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Abstract. Many approaches exist to compute the distance between two
trees in pattern recognition. These trees can be structures with or with-
out values on their nodes or edges. However, none of these distances
are based on the shapes that are associated to the nodes of the tree.
For this reason, we propose in this paper a new distance between two
trees of shapes using the Hausdorff distance formula. This distance is an
interesting way to make inexact attributed tree matching in quadratic
time relatively to the number of vertices. An application related to brain
tumor segmentation on the MICCAI BraTS data-set is realized.

1 Introduction

The tree of shapes is a hierarchical representation of the boundaries of the objects
in an image (they are sometimes called level-lines). For sake of completeness, and
because we think that many procedures can be derived from it, we propose to
introduce the first distance between trees of shapes. This distance makes us able
to compute a fast alternative to graph matching (our complexity is quadratic as
a function of the number of nodes).

Let us propose now several states-of-the-art, related to the Hausdorff distance
since it is the one we use to compute the distance between two trees, to distance
between graphs (and trees) in general, to graph matching, and then to the tree
of shapes.

Hausdorff distance: The Hausdorff distance (HD) is a very powerful tool used
in Pattern Recognition to compute the deformation need to obtain a curve from
another. It is much used in image matching [19]. Sometimes, we can prefer to
use the ranked Hausdorff distance [18] (which is more robust), or the Gromov-
Hausdorff Distance when we want to compute the distance between two metric
trees [26].

Distance between graphs: Among the possible distances between trees, we
can find the tree-edit distances [3]. When hierarchical structures contain cy-
cles, they are graph and then specific distances can be used [6]. From the com-
putational topology point of view, we can recall the distances between Reeb
graphs [2], or the interleaving distance between merge trees [28].

Graph matching: as we will see later, our technique is an alternative to graph
matching algorithms. For this reason, we propose a brief state-of-the-art of this
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topic. The references presented here are not exhaustive since according to Conte
et al. [12], more than 160 publications talk about graph matching. There exist
several approaches to make graph matching : exact matching methods that re-
quire a strict correspondence among the two objects being matched or at least
among their subparts, and inexact matching methods where a matching can oc-
cur even if the two graphs being compared are structurally different to some
extent. Exact ones can be based on tree search [5] or not [25]. They can also
be elaborated for special kinds of graphs [1]. Among them, several flavours ex-
ist. From the strongest to the weakest forms: the graph isomorphisms which
are bijective, the subgraph isomorphisms, the monomorphisms, and the homo-
morphisms. An alternative approach is to compute maximal common subgraphs
(MCS) [6]. These algorithms are NP-complete, and require exponential time in
the worst case [12] except for special kinds of graphs. Concerning the inexact
ones, they can be based on tree search [38], on continuous optimization [14],
on spectral methods [39], or other techniques [20]. They are considered to be
either optimal or approximate depending on the case. Usually, a matching cost
is associated to these algorithms (like for the tree-edit distance [3]); the aim
is then to find a mapping which minimizes this cost. We will see later that it
is not the case in this paper. As explained in [8], relaxation labeling and prob-
abilistic approaches [7], semidefinite relaxations [33], replicator equations [31],
and graduated assignments [17] can also be used to proceed to graph matching.
Graph matching algorithms can be based on similarity functions [40] to do for
example face recognition. Finally, graph matching can be based on the tree of
shapes (see [29]). However, as we will see later, this approach is not differential
like ours, since it is deserved to locate patterns that are already known and not
for patterns that are unknown.

The tree of shapes: the tree of shapes [16, 10] is a hierarchical representation
of the shapes in an image. Its origin can be found in [22, 27], and its applica-
tions are numerous: grain filtering [9], object detection [13], object retrieval [30],
texture analysis [41], image simplification and segmentation [42], and image clas-
sification [24]. It is mainly known as being the fusion of the min-tree and the
max-tree [32].

1.1 Plan

The plan is the following: Section 2 expose the mathematical background needed
in this paper, Section 3 presents our proposition of distance between two trees,
Section 4 introduces our tree-matching algorithm, Section 5 demonstrates that
the provided tools can be used to do brain tumor segmentation, Section 6 con-
cludes the paper.

2 Mathematical background

The shapes of a real image defined in a finite rectangle Ω in Z2 are the satura-
tions [10] of the connected components of its (upper and lower) threshold sets.
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A set T of shapes is then called tree of shapes [16] when any two shapes are
either nested or disjoint. A distance d on a set E is a mapping from E×E to R+

which satisfies that for any two elements A,B of E, d(A,B) = 0 iff A = B, that
it is symmetrical, and which satisfies the triangular inequality. Let us denote by
µ is the cardinality operator and by A,B two (finite) subsets of Ω. Then, the
mapping dµ from E × E to R+:

dµ(A,B) =

{
0 if A and B are empty,

1− µ(A∩B)
µ(A∪B) otherwise.

is a distance [21]. Let (E, d) be some metric space. The Hausdorff distance be-
tween two finite subsets E1 and E2 of E and based on the given distance d is
defined as:

DH(E1, E2) := max

{
max
p1∈E1

min
p2∈E2

d(p1, p2), max
p2∈E2

min
p1∈E1

d(p1, p2)

}
.

