
JSPP: Morphing C++ into JavaScript

Christopher Chedeau, Didier Verna
EPITA Research and Development Laboratory

14–16, rue Voltaire
94276 Le Kremlin-Bicêtre CEDEX, France

{christopher.chedeau,didier.verna}@lrde.epita.fr

ABSTRACT
In a time where the differences between static and dynamic
languages are starting to fade away, this paper brings one
more element to the “convergence” picture by showing that
thanks to the novelties from the recent C++0x standard, it
is relatively easy to implement a JavaScript layer on top of
C++. By that, we not only mean to implement the language
features, but also to preserve as much of its original notation
as possible. In doing so, we provide the programmer with a
means to freely incorporate highly dynamic JavaScript-like
code into a regular C++ program.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tion—multi-paradigm languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms
Design, Languages

Keywords
C++, JavaScript, Multi-Paradigm Programming

1. INTRODUCTION
The relations between static and dynamic language com-

munities are notoriously tense. People from both camps of-
ten have difficulties communicating with each other and tend
to become emotional when it comes to such concerns as ex-
pressiveness, safety or performance. However, and perhaps
due (at least partially) to the constantly increasing popu-
larity of modern dynamic languages such as Ruby, Python,
PHP or JavaScript, those seemingly irreconcilable worlds are
starting to converge. For example, while C# recently pro-
vided support for dynamic types, Racket[8], a descendant
from Scheme, allows you to freely mix static typing with an
otherwise dynamically typed program.

C++0x[13], the new standard for the C++ language, in-
corporates many concepts well known in the functional or
dynamic worlds, such as “lambda (anonymous) functions”,
“range-based iterators” (an extended iteration facility) and
“initializer lists” (an extended object initialization facility).

To bring one more element to this general trend towards
convergence, this article relates the surprising discovery that
given this new C++ standard, it is relatively easy to imple-
ment JavaScript in C++. The idea is to make all the fea-
tures of JavaScript available in C++ while preserving the

original JavaScript syntax as much as possible. Ultimately,
we would like to be able to simply copy and paste JavaScript
code in a C++ source file and compile it as-is.

A first prototypical implementation of a syntax-preserving
JavaScript engine in C++ has been developed. The project
is called JSPP. JSPP currently implements all the core fea-
tures of JavaScript in about 600 lines of code. Being only
a prototype however, JSPP is not currently optimized and
does not provide the JavaScript standard libraries. JSPP is
an open-source project. The source code and some examples
can be found at the project’s Github Repository1.

In section 2, we describe the implementation of JavaScript’s
dynamic type system and object notation (a.k.a. JSON[4]).
Section 3 on page 3 provides an explanation on how to use
the C++0x lambda functions to emulate JavaScript func-
tions and object constructors. Section 4 on page 5 addresses
the support for JavaScript object properties (most notably
prototypal inheritance and contents traversal). Finally sec-
tion 5 on page 6 discusses some other aspects of the language
along with their implementation.

2. DATA TYPES AND JSON
In this section, we describe the implementation of JavaScript’s

dynamic type system and object notation.

2.1 Primitive Types
JavaScript has few primitive types:

Boolean: true or false,
Number: double precision floating-point values,
String: unicode-encoded character sequences,
undefined: special type with only one eponymous value.

The value undefined is the default value for (undeclared)
variables. JSPP values are implemented as instances of a
single Value class. This class emulates the usual boxing
technique of dynamic languages, and notably stores a type
flag for each value. A JavaScript variable assignment such
as:

var foo = 1;

essentially translates into the following C++ code:

Value foo = Integer (1);

In JSPP, var is simply typedef’ed to Value, so as to pre-
serve the original JavaScript notation. The Value class con-
structor is overloaded to handle all basics C++ types such

1http://github.com/vjeux/jspp

EPITA / LRDE Technical Report #201201-TR 1

1 var undefined,
2 string = ”SAC”,
3 number = 4.2;
4

5 var json = {
6 ”number”: 42,
7 ”string”: ”vjeux”,
8 ”array”: [1, 2, ”three”],
9

10 ”nested”: {
11 ”first”: 1,
12 ”second”: 2
13 }
14 };

Listing 1: Original JSON

1 var undefined,
2 string = ”SAC”,
3 number = 4.2;
4

5 var jsppon = {
6 [”number”] = 42,
7 [”string”] = ”vjeux”,
8 [”array”] = {1, 2, ”three”},
9

10 [”nested”] = {
11 [”first”] = 1,
12 [”second”] = 2
13 }
14 };

Listing 2: JSPP JSON

as const char*, int, double etc. The argument-less ver-
sion of the constructor is overloaded to create an undefined

value.

