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Abstract

We present a type system featuring intersection types and ω, a type constant which
is assigned to unused terms. We exploit and extend the technology of expansion
variables from the recently developed System I, with which we believe our system
shares many interesting properties, such as strong normalization, principal typings,
and compositional analysis. Our presentation emphasizes a polarity discipline and
shows its benefits. We syntactically distinguish positive and negative types, and give
them different interpretations. We take the point of view that the interpretation
of a type is intrinsic to it, and should not change implicitly when it appears at
the opposite polarity. Our system is the result of a process which started with an
extension of Trevor Jim’s Polar Type System.

1 Introduction

1.1 Background and Motivation

Designing a programming languages involves making many choices, and a
crucial part is finding a type system which achieves good balance between
complexity and expressivity. Complex analyses usually lead to long compi-
lation times, so the ability to perform type inference in a compositional way
— allowing for incremental compilation — is also highly desirable. A system
with principal typings can support this feature in an elegant way [5].

1.1.1 Algorithm W
Languages such as ML [3] and Haskell [7] use the popular algorithm W by
Damas and Milner [1], which relies on restricted universal quantification to

1 This work was partly supported by NATO grant CRG 971607 and EPSRC grant GR/R
41545/01.
2 Email: sebc@lrde.epita.fr.

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume70.htm


Carlier

obtain polymorphism. Sometimes these languages require the programmer to
add type annotations or extraneous data types to bypass their limitations,
possibly hindering readability and runtime performance. Also, this algorithm
works in a top-down fashion and does not have the principal typings property,
thus does not permit incremental compilation.

1.1.2 System P

The search for a simple and expressive type system allowing for total type
inference and compositional analysis led us to consider type systems combining
universal quantification and intersection types, which is another way to obtain
polymorphism.

In [6], Trevor Jim introduces System P, which is designed around the
duality between positive types (which express capabilities) and negative types
(which express requirements).

System P is a restriction of the combined system of intersection types and
universal type quantification. Intersections are restricted to appear only at
negative positions, and quantifiers only at positive positions.

It attempts to minimize requirements, and maximize capabilities, by plac-
ing the weakest possible types at negative occurrences and the strongest pos-
sible types at positive occurrences.

In order to preserve the polarity discipline, System P requires variables
to be instantiated to simple types (types without ∀ and ∧). Although this
system types more terms than algorithm W (see table 1 for some examples),
this restriction is annoying in practice, because it means, for example, that
for any typable term M , the term (λx.x)M has to be given a simple type.

1.1.3 System P’

We first developed an extension of System P (we call it P’, for lack of a better
name) which can instantiate type variables to polymorphic types, exploiting
the property of the system that in principal typings, type variables have ex-
actly one positive occurence and one negative occurence. The resulting system
is able to type more terms than System P, but is undecidable (in its unre-
stricted version), and is still unable to type some code that arises in practice.
For instance, this system is unable to type the last example shown in table 1:

(λf.(λx.xx)(λy.fy))(λz.z)

The principal typing {f : α → β} ` (λy.fy) : α → β would be derived, and
later refined to {f : (α1 ∧ α2) → (β1 ∧ β2)} ` (λy.fy) : (α1 ∧ α2) → (β1 ∧ β2).
This typing is too weak to type the above term, we would like to be able to
infer {f : (α1 → β1) ∧ (α2 → β2)} ` (λy.fy) : (α1 → β1) ∧ (α2 → β2).
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λf.f(λx.x)

W ∀α, β.((α → α) → β) → β
P ∀β.((∀α.α → α) → β) → β
P’ ∀β.((∀α.α → α) → β) → β
I (F (α → α) → β) → β

λy.yy

W not typable
P ∀α, β.((β → α) ∧ β) → α
P’ ∀α.(∃β.(β → α) ∧ β) → α
I ((Fβ → α) ∧ Fβ) → α

(λf.f(λx.x))(λy.yy)

W not typable
P ∀α.α → α
P’ ∀α.α → α
I α → α

(λx.x)(λy.yy)

