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Abstract.  The digitization of historical maps enables the study of an-

cient, fragile, unique, and hardly accessible information sources. Main
map features can be retrieved and tracked through the time for subse-
qguent thematic analysis. The goal of this work is the vectoriza tion step,
i.e., the extraction of vector shapes of the objects of interest from raster
images of maps. We are particularly interested in closed shape deection
such as buildings, building blocks, gardens, rivers, etc. in order to mon-
itor their temporal evolution. Historical map images present s igni cant

pattern recognition challenges. The extraction of closed shapes by using
traditional Mathematical Morphology (MM) is highly challeng ing due
to the overlapping of multiple map features and texts. Moreover, s tate-
of-the-art Convolutional Neural Networks (CNN) are perfectly desi gned
for content image ltering but provide no guarantee about closed shape
detection. Also, the lack of textural and color information of h istorical
maps makes it hard for CNN to detect shapes that are represented by
only their boundaries. Our contribution is a pipeline that com bines the
strengths of CNN (e cient edge detection and ltering) and MM (  guar-
anteed extraction of closed shapes) in order to achieve such a ask. The
evaluation of our approach on a public dataset shows its e ectiveness for
extracting the closed boundaries of objects in historical maps.
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matical Morphology - Historical Map Segmentation - Object Extraction

1 Introduction

[The massive digitization of archival collections carried out by heritage nstitu-
tions provides access to huge volumes of historical information encodein the
available documents. Among them, maps are unfortunately still little exploited.
Yet they are a gold mine of geographic data that allows to reconstruct and
analyze the morphological and social evolution of a place over timé [Z1,11]. To-
pographic maps, in particular, engrave many geographical features: their idtri-
bution in space, their topological relationships and various information ercoded

Extra material for this paper (full-size gures, results, ¢ ode, dataset) available at:
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(@) Some geographical entities (b) Challenges in historical maps: (1) planimetric
typically depicted in city maps: overlap, (2) text overlap, (3) paper folds.

building blocks (orange), roads

(green) and rivers (blue).

Fig.1: Contents of a 1925 urban topographic map along with an overview of
their challenging properties for automatic feature extraction.

by the map legend or by text labels [14,7]. Transforming such graphical resen-
tations of geographic entities into discrete geographic data (or vector data)s a
crucial step for numerous spatial and spatio-temporal analysis purposesuch a
transformation is most often manually retrieved by historians or with th e help of
crowdsourcing tools. This is extremely time-consuming, non-repducible, and
leads to heterogeneous data quality. Automating this tedious task is a ke step
towards building large volumes of reference geo-historical data.

Unfortunately, historical maps exhibit characteristics that hinder standard
pattern recognition approaches and make them relatively ine cient at extracting
data of good quality, i.e., that do not need to be manually post-processd. Unlike
modern computer-generated maps which follow roughly the same semiatirules,
these maps vary in terms of legend, level of generalization, type of geograjgh
features and text fonts [14]. They also usually lack texture information which
creates ambiguities in the detection of objects. For instance, builthg blocks
and roads have very similar textures despite being of completely dérent nature
(Figure . Popular semantic [15,Z,25] and instance [6,24,3] image segmentation
algorithms detect objects based on textures and are prone to fail in our cdext.
Color is not a relevant cue either: the palette is usually highly resticted due to
the technical limitations and nancial constraints of their producti on. Objects
in maps are often overlapping, some are thus partially hidden and hardly spa-
rable. Occlusion happens with overlayed textual and carto-geodetiénformation
in particular (Figure {b] rectangles (1) and (2)). Last, preservation condtions
of historical maps play a role as stains, folds or holes might cause gaps in the
cartographic information. Such artifacts may lead to incorrect object deection

(Figure [Lb}, rectangle (3)).



Edge Probability Map Closed Shapes

Fig. 2: Overview of the approach presented in the paper: we combine an ecient
edge detection and ltering stage using a deep network with a fast closd shape
extraction using mathematical morphology tools.