2.2 Composite Types
In JavaScript, everything that is not of a primitive type

is an object. All JavaScript objects are actually just asso-
ciative arrays (or dictionaries) in which the keys are strings.
Keys are often referred to as the object’s “properties”.

All values of a primitive type may have an object coun-
terpart. This allows them to have properties and specific
“methods”. JavaScript automatically boxes primitive values
when used in an object context[7]. In such a situation, the
objects in question are passed by reference instead of by
value[12]. In the current implementation of JSPP, primitive
values are always boxed.

A JavaScript array is an object the keys of which are the
base 10 string representation of the elements positions. The
first element has the key "0", the second has the key "1" and
so on. Additionally, arrays have a special length property
which is updated automatically when new elements (with a
numerical key) are added.

As mentioned before, JavaScript introduces a purely syn-
tactic notation for objects and arrays called JSON[4] (JavaScript
Object Notation). JSON introduces two distinct syntactic
forms for creating regular objects and arrays. Implement-
ing this notation (or something close), turns out to be the
biggest challenge for JSPP. The result is depicted in list-
ings 1 and 2. Eventhough JavaScript exhibits two different
syntactic forms for variadic object and array initialization,
we need a single C++0x feature, called “initializer lists”[14],
to implement both.

As far as the array notation is concerned, the implemen-
tation is straightforward, although one drawback is that
JavaScript’s square brackets [] needs to be replaced with
C++’s curly braces {}. See line 8 on the corresponding
listings.

The object notation, on the other hand, requires more
trickery. JavaScript uses colons (:) to separate keys from
their corresponding values. Our problem is that the colon
is not an overloadable operator in C++. Consequently, we
choose to use the equal sign (=) instead. See for instance
line 6 on the corresponding listings.

Since JavaScript object properties (keys) are strings, we
use the type const char* in JSPP. However, values of that

type are not class instances, and hence cannot be operator-
overloaded (something required for property initialization,
as explained below). One possible notation to transform a
const char* into an instance of a class is the following:

_["key"]

The choice of this notation is motivated by the fact that it is
reminiscent of the JavaScript object property access syntax,
and hence rather easy to remember:

obj["string"]

In order to implement this notation, we create a singleton
class named Underscore equipped with an eponymous in-
stance. This class overloads both the bracket [] and equal
= operators so as to create a KeyValue object, that is, an
object holding both a property name (the key), and its as-
sociated value.

Initializing an object contents can now be done in two
ways: either by providing KeyValue objects, or only Value

objects. When a KeyValue object is encountered, the pair
is inserted directly into the object’s internal map. When a
Value object is encountered, it is regarded as an array ele-
ment. As a consequence, the key is the string representation
of the object’s current length property, which is automati-
cally increased by one after the insertion.

2.3 Caveats
From a syntactical point of view, the notation provided

by JSPP is heavier than the original JavaScript one. The
key part, notably, is more verbose, and equal signs are wider
than colons. On the other hand, a slight improvement over
JSON is that keys can in fact be any expression leading to
instantiating the Underscore class, whereas in JavaScript,
keys can only be literal strings. This allows for dynamic
computation of keys, something not possible in JavaScript.

Unfortunately, using initializer lists introduces some corner-
cases. For instance, constructing an object using an empty
initialization list does not call the constructor with an empty
initializer list but without any argument instead. This means
that {} is equivalent to undefined instead of an empty ob-
ject.

For technical reasons not explained here, nested objects
with only one property, such as:

{_["nested"]= {_["prop"]=1}}

EPITA / LRDE Technical Report #201201-TR 2

1 function forEach (array, func) {
2 for (var i = 0; i < array.length; ++i) {
3 func(i, array[i]);
4 }
5

6 };
7

8 forEach([’SAC’, 2012, ’Italy’],
9 function (key, value) {

10 console.log(key, ’−’, value);
11

12 });
13

14 // 0 − SAC
15 // 1 − 2012
16 // 2 − Italy

Listing 3: JavaScript functions

1 var forEach = function (var array, var func) {
2 for (var i = 0; i < array[”length”]; ++i) {
3 func(i, array[i]);
4 }
5 return undefined;
6 };
7

8 forEach({”SAC”, 2012, ”Italy”},
9 function (var key, var value) {

10 cout << key << ”−”<< value;
11 return undefined;
12 });
13

14 // 0 − SAC
15 // 1 − 2012
16 // 2 − Italy

Listing 4: JSPP functions

will produce a conflict between constructors. One solution
to this problem is to explicitly cast the nested value using
underscore _ as a function: _(val).