W not typable
P not typable
P’ ∀α.(∃β.(β → α) ∧ β) → α
I ((Fα → β) ∧ Fα) → β

λx.(λy.yy)x

W not typable
P not typable
P’ ∀α.(∃β.(β → α) ∧ β) → α
I ((Fα → β) ∧ Fα) → β

(λf.(λx.xx)(λy.fy))(λz.z)

W not typable
P not typable
P’ not typable
I α → α

Table 1
Some terms and their infered types with algorithm W, Systems P, P’, and I

1.1.4 System I

The term (λf.(λx.xx)(λy.fy))(λz.z) is typable in Kfoury and Wells’ recent
System I [9], which does not have quantifiers, but uses a new technology,
called expansion variables, to enable terms to be analyzed several times at
different types.

After incorporating expansion variables to our system, it appeared that
they completely eliminated the need for (positive) universal and (negative)
existential quantifiers, when doing full inference. The essential difference be-
tween quantifiers and expansion variables is that an expansion variable may
appear in several locations, and expansions operate on whole derivations (in-
stantiation operates on a subset of the variables occuring in a derivation).

Also, the presence of quantifiers hides parts of the analysis: the types are
more concise, but the fact that some term is used at several types does not
clearly appear in derivations. This information can be used in compilers to
generate better code by program specialisation [4,10].

Since expansion variables are clearly superior, we decided to remove quan-
tifiers from the system.
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1.1.5 System Iω

The system we present here is a slight variant of System I, which we will
call System Iω. Its technical contribution is relatively small (we assign the
type constant ω to unused terms), and we do not prove any of its properties.
Our intent is rather to give a simple presentation of a type system and an
algorithm exploiting expansion variables, in order to make this technology
more accessible.

Our presentation keeps explicit the distinction between positive and neg-
ative types, which we found very useful while developping System P’. Prin-
cipal typings in System Iω also have the property that type variables have
two occurences of opposite polarities, which guarantees that we respect the
polarity discipline; for instance, we never put negative types in positive po-
sitions. When implementing the system, this property enables bindings for
type variables to be removed from substitutions after every single use, since
the other occurrence of the variable generated the binding. We found that
checking that the substitution was empty after typing a term was an efficient
way to catch bugs in the implementation. Also, we found it very helpful to
use distinct data types for positives and negative types, so that the compiler
could statically check that the code respected the polarity discipline.

Note that this discipline may appear to be somewhat arbitrary, because
the system can be presented without so much emphasis on polarities. How-
ever, we think that assigning intrinsic interpretations to positive and negative
types also sheds some light on the inference process. The core of our algo-
rithm uses a slightly modified version of the β-unification developped in [8],
named for its ability to characterize β-strong normalization of terms. With
the polarity discipline, it is easier to see that the unification algorithm indeed
performs β-reduction at the level of types: positive types (capabilities, the
type of values manipulated by the program) are propagated and refined using
expansion variables to match the requirements expressed by negative types.
The inference algorithm thus performs some form of exact flow analysis.

1.2 Connection with Linear logic

A connection can be made with Girard’s Linear Logic [2], which also empha-
sizes on the duality between capabilities and requirements. The identity rule
in linear sequent calculus is:

(identity)
` A⊥, A

The linear negation, (·)⊥, expresses the duality between an action A (input,
requirements) and reaction A⊥ (output, capabilities).

The linear implication is a defined connective: (A −◦ B) = (A⊥ P B);
it “consumes” a proof of A to produce a proof of B. The consumer for an
implication is (A −◦ B)⊥ = (A⊗B⊥); it contains a proof of A and a consumer
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for a proof of B — programmaticaly, B⊥ is a continuation.

The type system we present makes use of a similar negation to express
that some (positive or negative) type is “consumed”, without violating the
polarity discipline (i.e. without confusing the interpretations of types).

Note that in our system, an arrow appearing in a positive (respectively
negative) position intuitively corresponds to Linear Logic’s tensor sum P (re-
spectively tensor product ⊗).

