
- $[U \triangleleft \lambda] = \{x \in \mathcal{D} ; \forall v \in U(x), v < \lambda\},\$
- $[U \ge \lambda] = \mathcal{D} \setminus [U \triangleleft \lambda],$
- $[U \leq \lambda] = \mathcal{D} \setminus [U \triangleright \lambda].$

How to make a self-dual representation in n-D without topological issues

DWC Interval-valued maps

Definition ([Boutry et al. 2015])

 $U:\mathcal{D}\to \mathrm{I}_{\mathbb{R}}$ is said DWC iff its threshold sets are DWC.

Proposition ([Boutry et al. 2015])

U is DWC iff $\lfloor U \rfloor$ and $\lceil U \rceil$ are both DWC.

<ロ> <同> <同> < 同> < 同> < 同> < 同> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0
Origin of the front-propagation algorithm

[Géraud et al. 2013] \rightarrow computation of the tree of shape:

$$u \xrightarrow{immersion} U \xrightarrow{sort} (u^{\flat}, \mathcal{R}) \xrightarrow{union-find} \mathcal{T}(u^{\flat}) \xrightarrow{emersion} \mathcal{T}(u)$$

 \rightarrow the sorting step "flattens" U into a temporary image u^{\flat} ("front-propagation")

The front-propagation algorithm

```
Input: U (interval-valued);
Output: u^{\flat} (single-valued);
begin
    forall the h do
          de_{ia_vu(h)} \leftarrow false;
     PUSH(Q[\ell_{\infty}], p_{\infty});
     deia_vu(p_{\infty}) \leftarrow true;
     \ell \leftarrow \ell_{\infty} while Q is not empty do
          h \leftarrow \text{PRIORITY}_\text{POP}(Q, \ell);
          u^{\flat}(h) \leftarrow \ell;
          forall the n \in \mathcal{N}_{2n}(h) such as deja_vu(n) = false do
               PRIORITY_PUSH(Q, n, U, \ell);
               de_{ja_vu(n)} \leftarrow true;
```


Let us start with a DWC interval-valued map U.

Nicolas Boutry (LRDE/LIGM)

Propagation of value $\ell = 8$.

э

Propagation of value $\ell = 8$.

< 一型

Propagation of value $\ell = 9$.

< 一型

Propagation of value $\ell = 9$.

Propagation of value $\ell = 11$.

Propagation of value $\ell = 11$.

Propagation of value $\ell = 13$.

< 一型

Propagation of value $\ell = 13$.

< 一型

Propagation of value $\ell = 15$.

< 17 ▶

Propagation of value $\ell = 15$.

< 一型

Propagation of value $\ell = 7$.

< 一型

Propagation of value $\ell = 7$.

< 一型

Propagation of value $\ell = 5$.

< 一型

Propagation of value $\ell = 5$.

< 🗇 🕨

Propagation of value $\ell = 3$.

< 17 ▶

Propagation of value $\ell = 3$.

< 17 ▶

Propagation of value $\ell = 1$.

< 17 ▶

<u>Result:</u> u^{\flat} is <u>DWC</u>.

Nicolas Boutry (LRDE/LIGM)

< 17 ▶

[Boutry et al. ISMM 2015]:

$\forall U DWC, u^{\flat} = \mathfrak{FP}(U) \text{ is DWC.}$

<u>Note</u>: we proved it in *n*-D ($n \ge 2$).

.

Intuition: \mathfrak{FP} chooses in a set of images one which is "regular" (DWC).

Our self-dual DWC n-D interpolation

[Boutry et al. ISMM 2015]:

Properties of u^{\flat} (1/2)

- *u*^b is <u>A</u>lexandrov-well-composed (AWC),
 → boundaries in Hⁿ are discrete surfaces,
- *u*^b is <u>Continuously well-composed (CWC)</u>,
 → boundaries in ℝⁿ are manifolds,
- *u*^b is well-composed based on the <u>Equivalence</u> of connectivities (EWC),
 → same components whatever the connectivity,
- the ToS of *u*^b exists and is connectivity-invariant.