JavaScript allows both double quotes " and single quotes ’
for string literals (they are completely equivalent notations).
JSPP only supports double quotes " because single quotes
are used to denote characters in C++.

In JavaScript, multiple libraries can provide the same
global variable (for example $), possibly overriding a pre-
viously existing one. In C++ the same situation would lead
to a name clash instead. Indeed, one cannot redeclare the
same variable name twice. A technique frequently used in
JavaScript is to insert such a global variable as a property of
the global object (window in the browser). When a variable
is not found in any scope, JavaScript will search for it inside
the global object. However, in C++ we cannot reproduce
the same mechanism. A way to deal with this issue is to
make an explicit local binding of the global variable, in the
user code, for instance:

var $ = global[’$’];

Another possibility would be to use the C preprocessor (#define
and #ifndef).

In both JavaScript and C++, it is possible to declare vari-
ables in the middle of a function’s body. However, JavaScript
has a feature called “hoisting” which automatically removes
variable declarations from a function’s body and puts them
back at the top of the function. As a result, the same code in
JavaScript and JSPP will have different semantics. Today,
hoisting has a tendency to be regarded as a misfeature[5].
Doing hoisting in C++ can be done only manually and con-
versely, a hoisting-less behavior in JavaScript is possible by
manually adding new scopes every time a variable is de-
clared.

Finally, JavaScript automatically creates a global variable
if you assign a value to a previously undeclared variable
(that is, without using the var keyword). This behavior is
not possible in C++, although in JavaScript, it is an im-
portant source of errors and is also considered as a language
misfeature. Therefore, it is not critical that JSPP does not
provide it.

2.4 Optimization
JavaScript features an automatic memory management

system. JSPP, on the other hand, uses a simple reference
counting scheme to handle garbage collection.

Modern JavaScript implementations use boxed objects ex-
cept for immediate types (such as integers). For example,
V8 (the JavaScript engine that powers Google Chrome) uses
tagged pointers[2] and JaegerMonkey (the one from Mozilla
Firefox) does NaN boxing[18]. In our current implementa-
tion of JSPP, objects are always boxed.

Array access through a hash table is costly: keys are num-
bers that need to be converted into their string representa-
tion before the hash table can be accessed. This process is
a lot slower than a simple offset addition. For efficiency rea-
sons, properties with a numerical key are stored in an actual
dense array in some implementations[1].

None of these optimizations are currently implemented in
JSPP, although we hope to be able to provide them in the
future.

3. FUNCTIONS
JavaScript functions are first-class objects, as per Christo-

pher Stratchey’s definition. The language supports passing
functions as arguments to other functions, returning them as
the values from other functions, and assigning them to vari-
ables etc. Listings 3 and 4 show how functions are defined
and used in both JavaScript and JSPP.

The new feature of C++0x called “lambda functions”[16]
is a convenient tool to implement JavaScript function sup-
port in JSPP. One very early difficulty, however, is that the
syntax is radically different. In JavaScript, a function defi-
nition looks like this:

function (arguments) { body }

On the other hand, a C++ lambda function definition is
written as follows:

[capture] (arguments) constness -> returnType

{ body }

In order to implement JavaScript functions in JSPP, we
define a macro called function which operates the transfor-
mation depicted in listing 7 on the following page:

EPITA / LRDE Technical Report #201201-TR 3

1 var container = function (data) {
2 var secret = data;
3

4 return {
5 set: function (x) { secret = x; },
6 get: function () { return secret; }
7 };
8 };
9

10 var a = container (”secret−a”);
11 var b = container (”secret−b”);
12

13 a.set (”override−a”);
14

15 console.log (a.get ()); // override−a
16 console.log (b.get ()); // secret−b

Listing 5: JavaScript closures

1 var container = function (var data) {
2 var secret = data;
3

4 return {
5 [”set”] = function (var x) { secret |= x; return undefined; },
6 [”get”] = function () { return secret; }
7 };
8 };
9

10 var a = container (”secret−a”);
11 var b = container (”secret−b”);
12

13 a[”set”] (”override−a”);
14

15 cout << a[”get”] (); // override−a
16 cout << b[”get”] (); // secret−b

Listing 6: JSPP closures

1 function (var n) { body }
2 // is transformed into
3 [=] (var This, var arguments, var n) mutable −> Value
4 { body }

Listing 7: The function macro transformation

We now explain how this transformation works.