3 A distance between two trees of shapes

Let I1, I2 be two images on Ω and T1, T2 their respective trees. We define the
distance between a shape s1 of T1 and T2 as:

dµ(s1, T2) = min
∀s2∈T2

dµ(s1, s2).

Let T be the set of trees of shapes in Ω. We can define a mapping dT from T ×T
to R+ :

dT (T1, T2) = max
∀s1∈T1

dµ(s1, T2),

which is not symmetrical. To make it symmetrical, we finally define:

DT (T1, T2) = max (dT (T1, T2), dT (T2, T1)) .

Since Ω is supplied with the distance dµ, it is metric, and then DT is the
Hausdorff distance based on the distance dµ. Let us propose the following proof,
strongly inspired from [11], that the mapping DT is a distance.

Property 1 The mapping DT is a distance.

Proof:: let TA, TB , TC be three elements of T . Then:

1. When TA = TB , for any sA ∈ TA, minsB∈TB
dµ(sA, sB) = 0, then for any

sA ∈ TA, we have dµ(sA, TB) = 0, and then dT (TA, TB). A symmetrical
reasoning shows that dT (TB , TA), and then DT (TA, TB) = 0. Conversely,
DT (TA, TB) = 0 implies that dT (TA, TB) = 0. Then, for any sA in TA,
dµ(sA, TB) = 0 and then minsB∈TB

dµ(sA, sB). In other words, there exists
for each sA ∈ TA some sB ∈ TB whose distance is equal to 0, they are then
equal. Then TA ⊆ TB . A symmetrical reasoning shows that TB ⊆ TA, and
then TA = TB .
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2. The symmetry is obtained by construction.
3. Triangular inequality: let us proceed in five steps:

(a) For any sA ∈ TA and any sBinTB , let us prove that:

dµ(sA, TC) ≤ dµ(sA, sB) + dµ(sB , TC).

Since dµ is a distance, for any sC ∈ TC :

dµ(sA, sC) ≤ dµ(sA, sB) + dµ(sB , sC),

which implies by applying the increasing min operator:

dµ(sA, TC) ≤ minsC∈TC
dµ(sA, sC)

≤ dµ(sA, sB) + min
sC∈TC

dµ(sB , sC)

≤ dµ(sA, sB) + dµ(sB , TC),

which proves the inequality.
(b) Now, let us prove that for any sA ∈ TA and any sBinTB :

dµ(sA, sB) + dµ(sB , TC) ≤ dµ(sA, sB) +DT (TB , TC).

This property is due to dµ(sB , TC) ≤ dT (TB , TC) ≤ DT (TB , TC).
(c) For any sA in TA, let us prove that:

dµ(sA, TC) ≤ dµ(sA, TB) +DT (TB , TC).

We already know that dµ(sA, TC) ≤ dµ(sA, sB)+dµ(sB , TC), then thanks
to the min operator, we obtain:

dµ(sA, TC) = min
sB∈TB

dµ(sA, TC),

≤ min
sB∈TB

dµ(sA, sB) + min
sB∈TB

dµ(sB , TC),

≤ dµ(sA, TB) + max
sB∈TB

dµ(sB , TC),

≤ dµ(sA, TB) + dµ(sB , TC),

≤ dµ(sA, TB) +DT (TB , TC),

which concludes this part of the proof.
(d) Obviously, we have:

dµ(sA, TB) +DT (TB , TC) ≤ DT (TA, TB) +DT (TB , TC),

since:

dµ(sA, TB) ≤ max
sA∈TA

dµ(sA, TB) ≤ dT (TA, TB) ≤ DT (TA, TB).
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(e) We can then conclude by grouping the last two inequalities, and we
obtain:

dµ(sA, TC) ≤ dµ(sA, TB) +DT (TB , TC) ≤ DT (TA, TB) +DT (TB , TC),

which leads to:

dT (TA, TC) = max
sA∈TA

dµ(sA, TC)

≤ max
sA∈TA

(DT (TA, TB) +DT (TB , TC)) ,

≤ DT (TA, TB) +DT (TB , TC),

then with a similar reasoning, we obtain that:

dT (TC , TA) ≤ DT (TA, TB) +DT (TB , TC),

and then DT (TA, TC) ≤ DT (TA, TB)+DT (TB , TC), which concludes the
proof. ut

Property 2 Let T1 and T2 be two trees of shapes defined on a same domain.
Let us compute the subsets T ′

1 and T ′
2 with λ ≥ 0 a given threshold:

T ′
1 = {s ∈ T1 | dµ(s, T2) ≤ λ},
T ′
2 = {s ∈ T2 | dµ(s, T1) ≤ λ},

Then the subtrees T ′
1 of T1 and T ′

2 of T2 satisfy:

DT (T ′
1, T

′
2) ≤ λ.

