Using histogram representation and Earth Mover's Distance as an evaluation tool for text detection

 $LRDE^1$, $ISIR^2$

calaras anu @lrde.epita.fr

Monday 24th August, 2015

lts Co

Conclusions

Overview

Context

Proposed approach

Detection representation

Score computation

Results

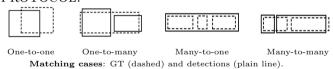
Conclusions

Text detection performance evaluation

• GROUND TRUTH:

Annotation levels: pixel(blue), character(red), word(green), line(magenta).

• MATCHING PROTOCOL:



• METRICS:

recall: proportion of detected texts in the GT, precision: proportion of accurate detections.

Detection quantity-quality relationship

Quantity

how many GT objects have been detected? how many detections have a match in the GT?

QUALITY

how much of the matched GT objects was detected? how accurate is the detection of the objects?

[Wolf and Jolion, 2006]

Detection quantity-quality relationship

EXAMPLE: Coverage/Accuracy quality measures:

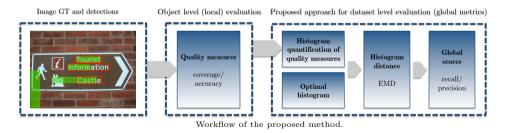
$\sum Cov$	$a Area(G_i \cap D_i)$	01	
R =	$Cov_i = $		
nb. of GT objects	$Area(G_i)$		
$\sum Acc$	$Area(G_i \cap D_j)$		
$P = \frac{2}{1 + 1 + 1}$	$Acc_i \equiv $		
$nb. \ of \ detections$	$Area(D_j)$		Detection

Precision = 0.33

GROUND TRUTH and DETECTION text boxes.

Contributions

Capture the detection quantity-quality nature using histogram representation.
 The use of histogram distances to derive global scores.

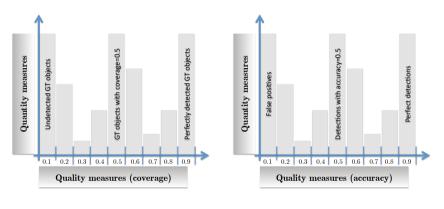


Note: the framework requires a qualitative object-level evaluation.

Context

Conclusions

Quality detection histograms



$$h_{Qual}(b) = \left\{ \begin{array}{c} \sum_{j=1}^{m} \left\{ f_{Qual}(j) \in \left[\frac{b}{B}, \frac{b+1}{B} \right] \\ \sum_{j=1}^{m} \left\{ f_{Qual}(j) \in \left[\frac{b}{B}, \frac{b+1}{B} \right] \right\} & \text{if } b = 0, \dots, B-2 \\ \end{array} \right\}$$

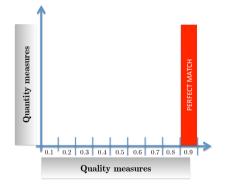
Optimal histogram

Optimal Histogram $(\widetilde{h_O})$ = perfect quality detection.

Global scores = dist $(h_{Qual}, \widetilde{h_O})$

e.g.
$$Recall = dist(h_{Cov}, \widetilde{h_O});$$

 $Precision = dist(h_{Acc}, \widetilde{h_O}).$



Earth Mover's Distance

Minimal cost that must be paid to transform a signature (P) into another signature (Q). [Rubner, 2000]

$$P = \{(p_i, w_{p_i}) \mid i \in [1, m]\} \quad Q = \{(q_j, w_{q_j}) \mid j \in [1, n]\}$$
$$EMD(P, Q) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij}}$$

+ cross-bin distance

- + can be applied to normalized histograms
- + is a true metric [Rubner et al., 2000]

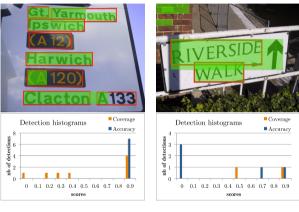
$$R = 1 - EMD(\widetilde{h_{Cov}}, \widetilde{h_O})$$
$$P = 1 - EMD(\widetilde{h_{Acc}}, \widetilde{h_O})$$

Context

Results

Conclusions

Results on singular images



R = 0.66, P = 1

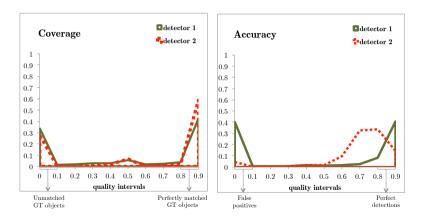
R = 0.8, P = 0.42

Two examples of GT (red rectangles) and detections (green plain rectangles) and their corresponding coverage/accuracy histograms (resp. h_{Cov} (orange) and h_{Acc} (blue)) and R/P scores.