3.1 Closures
Argument capture in C++ lambda functions may be done

either by reference or by value. Doing it by reference corre-
sponds to the semantics of JavaScript, but this is problem-
atic for us because as soon as the initial variable reaches the
end of its scope, it is destroyed and any subsequent attempt
to dereference it leads to a segmentation fault.

Consequently, we actually have no choice but to use a
by-value capture mode, denoted as [=]. This means that a
new object is created for each lambda capturing the original
variable. Since our objects are manipulated by reference,
assigning a new value to an object will only update the local
reference. In order to cope with this problem, we introduce
a new assignment operator |= the purpose of which is to
update all the copies (see line 5 in listing 6).

3.2 Special argument This

Within a function’s body, JavaScript provides an implicit
variable called this, similar to the eponymous variable in
C++. Our implementation of the function macro (list-
ing 7) silently inserts such a variable in the expanded lambda
function’s prototype in order to make it available to the pro-
grammer. Note that in order to avoid conflicts with the orig-
inal this of C++, the internals of JSPP use This (with a
capital T). However, an internal JSPP macro ensures that
user-level code may continue to use this transparently.

Contrary to C++ where this is statically scoped however,
JavaScript’s this is being set dynamically in one of four
possible ways[15]:

Function call foo(...). Upon a standard function call,
this is set to undefined for a strict variant of EC-
MAScript 5, or the global object otherwise.

Method call obj.foo(...). Upon a function call result-
ing from an object property access, this is set to be

that object (obj).

Constructor new foo(...). Upon a function call used as
a constructor, this is set to a new, empty object. See
section 4.2 on the next page for more details.

Explicit foo.call(this, ...). Finally, the special func-
tions call and apply allow to explicitly set the value
of this.

Listings 8 and 9 on the facing page demonstrate that all
four ways of setting this are implemented in JSPP. Each
JSPP variable holding a function has a hidden "this" prop-
erty. When the function is called, the current value of the
property is given to the function as its first argument (list-
ing 7).

3.3 Special argument arguments

In addition to providing the special variable this, JavaScript
also does some extra processing related to the morphology
of function calls and their arguments.

Within a function’s body, JavaScript provides another im-
plicit variable called arguments, holding an array of all argu-
ments actually passed to the function. Our implementation
of the function macro (listing 7) silently inserts such a vari-
able in the expanded lambda function’s prototype in order
to make it available to the programmer.

Also, when a function call does not match the intended
number of arguments, JavaScript ignores the spurious ones
or fills the missing ones with the undefined value.

Remember that functions, as any other JSPP objects, are
stored in the Value class. All function arguments are of type
Value as well as a function’s return value. Therefore, we can
distinguish the different function types based only on their
arity.

In order to implement this distinction, the Value class
is equipped with a specific typed slot, a constructor over-
load[17] and a parenthesis () operator for each arity. This
imposes an implementation-dependent limit for the number
of arguments to functions in JSPP.

3.4 Mutable lambda functions
By default, C++ lambda functions are assumed to be

const. As this is in contradiction with the semantics of

EPITA / LRDE Technical Report #201201-TR 4

1 function f (x, y) {
2 console.log (”this:”, this);
3 this.x = x;
4 this.y = y;
5

6 };
7

8 // New creates a new, empty object
9 var a = new f (1, 2); // this: [object]

10 var b = new f (3, 4); // this: [object]
11

12 // Unbound call
13 var c = f (5, 6); // this: undefined
14

15 // Bound call
16 var obj = [42];
17 obj.f = f;
18 var d = obj.f (1, 2); // this: [42]
19

20 // Explicit call
21 var e = f.call(obj, 1, 2); // this: [42]

Listing 8: JavaScript’s this variable

1 var f = function (var x, var y) {
2 cout << ”this: ”<< this;
3 this[”x”] = x;
4 this[”y”] = y;
5 return undefined;
6 };
7