1.3 Contributions

By experimenting with a system mixing intersection types and universal quan-
tifiers, we noticed that when performing total inference, intersection types with
expansion variables seem to completely remove the need for universal quanti-
fiers. They express the same form of polymorphism, but expansion variables
are more flexible and powerful.

We underline the importance of the polarity discipline, by explicitly as-
signing different interpretations to positive and negative types. Checking that
this discipline is not violated has proven to be very useful while designing and
implementing the system.

We present an intersection type system that respects this discipline, and
we are confident that it enjoys the same properties as System I’s, though we
do not have any proofs yet.

We extend the technology of expansion variables by including ω in ex-
pansions, leading to a slightly simpler presentation and typings which better
reflect the behaviour of terms.

We provide a simple and relatively easy to implement inference algorithm.
Our practical experience is that even a naive implementation (explicitly ap-
plying substitution instead of using mutable variables) is reasonably efficient.
We have also implemented it using a union-find structure.

1.4 Future Work

Giving different interpretations to positive and negative types, along with the
ability to express the fact that some type is “consumed”, helped greatly while
designing the system. This discipline guides the intuition, and will certainly be
useful when extending the system, for example with union types and recursion.

Quantifiers have been left out of the system for the sake of simplicity.
However, it may be interesting to re-introduce them in some cases, for example
when the types have to be shown to the programmer. While making the
analysis cruder, the typings become smaller and more readable.

We have an implementation which uses a different strategy of solving the
constraints, and which is able to type some weakly normalizing terms, thanks
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to the ω expansion which discards constraints which can have no impact on
the result. Whether this strategy allows to type all normalizing terms is left
for future work.

2 Intersection Types with Expansion Variables and ω

In order to ease the comparison with System I, we adopt and adapt most of
the definitions and conventions of [9].

2.1 The Type System

Definition 2.1 [λ-Terms]

Let x and y range over λ-Var, the set of λ-term variables. We use the set
of terms

M, N ∈ Λ ::= x | λx.M | MN ,

quotiented by α-conversion, and the usual notion of reduction

(λx.M)N →β M [x := N ].

Definition 2.2 [Variables]

We use binary strings in {0, 1}∗, called offset labels, to name (and later
rename) variables. Let ε denote the empty string. Let s and t range over
offsets. If s, t ∈ {0, 1}∗, we note their concatenation s · t.

We define the set TVar of type variables, the set EVar of expansion variables,
and the set Var of variables, as well as metavariables over these sets:

α ∈ TVar = {as
i | i ∈ N, s ∈ {0, 1}∗}

F ∈ EVar = {Fs
i | i ∈ N, s ∈ {0, 1}∗}

v ∈ Var = EVar ∪ TVar

We also define sets of polarized type variables by annotating variables with
a − or + in prefix superscript:

TVar+ = {+α | α ∈ TVar}
TVar− = {−α | α ∈ TVar}

Definition 2.3 [Types] We define the set P of positive types, the set N of
negative types, and the set T of types, as well as metavariables over these sets:

π ∈ P ::= ω | π̄ | (π0 ∧ π1) | (F π)
π̄ ∈ P̄ ::= +α | (ν → π̄)
ν ∈ N ::= ω | ν̄ | (ν0 ∧ ν1) | (F ν)
ν̄ ∈ N̄ ::= −α | (π → ν̄)
τ ∈ T ::= ν | π

We use the set of types T only when a definition is uniform on P and N .
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Note that polarity annotations on variables are redundant, because they
can always be recovered if the global polarity of a type is known. Their purpose
is to introduce a syntactic difference between positive types and negative types,
to support our intuition that the interpretation of a type is intrinsic to it.

We use identical symbols for connectives which have dual purposes. Posi-
tive types P are interpreted in terms of capabilities of an output, and negative
types N in terms of requirements on an input.