Our contributions in this paper are as follows. After reviewing the limitations
of the current approaches for segmenting maps in sectidn 2, we propose angile
pipeline ( g. @ that combines deep networks and mathematical morphology ér
object detection in maps. It takes benet from their complementary strengths,
namely image lItering and strong guarantees with respect to closed sapes. We
derive edge probability maps using a multi-scale deep network approcdepicted
in section[3 and then leverage mathematical morphology tools to extract cloed
shapes as explained in sectidn 4. Eventually, in sectidr 5, the secondrgribution
lies in a thorough evaluation of the relevance of the mathematical morphology
stage with novel visualizations and metrics to objectively assess owpproach and
better identify the strengths and weaknesses of each stage and of the woow.

2 Approaches for map segmentation

We target to recover geometric structures from scans of historical mapsAs
mentioned above, due to the limited texture and colour content of sub data
sources, standard semantic segmentation approaches of the literature wilfail
for most cases. Instead, we cast our problem as a vectorization challengeah
can be turned into a region-based contour extraction task. Such a probla is
traditionally solved through a two-step approach: the detection of edges otocal
primitives (lines, corners) followed by the retrieval of structures based on global
constraints [31]. Recent works have shown the relevance of a coupledlstion
[1I2]. They remain tractable and e cient only for a limited number of str uctures.
Region-based methods (e.g., based on PDES[18]) may lead to oversimptl re-
sults and will not be further analysed here.

The main issue of two-step solutions is the edge detection step. Thibw-level
task is achieved by measuring locally pixel gradients. Due to the amant of noise
(overlapping objects, map deformation), this would result in many tiny and spu-
rious elements that any global solution would manage connecting. Instead, we
focus on boundary detection, i.e., a middle-level image task that segrates ob-
jects at the semantic level according to di erent geometric properies of images.
This o ers two main advantages: (i) a limited sensitivity to noise in maps and
(ii) the provision of more salient and robust primitives for the subsequent object
extraction step. We do not focus on a primitive-based approach sincehapes on



maps cannot be simply assumed.

Recently, among the vast amount of literature, convolution neural netwokks
(CNN) have shown a high level of performance for boundary detection [30,13].
However, they only provide probability edge maps. Without topological con
straints, image partitioning is not ensured. Conversely, watershedsegmentation
techniques in mathematical morphology can directly extract closed corburs.
They run fast for such a generation, but may lead to many false-positivere-
sults. Indeed, using only low-level image features such as image giiadts, wa-
tershed techniques may not e ciently maintain useful boundary i nformation [3].
Consequently, we propose here to merge the CNN-based and watershed image
segmentation methods in order to bene t from the strengths of both strategies
[29]. A supervised approach is conceivable since we both have accessdterence
vectorized maps and CNN architectures pre-trained with natural image.

3 Deep Edge Detection

We detail how we selected the network architecture used to detdcand lIter
edges, with illustrations of the strengths of such approach, and desdse the train-
ing procedure we followed to use the selected network (BDCN) on oudataset.

Network architecture Contour detection was rst addressed with the de-
sign of handcrafted features based on brightness, color, textures [16].nen, im-
provements lied in their e cient group through mono- or multi-scale at tributes
retrieving micro-structures: textons are a salient example[[3R]. Aferwards, main
methods focused on combining all available cues, such as [1]. Theyagsa global
probability boundary by learning the weights of manually selected featires (gra-
dients and textons as features in several image scales) in order to detecon-
tours and form better closed boundaries to represent the objects imnhages. Since
CNNs have proved their relevance to extract and combine meaningful irage fea-
tures, a large amount of research has focused on detecting contours. Thmaost
famous one is the so-called Holistically edge detector (HED)_[30], which ian
end-to-end multi-scale deep learning network. The novelty consited in using
skip-connections to merge di erent levels of features and learn dierent losses
from intermediate layers of VGG-16 [27]. This allowed to recover muiscale rep-
resentations of image features. Eventually, He et al[T13] proposed a so-cadl Bi-
Directional Cascade Network (BDCN) by designing a scale enhancement nuule
(SEM) on top of HED to enhance multiscale spatial contexts in images resting
in a better performance than humans in the BSDS500 dataset.