Properties of u^{\flat} (2/2)

	2D	3D	n-D	graylevel	self-dual	cubical	topopr.
Latecki <i>et al.</i> 98	•	•	•	•	٠	•	•
Siqueira <i>et al.</i> 2005	•	•	•	•	٠	•	•
Gonzalez-Diàz et al. 2011	•	•	•	•	•	•	•
Rosenfeld <i>et al.</i> 98	•	•	•	•	•	•	•
Latecki <i>et al.</i> 2000 (1)	•	•	•	•	•	•	•
Stelldinger <i>et al.</i> 2006	•	•	•	•	•	•	•
Latecki <i>et al.</i> 2000 (2)	•	•	•	•	•	•	•
Géraud et al. 2015	•	•	•	٠	•	•	•
Mazo <i>et al.</i> 2012	•	•	•	•	٠	•	•
Boutry <i>et al.</i> 2015 (u ^þ)	•	•	•	•	٠	•	•

\rightarrow all goals have been reached!

∃ → < ∃ →</p>

< 17 ▶

Take-home message

We developed a new representation on cubical grids which is:

- self-dual,
- n-D,
- with no topological issues (DWC),
- topology-preserving (in-between interpolation),
- deterministic,
- $\pi/2$ -rotation-/translation-invariant,
- in linear time,
- ...

Bonus: many powerful topological properties.

Outline

- Cubical grids in digital topology lead to topological issues
- Usual solutions to get rid of topological issues on cubical grids
- How to make a self-dual representation in n-D without topological issues
- Theoretical Results and Applications
- Conclusion

Theoretical result: "Pure" self-duality

Self-duality equation [Géraud et al. 2015]:

$$\mathrm{ToS}_{c_a,c_b}(-u)=\mathrm{ToS}_{c_b,c_a}(u).$$

 \rightarrow we had to <u>switch</u> the connectivities.

 u^{\flat} DWC \Rightarrow we obtain "pure" self-duality:

$$\operatorname{ToS}(-u^{\flat}) = \operatorname{ToS}(u^{\flat}).$$

<u>Note:</u> **any** self-dual operator become "purely" self-dual on u^{\flat} .

Applications: DWC Laplacian (1/2)

Zero-crossings of the Laplacian \equiv boundaries of objects (image processing).

<u>Remark:</u> a hierarchical representation of the Z.-C.'s could be useful:

- shape recognition,
- text detection,
- ...

BUT boundaries must be Jordan curves/surfaces:

[Huynh *et al.* 2016] \rightarrow ToS \circ Sign $\circ I_{DWC} \circ \mathcal{L}$.

Theoretical Results and Applications

Applications: DWC Laplacian (2/2)

Outline

- Cubical grids in digital topology lead to topological issues
- Usual solutions to get rid of topological issues on cubical grids
- How to make a self-dual representation in n-D without topological issues
- Theoretical Results and Applications
- 5 Conclusion

Conclusion

What we did not speak about (1/2)

The different "flavors" of well-composedness and their relationship on cubical grids

2D:	EWC [Latecki 1995]	⇔	DWC	⇔	AWC	⇔	сwс
3D:	EWC	⇐	DWC	⇔	AWC	⇔	CWC [Latecki 1997]
nD:	EWC [Boutry et al. 2015]	⇔	DWC [Boutry et al. 2015]	HAL	AWC [Najman <i>et al.</i> 2013]	Conj. ⇔	CWC [Latecki <i>et al.</i> 2000]

What we did not speak about (2/2)

- n-D topological reparation of graylevel images [Boutry et al. ICIP 2015],
- n-D reformulation of DWCness for sets (2n-connectivity),
- hierarchical subdivision on orders,
- bordered discrete surfaces in polyhedral complexes,
- AWC interpolation(s) on polyhedral complexes.