A positive arrow type ν → π̄ is the type of a functional value, as introduced
by a λ-abstraction (λx.M). A negative arrow type π → ν̄ expresses the fact
that a functional value is expected/consumed, and is of course introduced
by an application (xM). It is interesting to note that each positive (resp.
negative) arrow in the typing of a term M corresponds to an abstraction
(resp. application) in the normal form of M .

Positive intersections permit analyzing a term several times, in order to
give it a stronger type (i.e., with greater capabilities). Negative intersections
combine requirements into stronger requirements, and are mainly introduced
by an application MN when some variable x occurs free in both M and N .

In positive positions, the type constant ω stands for the greatest capa-
bilities, while in negative positions ω stands for the least requirements. For
example, it is syntactically obvious that ω → π is the type of a function which
does not use its argument (either directly or indirectly). The presence of this
type constant will allow environments to be defined as total functions, assign-
ing type ω to all variables which do not occur free in a term. This leads to
simpler definitions.

The type constant ω can be thought of as the intersection of zero types,
so we establish the following equalities on types:

ω ∧ τ = τ = τ ∧ ω

Definition 2.4 [The ⊥ Relation] We define an asymmetric relation ⊥ (read
“perp”) of N and P as follows:

ω ⊥ ω −α ⊥ +α

ν1 ⊥ π1 ν2 ⊥ π2

(ν1 ∧ ν2) ⊥ (π1 ∧ π2)

ν ⊥ π ν̄ ⊥ π̄

(π → ν̄) ⊥ (ν → π̄)

ν ⊥ π

(Fν) ⊥ (Fπ)

When we write ν ⊥ π, it means that the requirements ν are fulfilled by
the capabilities π.

We define (·)⊥ (read “perp”) as an operation from T to T such that τ⊥ is
τ with the polarity of every variable flipped. Note that ν⊥ ∈ P and π⊥ ∈ N ,

and that (·)⊥ is involutive (i.e. τ⊥
⊥

= τ).
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ν ⊥ π
VAR

{x : ν} ` x : π

A ` M : π
F

FA ` M : Fπ

A ` M : π
ABS

A \ x ` λx.M : A(x) → π

A ` M : π0 B ` M : π1
∧

A ∧B ` M : π0 ∧ π1

A ` M : π1 B ` N : π2 (π2 → π⊥
3 ) ⊥ π1

APP
A ∧B ` MN : π3

A ` M : π
ω

{} ` M : ω

Table 2
Type inference rules of System Iω

The intuitive meaning of (·)⊥ depends on the polarity at which it occurs. In
negative position, π⊥ indicates that a value of type π is consumed. In positive
position, ν⊥ indicates that the requirements ν are used to produce a value. For
example, one of the types of the identity function is (−α → +α)⊥ → (−α → +α),
meaning that a value of type −α → +α is consumed, and a value of the same
type is produced.

Essentially, the ⊥ relation and the (·)⊥ operation express the duality be-
tween requirements/inputs and capabilities/outputs.

Definition 2.5 [Environment] An environment A is a total function from
λ-Var to N . We use the following notation:

({xi : νi}i∈I)(xj) =

{
νj if j ∈ I,
ω if j /∈ I.

We write A \ x for the environment that :

(A \ x)(y) =

{
ω if x = y,
A(y) if x 6= y.

We write A1 ∧ A2 for the environment such that:

(A1 ∧ A2)(x) = A1(x) ∧ A2(x)

We write FA for the environment such that:

(FA)(x) =

{
ω if A(x) = ω,
Fν if A(x) = ν (and ν 6= ω).

2.2 Typing Rules

Type inference rules are given in table 2.
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Rule VAR is very close to the identity rule of Linear Logic. It introduces
a value of type π, interpreted as capabilities (the variable is viewed as an
output), and a “consumer” of type ν in the environment, which is interpreted
as requirements (the variable is viewed as an input); the two types are tied by
the ⊥ relation.

