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Text detection performance evaluation

• ground truth:

Annotation levels: pixel(blue), character(red), word(green), line(magenta).

• matching protocol:

One-to-one One-to-many Many-to-one Many-to-many

Matching cases: GT (dashed) and detections (plain line).

• metrics:
recall: proportion of detected texts in the gt,

precision: proportion of accurate detections.
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Detection quantity-quality relationship

Quantity
how many GT objects have been detected?
how many detections have a match in the GT?

Quality
how much of the matched GT objects was detected?
how accurate is the detection of the objects?

[Wolf and Jolion, 2006]
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Detection quantity-quality relationship

Example: Coverage/Accuracy quality measures:

R =

∑
Cov

nb. of GT objects
Covi =

Area(Gi
⋂

Dj)

Area(Gi)
=

�

�

P =

∑
Acc

nb. of detections
Acci =

Area(Gi
⋂

Dj)

Area(Dj)
=

�

�

detector 1 detector 2 detector 3 detector 4

Recall = 0.5 Precision = 0.33

Ground Truth and Detection text boxes.
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Contributions

1. Capture the detection quantity-quality nature using histogram representation.

2. The use of histogram distances to derive global scores.

Optimal 
histogram 

Quality measures 
 

coverage/ 

accuracy 

Histogram 
quantification of 
quality measures Histogram 

distance 
 

EMD 

Global 
scores 

 

recall/ 

precision 

Proposed approach for dataset level evaluation (global metrics)  Image GT and detections  Object level (local) evaluation 

Workflow of the proposed method.

Note: the framework requires a qualitative object-level evaluation.
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Quality detection histograms

Quality measures (coverage) 
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Optimal histogram

Optimal Histogram (h̃O) = perfect quality detection.

Global scores = dist(hQual,h̃O)

e.g. Recall = dist(hCov, h̃O);

Precision = dist(hAcc, h̃O).
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Earth Mover’s Distance

Minimal cost that must be paid to transform a signature (P) into another
signature (Q). [Rubner, 2000]

P = {(pi, wpi) | i ∈ [1,m]} Q = {(qj , wqj ) | j ∈ [1, n]}

EMD(P,Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

+ cross-bin distance
+ can be applied to normalized histograms
+ is a true metric [Rubner et al., 2000]

R = 1− EMD(h̃Cov, h̃O)
P = 1− EMD(h̃Acc, h̃O)
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Results on singular images

R = 0.66, P = 1 R = 0.8, P = 0.42

Two examples of GT (red rectangles) and detections (green plain rectangles) and their corresponding coverage/accuracy
histograms (resp. hCov (orange) and hAcc (blue)) and R/P scores.
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Results on a set of images
Comparison of two detectors
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Coverage and accuracy normalized histograms associated to detector 1 (R = 0.60, P = 0.58) and detector 2 (R = 0.70,
P = 0.80).
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Detection quantity-quality relationship

detector 1 detector 2 detector 3 detector 4

Recall = 0.5 Precision = 0.33
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Ground Truth and Detection text boxes.
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Conclusions

• intuitive visual representation of detection results

• better delimitation of the quantity from the quality aspects

• easy comparison between detectors

• powerful similarity measure (EMD) to depict global scores

Future works

• available tool online
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Results: ICDAR2013 Set
Impact of tuning the number of bins

Method Recall Precision

EMD10bins 0.7667 0.8799
EMD20bins 0.7526 0.8713
EMD25bins 0.7495 0.8693
EMD50bins 0.7441 0.8659
EMD100bins 0.7413 0.8642

Bin size impact on recall and precision scores.

Variation of RG and PG scores depending on the number of
bins B

Observation: stabilization of these two global scores when number of bins sufficiently large.
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Comparison to AUC plots
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(c) varying constraint tr
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Performance plots generated with DetEval tool [Wolf and Jolion, 2005] (recall in purple, precision in blue); top: detector 1
(ROV = 0.37, POV = 0.32); bottom: detector 2 (ROV = 0.49, POV = 0.69).
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Earth Mover’s Distance detailed

Let P = {(pi, wpi )}mi=1 and Q = {(qj , wqj )}nj=1 be two signatures where pi and qj are the position of ith,

respectively jth element and wpi and wqj their weights. The EMD searches for a flow F = [fij ] between pi
and qj , that minimizes the cost to transform P into Q:

COST (P,Q, F ) =
m∑
i=1

n∑
j=1

dijfij , (1)

where dij is the ground distance between clusters pi and qj ; the cost minimization is done under the
following constraints:

fij ≥ 0,
n∑

j=1

fij ≤ wpi ,
m∑
i=1

fij ≤ wqj , i ∈ [1,m], j ∈ [1, n]

m∑
i=1

n∑
j=1

fij = min(
m∑
i=1

wpi ,
n∑

j=1

wqj ), i ∈ [1,m], j ∈ [1, n]

The EMD distance is then defined as:

EMD(P,Q) =

∑m
i=1

∑n
j=1 dijfij∑m

i=1

∑n
j=1 fij

(2)
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