One advantage of BDCN is that the multiscale representatives combine es
mantically meaningful features to e ciently lter out the image text ures and
text information while maintaining useful contours and lines in the images. It
is particularly suited for handling noise in our maps. Another advantage isthat
learnable dilated convolutions in SEM can learn ne-grained features with larger
receptive elds that are bene cial when we want to separate the texts with object



Fig. 3: BDCN produces an Edge Probability Map (right ) with texts and textures
removed from the input (left).

contours accurately. It is because building contours have much longepixel con-
tinuity than text, resulting in higher activation after dilated conv olution. After
several iterations, the probability of text pixels will vanish, leading to their re-
moval, similarly to texture, as shown in g. 8] However, the BDCN network works
only at the pixel level and cannot guarantee the required topological propeies
in predicted edge probability maps without additional topological constraints [8],
thus the current solution requires knowledge of the number of strgtures to be
retrieved.

Training Annotated historical maps are used to train a BDCN network.

The nal prediction which is a probability map where each pixel in th e maps
contain values in range [01] (zero means the pixel does not belong to a contour,
one that it does). We train our network from scratch instead of using transfer
learning on the edge weights learned from BSDS500 (dataset developed fonage
boundary detection and segmentation tasks): the features in natural image are
very di erent from our historical map images.We need to lter out most of the
texts in our maps, but the network trained on the BSDS dataset does not povide
any useful features related to geometric Itering tasks. In order to handle data
imbalance during training, we proceed as follows. We de ne our inputimage as
x 2 R" W and ground truth label y 2 0;1" W . The output of predicted image
isy=f(x;w) 201"V and every element ofyis interpreted as the probability
of pixel i having label 1: p(Y; = 1jx;w). Since the edge detection is a binary
classi cation task, binary cross entropy loss is used as loss function heeen
predictions and ground truths. Due to highly imbalanced edge (97.5%) and an-
edge (only 2.5%) classes, extra parametersp are used as Weigh'gs to re-balance
the binary cross entropy loss, as gce = j2y log(l ¥}) i2v. 109(%))
where Y. is the set of indices of edge pixelsy is the set of indices of non-edge
pixels, =( jY j=(jY«j+ Y J))is the percentage of edge pixels in each batch
of historical map image and = (jY+j=(jY+j+ jY ]))) is percentage of non-edge
pixels. An extra = 1:1 factor is used to enhance the percentage of edge pixels
in order to give extra weights for edge responses.
We build our code based on the BDCN code repository to train our historcal
map dataset from scratch with a few modi cations. We evaluate the loss for
every epoch and also for choosing the best training weights. To makene network
converging faster, we replace SGD with ADAM optimizer. The initial learning
rate is setto 5 10 ° with 0:9 momentum and Q002 weight decay.



4 Segmentation of the EPM

From the Edge Probability Map, we then need to extract boundaries of the
objects. In Mathematical Morphology, the Watershed Transform [17] is a defacto
standard approach for image segmentation. It has been used in many applicatien
and has been widely studied in terms topological propertied [10,23], in tens of
algorithms and in terms on computation speed[[Z23,9].

It has two well-known issues: the over-segmentation due to the Igh number
of minima, and the gradient leakage that merges regions. There is a third gearal
issue with the watershed that concerns the separation of overlappingr touching
objects, but this is not a problem in our case since the map componentsadnot
overlap.

Solutions to the over-segmentation problem The rst problem is gen-
erally solver by ltering the minima rst. In [28].Ithe h-minima characterize
the importance of each local minimum through their dynamic. When ooding a
basin, it actually refers to the water elevation required to merge wih another
basin. Attributes lter, Iters by reconstruction [26] also allow t o eliminate some
minima based on their algebraic properties: size, shape, volume... Ather ef-
cient approach consists in rst ordering the way the basins merge to create
a hierarchy of partitions and then performing a cut in the hierarchy to get a
segmentation with non-meaningful basins removed|5,20,4].

Solutions to the early leakage problem The second problem lies in the
quality of the gradient. It has been noted [19], that (hierarchical) watersheds have
better results on non-local supervised gradient estimators. The ida of combining
the watershed with high performance contour detector dates back to[]1].

The relevance of a simple closing by area and dynamic on the edge map
produced by our deep-learning edge detector combined with the watshed for
this application lies in three points.

First, the minimum size of the components is known. Indeed, the dcument
represents a physical size, and regions whose area is below 109 are not repre-
sented in the map. Thus, we have a strong priori knowledge we want to inject
in the process, the minimum size of the regions (in pixels). Thigype of constrain
is hard to infer in a deep-learning system and we cannot have such guantees
from its output. Having hard guaranties about the shapes and their size isat
the foundation of the granulometries in Mathematical Morphology. Moreover,
the connected (area) lter used for lItering the edge image ensure ttat we do
not distort the signal at the boundaries of the meaningful regions.