Rule ABS introduces a positive arrow, which represents a functional value.
Note that since the environment is a total function, no special rule is necessary
to handle the case where x is not free in M . This is unlike System I, which
uses a fresh type variable instead of ω. Type variables introduced in this
fashion have a single occurrence in a principal typing, while System Iω has the
property that each type variable corresponds to a flow that can actually occur
in the program, from the negative occurrence of the variable to its positive
occurrence.

In rule APP, the negative arrow on the left of the (π2 → π⊥
3 ) ⊥ π1 condition

is a “consumer” for a functional value. The type (π⊥
3 ) to the right of the

arrow can be thought of as a continuation which will consume the result of
the function, which has type π3. There are several equivalent ways to write
the APP rule. We choose the one in table 2 because it makes the negative
application explicit, and it is closer to the inference algorithm. A more succinct
but equivalent version is:

A ` M : π⊥
1 → π2 B ` N : π1

APP
A ∧B ` MN : π2

Here capabilities π1 are consumed by the function M : this is made explicit by
the occurrence of (·)⊥ in π⊥

1 .

The rule F opens up the possibility for a term to be analyzed any number
of times. It is not needed to derive a type for a term, but it allows the inference
algorithm to give stronger types. For example, (λf.λx.fx) : (F +α → −β) →
F−α → +β is stronger than (λf.λx.fx) : (+α → β) → −α → +β, because the
first one can be applied to a function which uses its argument at different
types, while the second one cannot.

The rule ∧ combines different analysis of the same term, yielding a stronger
type for it. The inference algorithm transforms occurences of the F rules
(which express a potentiality) into ∧, as analysis proceeds. This transforma-
tion is called an expansion.

The rule ω allows a typable term to be assigned type ω. This rule needs
to be used when applying a function (λx.M) whose argument has type ω (for
example, when x does not occur free in M). In fact, running the inference
algorithm on some term performs some kind of dead code analysis: all occur-
rences of the ω rule indicate that the term is never used. We do not allow type
ω for any term because it would break the correspondence with the inference
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algorithm.

2.3 Substitution

We now introduce the necessary definitions used by the inference algorithm.

Definition 2.6 [Expansion] We define the set E of expansions, as well as a
metavariable over this set:

e ∈ E ::= ω | 2 | e0 ∧ e1 | F e

Expansions are the actualization of the potentiality expressed by expansion
variables. It indicates how many times a term is analyzed: 0 (ω), 1 (2), m+n
(e0∧e1, where e0 indicates that the term is analyzed m times, and e1 indicates
that the term is analyzed n times), or that it still has the potentiality to further
be refined (F e).

Definition 2.7 [Substitution] A substitution is a total function S : (TVar ∪
EVar) → (T ∪E) which respects “sorts”, i.e., S(−α) ∈ N for every −α ∈ TVar−,
S(+α) ∈ P for every +α ∈ TVar+, and S(F ) ∈ E for every F ∈ EVar. The
notation S = {[αi 7→ 〈νi, πi〉, Fj 7→ ej]}i∈I,j∈J denotes the substitution such
that:

S(−αk) = νk if k ∈ I,
S(+αk) = πk if k ∈ I,
S(−αk) = −αk if k /∈ I,
S(+αk) = +αk if k /∈ I,
S(Fk) = ek if k ∈ J,
S(Fk) = Fk2 if k /∈ J.

Definition 2.8 [Variable Renaming] For every t ∈ {0, 1}∗, we define a vari-
able renaming 〈·〉t from T ∪ E to T ∪ E , by induction:

〈ω〉t = ω
〈−as

i 〉t = −as·t
i 〈2〉t = 2

〈+as
i 〉t = +as·t

i

〈τ → τ ′〉t = 〈τ〉t → 〈τ ′〉t
〈τ0 ∧ τ1〉t = 〈τ0〉t ∧ 〈τ1〉t 〈e0 ∧ e1〉t = 〈e0〉t ∧ 〈e1〉t
〈Fs

i τ〉t = Fs·t
i 〈τ〉t 〈Fs

i e〉t = Fs·t
i 〈e〉t

In words, 〈τ〉t is obtained from τ by appending t to the offset label of every
variable in τ . Note that renaming respects sorts and polarities, i.e. if π ∈ P
then 〈π〉t ∈ P , if ν ∈ N then 〈ν〉t ∈ N , and if e ∈ E then 〈e〉t ∈ E .