8 // New creates a new, empty object
9 var a = new (f) (1, 2); // this: [function 40d0]

10 var b = new (f) (3, 4); // this: [function 48e0]
11

12 // Unbound call
13 var c = f (5, 6); // this: undefined
14

15 // Bound call
16 var obj = { 42 };
17 obj[”f”] = f;
18 var d = obj[”f”] (1, 2); // this: [42]
19

20 // Explicit call
21 var e = f[”call”] (obj, 1, 2); // this: [42]

Listing 9: JSPP’s this variable

JavaScript, we must specify our lambda functions to be
mutable instead (listing 7 on the preceding page).

3.5 Caveats
In regular C++ as well as in the recent lambda func-

tions facility, every variable needs to be explicitly typed by
prepending the type information before its name. As a con-
sequence, the current implementation of JSPP requires that
the programmer adds an explicit var type specifier in front
of every function argument (compare for instance line 1 of
listings 8 and 9).

In JavaScript, every function’s body ends implicitly with

return undefined;

In JSPP, however, the programmer is required to add such a
line manually in any function that does not otherwise return
anything useful.

Finally, JavaScript has two ways of defining functions:
named and anonymous. JSPP only supports the anonymous
functions as lambda functions are anonymous in C++. In
practice the named notation is only used for debugging pur-
poses. We may provide some syntactic sugar to give names
to JSPP functions in the future.

4. OBJECT PROPERTIES
After the tour of JavaScript functions, we now address the

more general issue of object property management.

4.1 Prototypal inheritance
JavaScript features a class-less, prototype-based object

model [11]. When accessing the properties of an object,
JavaScript performs an upwards traversal of the prototype
chain until it finds a property with the requested name. A
sample JavaScript implementation of this process can be
found in listing 10. We use __proto__ to represent the link
to the prototype element. This is a non-standard notation
which is however supported by both SpiderMonkey (Mozilla
Firefox) and V8 (Google Chrome).

1 function getProperty (obj, prop) {
2 if (obj.hasOwnProperty (prop))
3 return obj[prop];
4

5 else if (obj. proto !== null)
6 return getProperty (obj. proto , prop);
7

8 else
9 return undefined;

10 }

Listing 10: JavaScript property access implementa-
tion

A property assignment, however, does not involve any
lookup. Properties are always set directly in the corre-
sponding object. Remember that in JSPP, property access
in both directions (read or write) is accomplished by the
bracket [] operator. In order to comply with the seman-
tics of JavaScript, this operator needs to perform a proper
property lookup, with the unfortunate consequence that the
lookup in question is done for nothing in the case of a write
access. Indeed, the operator itself cannot distinguish be-
tween a read of a write access.

4.2 The new operator
JavaScript has been designed to look like traditional object-

oriented programming languages such as Java and C++. In
those languages, the new operator creates an instance of a
class. JavaScript wants to provide a similar construction,
although it is a class-less language. As a consequence, the
functionality of new in JavaScript is slightly different.

In order to emulate the functionality of a constructor
which initializes the attributes of a new instance, JavaScript
uses a function. This constructor function contains a prop-
erty named prototype which links back to an object storing
the methods and attributes.

The new operator takes that function followed by a list of
arguments as arguments. It first creates an object represent-

EPITA / LRDE Technical Report #201201-TR 5

1 Object.create (parent) {
2 function F () {};
3 F.prototype = parent;
4 return new F ();
5 };

Listing 11: JavaScript’s Object.create function

1 Object[”create”] = function (var parent) {
2 var F = function () { return undefined; };
3 F[”prototype”] = parent;
4 return new (F) ();
5 };

Listing 12: JSPP’s Object.create function

ing the instance of the class, with the __proto__ property
set to the prototype function. Then, it calls this function
with the provided list of arguments and with the variable
this bound to the instance being created. Finally it returns
the object. A sample implementation of this process is de-
picted in listing 13. Since the new keyword is reserved in
C++, JSPP uses a function named New (note the capital N)
internally. However, an internal JSPP macro ensures that
user-level code may continue to use new transparently.