Second, the watershed segmentation method does not rely on the strgth
of the gradients to select the regions. Even if the edge response isndi.e, the
gradient is weak), the watershed is able to consider this weak respoasnd closes
the contour of the region. We do not depend on the strength of the edge regmse
from BDCN which is di cult to calibrate and normalize.

Last but not least, not only the watershed outputs a segmentation but some
implementations also produce watershed lines between regions. lour applica-
tion, watershed lines are even more important than regions because we e@
to extract polygons for each shape. Event if we could extract boundariesrém
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Fig.4: Somefailures and somesuccess storiesof the watershed segmentation.
The parameter sets are A:h=3, = 250, and B: h=7, = 400. The rst row
shows the ability to recover weak boundaries. This sensitivity § not desirable
in some cases as it leads the over-segmentation of the 2nd row. The thindbw
suggests that the over-segmentation can be prevented by a stronger #ring but
would also lead to a lower shape detection.

regions, it avoids an extra processing step. The watershed lines@duced by the
algorithm is one pixel-large and are located where the edges are the strorgge
i.e., where the network has the strongest response on thick edges. &lwatershed
lines form closed boundaries around regions which is a guarantee we cannave
from the output of a network.

Figure [4 shows the strength of the watershed to recover the boundaes of
objects even on weak edge responses that would be lost by thresholdinget
EPM. This is especially visible in the rst row where the boundaries of \Place
du Chatelet" are leaking; nevertheless they are recovered in theegmentation.
On the downside, this ability to recover weak edges is also a bottleeck that
can create false-boundaries as shown in the middle row where the plaaround
\Eglise Notre-Dame" is over-segmented because of some detection noise.

The ltering parameters (dynamic h and area ) are important to control the
trade-o between the fact we want to recover small/leaking regions (sonewhat
related to the recall) and the false-detection of boundaries (somewhat related to
the precision). This is illustrated with two sets of parameters A and B where B
has more restrictive ltering parameters. The third row of Figure &]shows that B
has less over-segmentation but in the two rst rows, it misses som&doundaries.

The decision to merge objects is actually very context-dependant, ag does
not depend on the size of the component, neither its volume, nor its shipe. The



watershed \does its best" to create the missing boundaries and, at ta moment,
we have not managed to nd better rules (e.g., with extinction values of some
attributes) to lter out the basins of the watershed.

5 Evaluation

To assess the performance of the proposed approach, we conducted a serid
experiments on a fully manually annotated map sheet. We report here dmils
about this dataset we created and used, the experimental protocol as wehs
the calibration procedures we followed, the metrics we designed anused, and
discuss some results.

Dataset Among the multiple map sheets of the collection of Paris atlases,
our work focuses on the particular sheet representing a central areaf the city
from year 1925 [22]. We encourage the reader to refer to theupplementary
material of this paper for a full-size view of this image. Indeed, such map
sheets are large by nature and were digitized with high resolution, rasting in
a 8500 6500 image for the area of interest.

We carefully annotated the original image by creating line vector informaion for
each edge of each object of interest in the map. It should be noted that onla
subset map strokes should be kept as many objets are not relevant for our owent
study: underground lines and railways, for instance, should be disrded. The
resulting vector information was rastered to produce: i) a referene edge map (a
small dilation was applied so the resulting edges have a thickness & pixels);

i) a reference label map identifying each shape to be detected.

We divided the image into three disjoint subsets: a training set ¢ows 0 to 3999);

a validation set (rows 4000 to 4999); and a test set (rows 5000 to 6500). These
areas were divided into 228 disjoint tiles of 500 500 pixels.

Protocol Our goal in the evaluation protocol we designed was the assess the
impact of the watershed stage in our pipeline. We compared compared thegqr-
formance of a baseline system, without watershed, with our proposed ggoach:
the same baseline augmented by a watershed stage (see [g 2).

The baseline (without watershed) consists in a deep edge detectiostage using
the BDCN network presented in section[3. This stage produces an edgergb-
ability map (EPM) as previously explained. The network was trained on the
training set using the validation set as control set during training. To generate
closed shapes, we simply thresholded the EPM and extracted the coected com-
ponents. We selected the best performing threshold value (9) on thealidation
set for fair comparison.