Definition 2.9 [Substitution on Types and Expansions] A substitution S is
extended to a function S̄ from E × (T ∪ E) to (T ∪ E) which respects sorts, in
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π
⊥ ⊥ π

VAR
{x : π

⊥} ` x : π
ABS

{} ` λx.x : π
⊥ → π

F
+

α → −
β ⊥ F

−
α → +

β
VAR

{y : F
+

α → −
β} ` y : F

−
α → +

β

−
α ⊥ +

α
VAR

{y :
−

α} ` y :
+

α
F

{y : F
−

α} ` y : F
+

α
APP

{y : (F
+

α → −
β) ∧ F

−
α} ` yy :

+
β

ABS
{} ` λy.yy : π

APP
{} ` (λx.x)(λy.yy) : π

where π = ((F+α → −β) ∧ F−α) → +β

Table 3
Principal typing of (λx.x)(λy.yy)

the following way:

S̄(2, ω) = ω
S̄(2, −α) = S(−α) S̄(2,2) = 2

S̄(2, +α) = S(+α)
S̄(2, F τ) = S̄(S(F ), τ) S̄(2, F e) = S̄(S(F ), e)

S̄(2, τ → τ ′) = S̄(2, τ) → S̄(2, τ ′)
S̄(2, τ0 ∧ τ1) = S̄(2, τ0) ∧ S̄(2, τ1) S̄(2, e0 ∧ e1) = S̄(2, e0) ∧ S̄(2, e1)

S̄(ω, τ) = ω S̄(ω, e) = ω
S̄(e0 ∧ e1, τ) = S̄(e0, 〈τ〉0) ∧ S̄(e1, 〈τ〉1) S̄(e0 ∧ e1, e

′) = S̄(e0, 〈e′〉0) ∧ S̄(e1, 〈e′〉1)
S̄(F e, τ) = F S̄(e, τ) S̄(F e, e′) = F S̄(e, e′)

Applying expansions and substitutions can be defined as distinct operations,
but it is clearer and more convenient to apply them simultaneously.

Definition 2.10 [Substitution on Environments] A substitution is lifted to
operate on environments, in the following way:

(S̄(e, A))(x) = S̄(e, A(x)).

2.4 Examples

Depicted in tables 3, 4 and 5 are examples of derivations obtained by the
inference algorithm exposed in section 3 for some interesting terms.

Table 3 presents the derivation for the fourth example in table 1.

Table 4 exposes the dynamics of the system. The substitution computed
for the last use of the APP rule is

{[F1 7→ 2, F2 7→ 2 ∧2, α 7→ 〈π⊥
2 , π2〉, β 7→ 〈π⊥

2 , π2〉]}

The expansion variable F2 has been instantiated to 2 ∧2 to allow analyzing
the type of (λx.x) twice, as (λy.yy)(λx.x) reduces to (λx.x)(λx.x). The type
π2 of the right subterm (which takes the place of α) is still allowed to be
refined any number of times thanks to F1. The left subterm (λx.x) uses its
argument once, hence F1 7→ 2.

Table 5 shows the result of an ω-expansion. For comparison, System I
infers the typing z : α0 ∧ α1

6 ` (λx.xx)(λy.z) : α0.
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F1
+

α → −
β ⊥ F1

−
α → +

β
VAR

{y : F1
+

α → −
β} ` y : F1

−
α → +

β

−
α ⊥ +

α
VAR

{y :
−

α} ` y :
+

α
F

{y : F1
−

α} ` y : F1
+

α
APP

{y : (F1
+

α → −
β) ∧ F1

−
α} ` yy :

+
β

ABS
{} ` λy.yy : ((F1

+
α → −

β) ∧ F1
−

α) → +
β

−
γ ⊥ +

γ
VAR

{x :
−

γ} ` x :
+

γ
ABS

{} ` λx.x : π2
F

{} ` λx.x : F2(
−

γ → +
γ)

?