Proof:: Let us prove first that:

∀s′1 ∈ T ′
1, min

∀s′2∈T ′
2

dµ(s′1, s
′
2) ≤ λ. (P )

When (P ) is false, there exists some s′1 ∈ T ′
1 such that:

min
∀s′2∈T ′

2

dµ(s′1, s
′
2) > λ,

that is, for any s′2 ∈ T ′
2, we have dµ(s′1, s

′
2) > λ. However, because s′1 belongs

to T ′
1, dµ(s′1, T2) ≤ λ, then there exists s2 ∈ T2 such that dµ(s′1, s2) ≤ λ, and

s2 6∈ T ′
2. By symmetry of dµ, we have that dµ(s2, s

′
1) ≤ λ, then:

min
∀s1∈T1

dµ(s2, s1) ≤ λ,

since s′1 ∈ T ′
1 ⊆ T1, then s2 ∈ T ′

2. We obtain a contradiction, then (P ) is
true. By symmetry, we obtain:

∀s′2 ∈ T ′
2, min

∀s′1∈T ′
1

dµ(s′2, s
′
1) ≤ λ,

then for any s′1 ∈ T ′
1 and for any s′2 ∈ T ′

2, dµ(s′1, T ′
2) ≤ λ and dµ(s′2, T

′
1) ≤ λ,

which leads to DT (T ′
1, T

′
2) ≤ λ. ut
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4 Tree-matching and residual trees

In this section, we present our definition of tree-matching, we explain how we are
able to ensure that the Hausdorff distance between two subtrees is lower than a
given threshold, and then we explain the concepts of residual forests and trees.

4.1 Our definition of tree-matching

In this paper, we consider that two trees T1 and T2 computed on the images I1
and I2 defined on Ω match relatively to λ ∈ R+ when their Hausdorff distance
DT (T1, T2) is lower than or equal to a given threshold λ ≥ 0.

A strong property is that when T1 and T2 match relatively to 0, they are
identical sets of shapes, since it means that for any shape s1 in T1, there exists
some shape s2 in T2 equal to s1, and conversely (thanks to the symmetry of
DT ).

4.2 Subtrees extraction

Now let us assume that we have two trees T1 and T2 corresponding to two
images I1 and I2 respectively, both defined on Ω. We want to find two sub-
trees T ′

1 of T1 and T ′
2 of T2 satisfying: DT (T ′

1, T
′
2) ≤ λ for some λ ∈ R+.

For this aim, it is sufficient to compute: T ′
1 = {s1 ∈ T1 ; dµ(s1, T2) ≤ λ} and

T ′
2 = {s2 ∈ T2 ; dµ(s2, T1) ≤ λ}. We are ensured that T ′

1 and T ′
2 are trees: they

are both sets of shapes which are disjoint or nested and they both contain the
maximal element Ω. Furthermore, by Property 2, we ensure that the Hausdorff
distance between T ′

1 and T ′
2 satisfies:

DT (T ′
1, T

′
2) ≤ λ,

and then we obtain subtrees of T1 and T2 which are as much similar as we want.

4.3 Residual trees

Assuming we have computed T ′
1 and T ′

2 for a given λ ∈ R+, we can then remove
from T1 the elements of T ′

1 (we obtain the forest F1) and from T2 the elements
of T ′

2 (we obtain the forest F2). We call then F1 and F2 residual forests of
T1 (relatively to T2) and of T2 (relatively to T1) respectively. The connected
components of F1 and F2, called residual trees of I1 and I2 respectively, will
then represent where I1 and I2 differ from each other. Obviously, the lower λ,
the bigger will be the residual forests.

5 An application: brain tumor segmentation

We propose to present an algorithm making unsupervised brain tumor segmen-
tation in MRI images [37, 34, 4, 35, 36]: we compare the tree of shape of a brain
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which possibly has a tumor with the tree of shapes of a brain without tumor.
Necessarily, both brains must look like as each other. By fixing some threshold,
we are able to consider which residual trees of the ill brain which may be tu-
mors: if a shape of the ill brain is too much different from the shapes of the tree
of a sane brain similar to it, it may be that a tumor is present. Note that the
following experiment is in 2D, but it can easily be extended to n-D [16, 15]. For
this aim, let us propose the following algorithm:

Fig. 1. From left to right, the initial FLAIR image where we want to locate the tumor,
then OASIS-3 brain slices of similarities equal to 0.396337, 0.537613, 0.558739 and
0.604324 respectively with to the tumored brain slice. The last one is the best matching
brain in the database.