Results

Conclusions

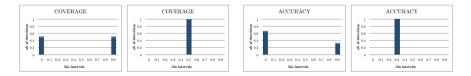
Results on a set of images Comparison of two detectors



Coverage and accuracy normalized histograms associated to detector 1 (R = 0.60, P = 0.58) and detector 2 (R = 0.70, P = 0.80). Ana Stefania Calarasanu - LRDE - [calarasanu@lrde.epita.fr]

Using histogram representation and EMD as an evaluation tool for text detection

Detection quantity-quality relationship



GROUND TRUTH and DETECTION text boxes.

Conclusions

- intuitive visual representation of detection results
- better delimitation of the quantity from the quality aspects
- easy comparison between detectors
- powerful similarity measure (EMD) to depict global scores

Future works

• available tool online

References

- Rubner, Y., Tomasi, C., and Guibas, L. (2000).
 The earth mover's distance as a metric for image retrieval. *IJCV*, 40(2):99–121.
- Wolf, C. and Jolion, J.-M. (2006).
 Object count/area graphs for the evaluation of object detection and segmentation algorithms.
 IJDAR, 8(4):280-296.

Using histogram representation and Earth Mover's Distance as an evaluation tool for text detection

 $LRDE^1$, $ISIR^2$

calaras anu @lrde.epita.fr

Monday 24th August, 2015

sults

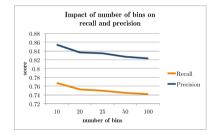
Conclusions

Results: ICDAR2013 Set

Impact of tuning the number of bins

Method	Recall	Precision
EMD_{10bins}	0.7667	0.8799
EMD_{20bins}	0.7526	0.8713
EMD_{25bins}	0.7495	0.8693
EMD_{50bins}	0.7441	0.8659
$EMD_{100bins}$	0.7413	0.8642

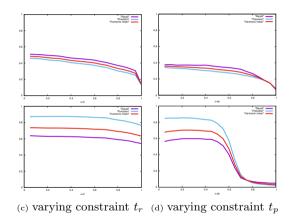
Bin size impact on recall and precision scores.



Variation of ${\cal R}_G$ and ${\cal P}_G$ scores depending on the number of bins ${\cal B}$

Observation: stabilization of these two global scores when number of bins sufficiently large.

Comparison to AUC plots



Performance plots generated with *DetEval* tool [Wolf and Jolion, 2005] (recall in purple, precision in blue); top: detector 1 ($R_{OV} = 0.37$, $P_{OV} = 0.32$); bottom: detector 2 ($R_{OV} = 0.49$, $P_{OV} = 0.69$).

Earth Mover's Distance detailed

Let $P = \{(p_i, w_{p_i})\}_{i=1}^m$ and $Q = \{(q_j, w_{q_j})\}_{j=1}^n$ be two signatures where p_i and q_j are the position of *i*th, respectively *j*th element and w_{p_i} and w_{q_j} their weights. The EMD searches for a flow $F = [f_{ij}]$ between p_i and q_j , that minimizes the cost to transform P into Q:

$$COST(P,Q,F) = \sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij},$$
(1)

where d_{ij} is the ground distance between clusters p_i and q_j ; the cost minimization is done under the following constraints:

$$f_{ij} \ge 0, \quad \sum_{j=1}^{n} f_{ij} \le w_{p_i}, \quad \sum_{i=1}^{m} f_{ij} \le w_{q_j}, \quad i \in [1, m], \ j \in [1, n]$$
$$\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij} = min(\sum_{i=1}^{m} w_{p_i}, \sum_{j=1}^{n} w_{q_j}), \quad i \in [1, m], \ j \in [1, n]$$

The EMD distance is then defined as:

$$EMD(P,Q) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij}}$$
(2)