⇓

(π
⊥
2 → π2)

⊥ ⊥ π
⊥
2 → π2

VAR
{y : (π

⊥
2 → π2)

⊥} ` y : π
⊥
2 → π2

π
⊥
2 ⊥ π2

VAR
{y : π

⊥
2 } ` y : π2

APP
{y : (π

⊥
2 → π2)

⊥ ∧ π
⊥
2 } ` yy : π2

ABS
{} ` λy.yy : (π

⊥
2 → π2)

⊥ ∧ π
⊥
2 → π2

π
⊥
2 ⊥ π2

VAR
{x : π

⊥
2 } ` x : π2

ABS
{} ` λx.x : π

⊥
2 → π2

−
γ
1 ⊥ +

γ
1

VAR
{x :

−
γ
1} ` x :

+
γ
1

ABS
{} ` λx.x : π2

∧
{} ` λx.x : (π

⊥
2 → π2) ∧ π2

APP
{} ` (λy.yy)(λx.x) : π2

where π2 = −γ1 → +γ1.

Table 4
Principal typing of (λy.yy)(λx.x)

(ω → −
α1) ⊥ (ω → +

α1)
VAR

{x : ω → −
α1} ` x : ω → +

α1

−
α2 ⊥

+
α2

VAR
{x :

−
α2} ` x :

+
α2

ω
{} ` x : ω

APP
{x : ω → −

α1} ` xx :
+

α1
ABS

{} ` λx.xx : (ω → −
α1) → +

α1

−
α1 ⊥

+
α1

VAR
{z :

−
α1} ` z :

+
α1

ABS
{z :

−
α1} ` λy.z : ω → +

α1

.

.

.
ω

{} ` λy.z : ω
∧

{z :
−

α1} ` λy.z : ω → +
α1

APP
{z :

−
α1} ` (λx.xx)(λy.z) :

+
α1

Table 5
Principal typing of (λx.xx)(λy.z)

3 The Inference Algorithm

The inference algorithm is given in table 6. It takes a term M as input,
and gives a pair 〈A, π〉 of an environment A and a positive type π such that
A ` M : π is a typing of M , which we believe is principal (though we do not
have a proof yet).

Definition 3.1 [Ground Composition of Substitutions] Let S1 and S2 be two
substitutions with disjoint domains. We write their ground composition S2�S1

defined as follows:

S2 � S1 = {[v 7→ S̄2(2,S1(v)) | v ∈ Var]}

Definition 3.2 [Most General Solution] We write MGS(ν ⊥ π) for a substitu-
tion S such that S̄(ν) ⊥ S̄(π). In order to make the algorithm more readable,
we define an operator “;” as follows:

S ; (ν ⊥ π) = MGS(S̄(2, ν) ⊥ S̄(2, π)) � S

The substitution MGS(ν ⊥ π) is computed as shown in table 7, choosing rules
by first matched.
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PP(x) =
let α be fresh
in 〈{x : −α}, +α〉

PP(λx.M) =
let 〈A, π〉 = PP(M)
in 〈A \ x, A(x) → π〉

PP(MN) =
let 〈A, π1〉 = PP(M)

〈B, π2〉 = PP(N)
α and F be fresh
S = MGS((Fπ2 → −α) ⊥ π1)

in 〈S̄(2, A ∧ FB), S̄(2, +α)〉

Table 6
The inference algorithm computing Principal Pairs

MGS(ν̄ ⊥ +α) = {[α 7→ 〈ν̄, ν̄⊥〉]}
MGS(−α ⊥ π̄) = {[α 7→ 〈π̄⊥, π̄〉]}
MGS(ω ⊥ Fπ) = {[F 7→ ω]}
MGS(ν̄ ⊥ Fπ) = {[F 7→ 2]} ; (ν̄ ⊥ π)