1. We choose one of the 335 brains of size 240× 240× 155 in the BraTS 2019
database and we extract the slice corresponding to z = 77 in the FLAIR
modality file (see Figure 1).

2. The similarity between two slices is computed this way:

– We compute the cross-correlation between the intensities of the two
slices (each one has been normalized by its L2 norm), that we name
IntensitySim.

– We compute the norms of the gradient of both slices in a pixel-wise
manner, we normalize by their L2 norms each of these images, and we
deduce the cross-correlation between these two signals, we name this last
value GradientSim.

– We compute on the FLAIR image the mask MaskF luidsBraTS cor-
responding to the pixels whose distance to the center of coordinates
(119, 119) is below a fixed value R =

√
sx2 + sy2/4 where sx = sy = 240

and whose value is lower than Ξ − 0.5 ∗ σ (Ξ and σ are the statistical
mean and standard deviation of the intensity of this slice). We pro-
ceed this way for MaskF luidsOASIS. We deduce the cross-correlation
FluidsSim (normalized by the L2 norm) of these two masks.

– We finally compute the similarity as the weighted sum:

1/3 ∗ IntensitySim+ 1/3 ∗GradientSim+ 1/3 ∗ FluidsSim.

3. We choose in the database of 749 OASIS-3 [23] FLAIR images (with no
tumors) the slice of the brain which best matches with the slice coming from
the BraTS database (see Figure 1). Note that we assume that the tumor
does not introduce too much bias in the similarity computation.
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4. We compute the trees of shapes T sane and T tum of the sane brain and of
the tumored brain respectively on quantified slices (to limit the number of
components in the computed trees). We use a uniform quantification so that
the value space is J0, 10K.

Fig. 2. Filtered trees of the slices of the ill brain and its best-matching sane brain (the
background is in yellow, the shapes are in black).

5. Using grain filtering, we keep in each computed ToS a maximal number of
n = 35 nodes to obtain the most representative structures in the image. The
grain filtering removes all the shapes in the two trees whose area is lower
than the one of the nth greater component in each tree. This way we obtain
T sanesimp = {Ssanei }i and T tumsimp = {Stumi }i (see Figure 2).

6. We fix a threshold λ = 0.6 (empirically chosen) which determines when two
shapes will be considered as sufficiently similar.

7. We compute in a matrix M the distances between each shape of the first
tree with each shape of the second tree: Mi,j = dµ(Stumi ,Ssanej ).

Fig. 3. Extraction of the part of the tree of the tumored brain which best matches
with the OASIS-3 brain. The root of this tree is the only node which loops.

8. For T tumsimp, we keep only the nodes whose corresponding shape has a distance
lower than λ to the other tree T sanesimp ; we obtain then T tummatch (see Figure 3);
we can do the same thing for the other tree to ensure that the final distance
is lower than or equal to λ but here we will not use the sane tree anymore.

9. We compute the residual trees {T resi }i by removing to T tumsimp the elements of
T tummatch: these residual trees correspond to the tumor(s) or to small differences
between the two brains (see Figure 4).

10. We set at zero the components of T resi whose amplitude is too low because
low amplitudes are rarely tumors in FLAIR images, whatever their position
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Fig. 4. First residual tree extracted from the grain-filtered tree of the tumored brain
and the corresponding depth map. The other residual trees, not shown here, depict
only small differences between the two images.

(see the black thumbnails in Figure 4); we chose empirically the threshold
(Ξ + σ).

Fig. 5. From left to right, the T2-weighted slice of the tumored brain, the depth image
of the grain-filtered T2 slice, and then the corresponding tree.

11. Then we compute the tree of shapes TT2 of the quantized T2 modality,
we simplify it as usually using a grain filter keeping only the n greatest
components, and we deduce the corresponding depth map depthTT2

(see
Figure 5).

12. Using the mask computed before, we deduce the image:

depth′
TT2

= (1−MaskF luidsBraTS) ∗ depthTT2

which represents the T2-weighted structures in the brain minus the fluids.
13. By thresholding this depth map at β = 0.5 ∗max(depth′

TT2
), we obtain the

location(s) in the image where tumors should be (see Figure 6).
14. We can then apply this mask to each residual tree to obtain the predictions

of our method (see Figure 6).
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Fig. 6. From left to right, the T2-depth mask, the segmentation of the tumor using
the first residual tree filtered by the T2-depth mask, and the ground truth.

6 Conclusion

In this paper, we have presented the first distance between two trees of shapes
which is computed based on its shape-valued nodes. We have also seen that
this distance can be used to compute residual trees representing hierarchies of
the locations where two images differ. An application related to brain tumor
segmentation has been proposed. In the future, we plan to find other applications
of this distance.
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