1 function New (f) {
2 var obj = { proto : f.prototype };
3 return function () {
4 f.apply (obj, arguments);
5 return obj;
6 };
7 }
8

9 function Point (x, y) { this.x = x; this.y = y; }
10 Point.prototype = {
11 print: function () { console.log (this.x, this.y); }
12 };
13 var p = New (Point) (10, 20);
14 p.print (); // 10 20

Listing 13: JavaScript implementation of the new op-
erator

JavaScript’s new operator is not very intuitive and there is
no standard way to access the prototype (__proto__) of an
object. Douglas Crockford[5] has designed a small function
called Object.Create (listing 11) which creates a new object
from the specified prototype. Both new and Object.create

are implemented in JSPP (the latter is shown in listing 12).

4.3 Iteration
JavaScript’s for-in construction allows to iterate over the

keys of an object. More precisely, iteration occurs over all
the keys of the object itself and all the keys from its proto-
type chain. Properties that have the (internal) Enumerable

property set to false are not enumerable. C++0x provides
a new iteration facility called “range iteration”[9]. The syn-
tax is as follows:

for (type element : container)

JSPP provides a simple macro defining in to expand to a
colon. This lets us use range iterators directly, as shown in
listings 14 and 15 on the next page.

4.4 Caveats
Our C++ implementation of property access has the same

expressive power as in JavaScript, although it currently lacks
some syntactic sugar. On the other hand, our syntax for
iteration is completely identical to that of JavaScript.

In JavaScript, the bracket notation obj["prop"] is strictly
equivalent to the dot notation obj.prop. Unfortunately, the
dot notation cannot be reproduced in JSPP, which makes
property access more cumbersome to both type and read.

1 new Point (1, 2); // JavaScript
2 new (Point) (1, 2); // JSPP
3

4 new Point; // JavaScript
5 new (Point) (); // JSPP

Listing 16: Syntactic overhead of JSPP’s new opera-
tor

The new operator in JSPP suffers from a syntactic overhead.
Because C++ does not provide any overloadable operator
with a higher precedence than a function call, parenthesis
are required around the constructor. It is also impossible to
implement calls to the new operator without any argument.
Those deficiencies are illustrated in listing 16.

The ECMAScript standard defines two forms for the for-in
construction:

• for (var variable in Expression)

• for (LHS in Expression)

The C++0x range iteration facility does not allow for the
second form however. The left-hand side expression is al-
ways a variable identifier[6].

JavaScript provides some additional operators on objects
(in, delete, typeof and instanceof). The keyword in has
two different meanings (iteration and belonging) but we can-
not express both with the same keyword. As a workaround,
we use the keyword of in the latter case (of has been chosen
to match CoffeeScript[3]). Finally, JSPP currently provides
delete and typeof as regular functions instead of operators.

5. MISCELLANEOUS
In this last section, we tackle various other aspects of

JSPP in comparison with their respective JavaScript equiv-
alent.

5.1 Code Organization
C++ does not have the notion of a“top-level”. Imperative

code cannot occur everywhere. It must be contained within
a function’s body. In order to emulate the existence of a
top-level, we wrap all JSPP code inside the main function
and a try-catch to handle errors. This part of the code is
implemented in two header files, javascript_start.h and
javascript_end.h, that the programmer is supposed to use.
C++ specific includes should be added before javascript_start.h.
On the other hand, JSPP specific includes should be added
after it, as demonstrated below:

// C++ Includes

EPITA / LRDE Technical Report #201201-TR 6

1 var object = {
2 ”a”: 1,
3 ”b”: 2,
4 ”c”: 3
5 };
6

7 for (var i in object) {
8 console.log (i, object[i]);
9 }

10

11 // a − 1
12 // b − 2
13 // c − 3

Listing 14: JavaScript for-in example

1 var object = {
2 [”a”] = 1,
3 [”b”] = 2,
4 [”c”] = 3
5 };
6

7 for (var i in object) {
8 cout << i << ” − ”<< object[i];
9 }

10

11 // a − 1
12 // b − 2
13 // c − 3

Listing 15: JSPP for-in example

#include "../src/javascript_start.h"

// JSPP Includes

// JSPP Code

#include "../src/javascrip_end.h"

Compiling a JSPP program is very easy. One simply needs
to compile the source file using g++ (GNU Compiler Collec-
tion for C++) in C++0x mode:

g++ -std=gnu++0x jspp_file.cpp

At the time of this writing, g++ version 4.6 is the only com-
piler to support enough of the C++0x standard to be able
to compile JSPP.