MGS((ν0 ∧ ν1) ⊥ Fπ) = {[F 7→ F 02 ∧ F 12]} ;
(ν0 ⊥ 〈Fπ〉0) ; (ν1 ⊥ 〈Fπ〉1)

MGS(Fν ⊥ Fπ) = MGS(ν ⊥ π)
MGS(Gν ⊥ Fπ) = {[F 7→ GH2]} ; (ν ⊥ Hπ) with H fresh

MGS((π2 → ν2) ⊥ (ν1 → π1)) = MGS(ν1 ⊥ π2) ; (ν2 ⊥ π1)

Table 7
Computing the most general solution to a ⊥-problem

This algorithm is a variant of β-unification, developped in [8].

Proposition 3.3 In any problem ν ⊥ π generated in PP(MN), any expansion
variable has exactly one positive occurrence, and may have an arbitrary number
of negative occurrences.

The intuition behind this remark is that a term of the λ-calculus has an
arbitrary number of inputs (its free and abstracted variables), but a single
output. During β-unification, the positive occurence of an expansion variable
may be matched against either an intersection, a simple type ν̄, or ω. Applying
the resulting expansion will effectively duplicate the term (e0 ∧ e1), actualize
the fact that it is used only once (2), or discard the term (ω).

As a side note, it may be worth noting the similarity with the rules of Lin-
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ear Logic exponentials, contraction (duplicate), dereliction (use only once),
weakening (discard), and “of course” (use any number of times). An essential
difference is that these rules manipulate formulas, while expansions manipu-
late proofs.

Proposition 3.4 Principal typings returned by algorithm PP have the prop-
erty that every type variable which occurs in the typing has exactly two oc-
curences, of opposite polarities.

The case for x obviously has this property. The case for (λx.M) does not
affect the number of occurences of variables, and does not affect polarities (it
does not mention (·)⊥). In the case for (MN), by the induction hypothesis,
type variables which have a single occurence in π1 (resp. π2) have their only
other occurence in A (resp. B). Thus, every type variable occuring in the
problem ((Fπ2 → α−) ⊥ π2) has its other occurence in 〈A∧FB, α+〉. Applying
the most general solution S of the ⊥ problem preserves the invariant (we do
not prove it here), hence the stated result.

The fresh type variable α plays the role of an identity continuation for the
application: its negative occurence −α can be seen as a sink which will receive
the type of the result of the function, and its positive occurence +α as a source
which will output it unchanged as the result of the application.

Note that in an implementation interested only in principal typings of
terms, the (·)⊥ operation is never needed. It expresses the fact that a some
capabilities or requirements have been used up, but the inference algorithm
only manipulates actual capabilities and requirements. This can be seen by
looking at the first two rules in table 7, and considering that variables have
only two occurrences of opposite polarities: each type variable occurring once
in the ⊥ problem may generate a binding in the most general solution to this
problem, and its other occurrence is then either the fresh variable α taken in
the APP rule, or some type variable occurring in the environment A ∧ FB.
Consequently, the part in the range of the substitution which is under a (·)⊥
is only useful when applying substitutions to the original problems — which
the algorithm never does. Types under a (·)⊥ are seen when displaying whole
derivations.

4 Comparison with System I

The system we present is very close to System I, and we expect it to share
most of its properties. However, we believe that our presentation is clearer,
and has many small improvements over System I:

• Defining environments as total functions allows for a single ABS rule instead
of two as in System I.

• Our principal typings [11] have the property that every type variable has ex-
actly one negative occurrence and one positive occurrence, and corresponds
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to a flow that can actually occur in the program.

• Including ω in expansions is new. Thus, if the analysis determines that a
particular value will not be used, this information can be propagated to the
type environment information for the free variables referenced by the value.
E.g., in the term

(λx.y)(λz.abcde)

we can infer the type ω in the type environments for the variables a, b, c, d,
and e.

• Our definition of lifting substitutions is much simpler than the one in [9].
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