The proposed approach (baseline plus watershed) consists in adding aift |-
tering on area and dynamic of the EPM followed by a watershed. This appoach
produces a label map, i.e. a usable set of closed shapes, as detailedséution[4.
We selected the best performing values for area () and dynamic h parameters
on the validation set.

To avoid losing topological information during component labeling (baselnhe) or
during watershed, theses steps were performed on the full image (th training,
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Fig. 5: Left: comparison of the evolution of the shape detection F1-score across all
possible loU threshold with and without the watershed stage.Right: evaluation
metrics with and without watershed.

validation and test sets merged) but the performance indicators were amputed
exclusively on the test set by masking other areas.

Metrics While it is common in segmentation challenges to evaluate the qual-
ity of object detection by evaluating the precision and recall of edge dection at
pixel, such an approach would only evaluate the process halfway to our tayet
application: closed shapes detection. To evaluate shape detection, weeed to
identify pairs of matching shapes between a reference seR{) and a predictions
set (P). Because, in our particular case, shapes are disjoint amonB and also
among P (by construction), we can leverage the following property: as soon as
the intersection over union (loU ) betweenr; 2 R and p; 2 P is strictly superior
to 0:5, then we know that no other elementry 2 R;i 6 k can have a higher loU
with g 2 R than r; 2 R, and reciprocally.

As soon as a pair of shapesr(;pj) 2 R P exhibits loU(ri;pj) = area([:}—g) =

T > 0:5 then we count a successful match under the threshold constraint . We
introduce this threshold value so as to consider all possible valuesetween 0.5
(exclusive) and 1 (inclusive) and create a global indicator of the systm under
all potential quality requirements. This allows us to count the number of cor-
rectly detected shapes {rue positives or TP), missed shapes (false negativesor
FN)), and wrongly predicted shapes (false positivesor FP)) for every operating
characteristics. We derive from this set of measures two analysis tas.

First a precision (+5r—), a recall (-5=5—) and a F1 score 22——) curves
for all possible threshold values. They o er a condensed view of the Bwvior of

a system under all possible operating characteristics. We suggest use the area
under the F1 score curve to compute a single performance indicator. fle values
of this indicator ranges from 0 (worst) to 0.5 (best).

The second tool is a pair of visualization maps: a precision map which asso-
ciates for each predicted shapg; 2 P the maximal loU value by such ashy =
argmax, g (loU(ri;p;)), and a recall map which associates for each expected
shaper; 2 R the maximal loU value b such ash; = argmax ,p (loU(ri; py))-
Each pixel of each shape is then assigned a color indicating the value of ¢h
maximal loU: red to yellow for values between 0 and 0.5, and yellow to green



Precision map before watershed Precision map after watershed

Recall map before watershed Recall map after watershed

Fig. 6: Precision and recall maps without and with watershed.

for values between 0.5 and 1. The darker the green the better the matchiboth
maps. The darker the red, the more serious the false positive (resmegative) in
precision (resp. recall) map.

Results and Discussion We report here the results for the best calibrated
variant of each of the two systems (baseline+connected component labieg vs
baseline+watershed) under test. Figure[$ (left) compares the evaition of the
F1 score indicator for both systems under each possible loU thresholdrigure 5
(right) details the di erent indicators for several key values of loU t hresholds. We
can see from those results that the watershed post-processing costgintly and
signi cantly improves the quality of the results. The precision and recall maps
presented in g.[gillustrate the bene ts that the watershed post-processing bring
to the deep edge segmentation: it adjusts the border of the shapes (impves
precision and recall); it also removes small noise (improves prexion); and it
also e ciently recovers some weak boundaries (improves recall).

6 Conclusion

In this paper, we propose an e cient combination of convolutional neural net-
works and mathematical morphology to address the problem of closed shapes
extraction in historical maps. Convolutional neural networks (BDCN) allow us
to e ciently detect edges while Itering unwanted features (te xt for instance).
Mathematical morphology is applied to the edge probability map created by
BDCN to create closed shapes reliably. The e ciency of our approach is sown
by testing it on an open dataset. We believe such a method will make ta digi-
tization process of historical maps faster and more reliable.
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