Conclusion

Our self-dual DWC interpolation is "central"

Nicolas Boutry (LRDE/LIGM)

Conclusion

Our self-dual DWC interpolation is "central"

Nicolas Boutry (LRDE/LIGM)

2016-12-14 45
Our self-dual DWC interpolation is "central"

Our self-dual DWC interpolation is "central"

Nicolas Boutry (LRDE/LIGM)

Our self-dual DWC interpolation is "central"

Nicolas Boutry (LRDE/LIGM)

Our self-dual DWC interpolation is "central"

Thank you for your attention

Nicolas Boutry (LRDE/LIGM)

A Study of Well-composedness in n-D

2016-12-14 46

∃ >

Thierry Géraud, Yongchao Xu, Edwin Carlinet, and Nicolas Boutry.

Introducing the dahu pseudo-distance (submitted).

In International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, 2017.

Nicolas Boutry, Thierry Géraud, and Laurent Najman.

Digitally well-composed sets and functions on the *n*-D cubical grid (in preparation). In *Journal of Mathematical Imaging and Vision*, 2017.

Nicolas Boutry, Laurent Najman, and Thierry Géraud. About the equivalence between AWCness and DWCness. Research report, LIGM/LRDE, October 2016.

Nicolas Boutry, Thierry Géraud, and Laurent Najman. How to make *n*-D functions digitally well-composed in a self-dual way. In International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pages 561–572. Springer, 2015.

Nicolas Boutry, Thierry Géraud, and Laurent Najman. How to make *n*-D images well-composed without interpolation. In *Image Processing (ICIP), 2015 IEEE International Conference on*, pages 2149–2153. IEEE, 2015.

Nicolas Boutry, Thierry Géraud, and Laurent Najman.

Une généralisation du *bien-composé* à la dimension *n*.

Communication at Journée du Groupe de Travail de Géometrie Discrète (GT GeoDis, Reims Image 2014), November 2014.

Nicolas Boutry, Thierry Géraud, and Laurent Najman.

On making *n*-D images well-composed by a self-dual local interpolation. In International Conference on Discrete Geometry for Computer Imagery, pages 320–331. Springer, 2014.

Context: rigid transformations

Topological properties should be preserved under rigid tranformations (continuous VS discrete):

- "well-composedness"? (no ambiguity)
- adjacency tree?

Methodology [Ngo et al. 2013]): (simply) forbid some critical patterns.

Context: well-composed segmentations

[Tustison et al. 2011]: front-propagation method s.t.:

- adds only simple points,
- does not create any C.C. in the expanded seeds.
- \Rightarrow topology- and WCness-preserving FP method.

 \Rightarrow boundary of the final segmentation is a manifold (glamorous glue by Jordan arcs).

Context: thin topological maps of grayscale images

[Marchadier et al. 2004]:

"A discrete image I is the digitization of a piecewise continuous function f."

Methodology:

- (1) Computation of the gradient (made WC) of I,
- (2) WC thinning \Rightarrow WC irreducible image,

<u>Note</u>: No ambiguity \Rightarrow <u>well-defined</u> crest network.

(3) Case-by-case study \rightarrow coherent topological map (representing *f*).

Context: Euler characteristic

•
$$\xi(\emptyset) = 0$$
,

- $\xi(S) = 1$ if S non-empty and convex,
- $\xi(S_1 \cup S_2) = \xi(S_1) + \xi(S_2) \xi(S_1 \cap S_2).$
- $S \subset \mathbb{R}^3$ polyhedral $\Rightarrow \xi = \eta_0 \eta_1 + \eta_2 \eta_3$ (\forall triangulation).

 $\Rightarrow \xi = b_0 - b_1 + b_2$ (topological invariant)

→ License Plates Recognition tasks, Object Counting, ...

<u>BUT</u> depends on the connectivity: $\xi_{(4,8)} \Rightarrow \xi$ well-defined No critical configuration $\Rightarrow \xi_{(4,8)} = \xi_{(8,4)} \Rightarrow \xi$ well-defined Bonus of WCness: in 2D, ξ is locally computable (and then faster).

Context: Well-composed Jordan Curves

Jordan curve theorem holds for WC curves.