5.2 Control Structures
Although C++ and JavaScript have similar control struc-

tures (if, for, while, do-while, switch etc.), some differ-
ences remain. The C++ switch statement only works with
integers whereas JavaScript allows any data type. The break
and continue instructions in JavaScript accept a label name
as an argument. This allows to exit from more than one loop
at a time.

5.3 Comments
JavaScript and C++ share the same comment notation.

Both single-line // and multi-line /* */ comments are avail-
able in JSSP.

5.4 Operators
JavaScript has many operators in common with C++. All

of them can be overloaded to match the JavaScript behav-
ior. JavaScript also has some specific operators without any
C++ counterpart. The difficulty here is that it is impos-
sible to implement them in terms of a preprocessor macro,
as macros can only define new identifiers (for instance, it is
impossible to define a === macro).

As a consequence, strict comparison operators (=== and
!==) are defined with two macros named is and isnt (this is
in fact along the lines of what CoffeeScript[3] does). Another
macro transforms a is b into a * _ == b. With the appro-
priate operator overloading, this behaves in compliance with
JavaScript.

JavaScript provides two special operators for right un-
signed bitwise shift (>>> and >>>=) and a void operator
that gobbles its argument and always returns undefined.
As their use is limited in practice, JSPP currently does not
provide any equivalent.

5.5 Exceptions
The JavaScript exception mechanism is directly borrowed

from C++, therefore we can use it directly, as shown in list-
ings 17 and 18 on the next page, with some precautions.
Most notably, we make sure to cast the thrown argument
into an instance of Value. In order to do that, a macro de-
fines throw to translate into throw _ =. The equal = opera-
tor for underscore transforms the argument into an instance
of Value. In a similar vein, the argument to catch in C++
needs to be typed. A simple macro works around this in
JSPP by providing the type annotation automatically.

A further extension of JSPP will be to implement a way to
display the stack trace in order to improve the programmer’s
debugging experience.

5.6 Automatic semi-column ; insertion
Like C++, JavaScript uses semi-columns ; as statement

delimiters. In order to make the language friendly to new
developers, there is a heuristic to insert semi-columns au-
tomatically during the parsing phase in JavaScript [10]. It
is impossible to implement this in JSPP without modify-
ing the C++ compiler. Therefore, JSPP does not support
automatic semi-column insertion.

5.7 Properties importation
The with instruction of JavaScript is a relatively unknown

construct that imports all the properties of an object as
local variables. Mozilla recommends against using it and
ECMAScript 5 strict mode goes even as far as forbidding its
use altogether. As there is no simple way to emulate this in
C++, JSPP does not support it.

5.8 The eval function
Although eval is often considered as bad practice in user-

level code, it plays an essential role in dynamic languages
(read-eval-print loop implementation, reflexivity, dynamic
code creation and execution etc.). Unfortunately, this is not
possible to implement in C++ as the code is compiled once
and for all. The lack of an eval function is probably the
biggest downside of JSPP.

6. CONCLUSION
In this paper, we have demonstrated that in a time where

the differences between static and dynamic languages are
starting to fade away, the novelties from the recent C++0x
standard, makes it is relatively easy to implement a JavaScript

EPITA / LRDE Technical Report #201201-TR 7

1 var problematic = function () { throw ”Exception!”; };
2

3 try {
4 problematic ();
5 } catch (e) {
6 console.log (”Error:”, e);
7 }
8

9 // Error: Exception!

Listing 17: JavaScript exceptions

1 var problematic = function () { throw ”Exception!”; };
2

3 try {
4 problematic ();
5 } catch (e) {
6 cout << ”Error: ”<< e;
7 }
8

9 // Error: Exception!

Listing 18: JSPP exceptions

layer on top of C++, providing not only the features of the
language, but also much of its original notation. The key
elements of C++0x in this context are lambda functions,
range-based iteration and initializer lists, a set of features
directly inspired from dynamic or functional languages.

A prototype implementation of such a JavaScript layer,
called JSPP, has been presented. More precisely, we have
shed some light on the exact amount of the original JSON
syntax we are able to reproduce, how JavaScript functions
are supported, how JavaScript’s prototypal inheritance scheme
can be emulated and we have also outlined some other var-
ious aspects of the language support.

In terms of features, the major drawback of our current
implementation is the lack of an eval function. In terms of
syntax, we are quite close to the original JavaScript nota-
tion and it is not difficult to translate code back and forth
between the two languages.

It is worth mentioning that the implementation of JSPP
mostly uses regular C++ features and as such, does not
heavily rely on fragile “hacks”. For instance, the use of pre-
processor macros is very limited (see listing 19) and only
serves to fill syntactic gaps. As a consequence, both the
JSPP code and potential run-time error messages are com-
pletely readable.

1 #define catch(e) catch(var e)
2 #define throw throw =
3 #define in :
4 #define function(...) [=] (var This, var arguments \
5 ## VA ARGS) mutable −> Value
6 #define is ∗ ==
7 #define isnt ∗ !=
8 #define of ∗ <
9 #define this This

10 #define new New

Listing 19: JSPP macros

The current implementation of JSPP is only a prototype.
Core concepts such as object iteration and operators are
only partially implemented, and the standard JavaScript li-
brary is not yet available. Nothing has been done yet with
respect to performance, eventhough we are already aware of
many optimization techniques that we can use. Finally, fur-
ther development aspects are foreseen in order to improve
interoperability between JSPP and regular C++ code.

Although the project started mostly as an accidental cu-
riosity, we think that it has some serious potential applica-
tions. For one, JSPP gives the C++ programmer a means
to freely incorporate highly dynamic JavaScript-like code
into a regular C++ program, hereby increasing the multi-

paradigm level of the application. This is in compliance with
a general trend towards offering as many paradigms as pos-
sible within the same language (especially both static and
dynamic aspects), something that the Lisp family of lan-
guages has been doing for a long time, Racket being one of
the most recent striking examples in this matter. Finally,
just like Clojure helps bringing more people from Java to
Lisp, it is possible that JSPP will help bring more people
from C++ to JavaScript.

7. REFERENCES
[1] V8 issue: Wrong order in object properties iteration.

http:

//code.google.com/p/v8/issues/detail?id=164.

[2] M. Ager. Google i/o 2009 - v8: High performance
javascript engine.
http://www.google.com/events/io/2009/sessions/

V8BuildingHighPerfJavascriptEngine.html.

[3] J. Ashkenas. Coffeescript.
http://www.coffeescript.org/.

[4] D. Crockford. JSON: Javascript object notation.
http://www.json.org/.

[5] D. Crockford. JavaScript: The Good Parts. O’Reilly
Media, Inc., 2008.

[6] A. Croll. Exploring javascript for-in loops.
http://javascriptweblog.wordpress.com/2011/01/

04/exploring-javascript-for-in-loops/.

[7] A. Croll. The secret life of javascript primitives.
http://javascriptweblog.wordpress.com/2010/09/

27/the-secret-life-of-javascript-primitives/.

[8] M. Felleisen. Racket. http://racket-lang.org/.

[9] D. Gregor and B. Dawes. N2930: C++0x range-based
for loop. http://www.open-std.org/JTC1/SC22/WG21/
docs/papers/2009/n2930.html.

[10] Inimino. Javascript semicolon insertion.
http://inimino.org/~inimino/blog/javascript_

semicolons.

[11] H. Lieberman. Using prototypical objects to
implement shared behavior in object-oriented systems.
In Conference proceedings on Object-oriented
programming systems, languages and applications,
OOPLSA ’86, pages 214–223, New York, NY, USA,
1986. ACM.

[12] J. Snook. Javascript: Passing by value or by reference.
http:

//snook.ca/archives/javascript/javascript_pass.

[13] B. Stroustrup. C++0x - the next iso c++ standard.
http://www2.research.att.com/~bs/C++0xFAQ.html.

EPITA / LRDE Technical Report #201201-TR 8

[14] B. Stroustrup and G. D. Reis. N1919: C++0x
initializer list. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2005/n1919.pdf.

[15] I. Wetzel and Z. Y. Jiang. Javascript garden: How this
works.
http://javascriptgarden.info/#function.this.

[16] J. Willcock, J. Järvi, D. Gregor, B. Stroustrup, and
A. Lumsdaine. N1968: C++0x lambda expressions
and closures. http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2006/n1968.pdf.

[17] A. Williams. C++0x: Overloading on lambda arity.
http://stackoverflow.com/q/4170201/#4196447.

[18] A. Wingo. Value representation in javascript
implemen-
tations. http://wingolog.org/archives/2011/05/18/
value-representation-in-javascript-implementations.

EPITA / LRDE Technical Report #201201-TR 9

