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Abstract

In this paper we deal with the problem of applying model
checking to real programs. We verify a program without
constructing the whole transition system using a technique
based on Monte-Carlo sampling, also called “approximate
model checking”. This technique combines model check-
ing and randomized approximation. Thus, it avoids the so-
called state space explosion phenomenon. We propose a
prototype implementation that works directly on C source
code. It means that, contrary to others approaches, we do
not need to use a specific language nor specific data struc-
tures in order to describe the system we wish to verify. Fi-
nally, we present experimental results that show the effec-
tiveness of the approach applied to finding bugs in real pro-
grams.

1 Introduction

Model checking [4] is an algorithmic method whose goal
is to verify the correctness of systems generally represented
as transition systems. The method proceeds by constructing
a large data structure (e.g. a transition graph) that represents
the behavior of the system. Even for simple programs and
protocols, data structures are so large that the verification
becomes intractable. This is called the state space explosion
phenomenon. In the last decades, most of the research in the
field has focused on fighting against this phenomenon. In-
deed, symbolic methods [18, 7] have been designed to ver-
ify larger classical or probabilistic systems, now permitting
to verify large industrial protocols. But there still remains
a challenge: the verification of programs directly from their
source code. The main problem with this issue remains the
state space explosion phenomenon since even the smallest
program contains variables that range from large sets of val-
ues (like double in C), thus inducing large data structures
in the verification process. For example in [24], it is stated
that “applying model checking by itself to programs will not
scale to programs of much more than 10k lines”. In par-
allel to the design of more compact data structures, a lot

of work has been done on specific methods for considering
larger systems: data abstractions[5], static analysis, abstract
interpretation[3].

In the last years, methods have emerged that can be used
for the automatic verification of programs. All these meth-
ods use random sampling and are based on an approach that
borrows ideas from model checking and program testing.
With this kind of method, the verification is approximated in
the sense that there are two specific parameters: ε gives the
quality of the output of the algorithm, and δ gives the error
probability of the algorithm. These parameters can be low-
ered at will. These methods are called Monte-Carlo Model
Checking [10], Approximate Probabilistic model checking
[17, 15] and statistical hypothesis testing [25].

In this paper, we explain how to use one of these
methods, namely approximate probabilistic model checking
[17, 15], in order to verify real programs written in ANSI C
and/or C++. This Monte-Carlo method is based on the ran-
dom sampling of bounded paths of the transition system. So
the output of the algorithm will be the probability (over the
probabilistic choices of the system) of a given property to
be satisfied by the system. It means that we have to sam-
ple bounded executions of the program. In order to do that,
we encapsulate automatically the program into a C++ pro-
gram that provides an easy way to access the values of the
variables of the program at any time of the execution.

Our main result is to show the effectiveness of the ap-
proach since using this technique, we are able to find bugs
in C programs that act on integers, floats or variables of
any type (except for variables dynamically allocated) and
that contains operations known to be intractable for clas-
sical model checking. The main differences between our
approach and other methods are the following:

• Due to the use of the Monte-Carlo method we never
construct the whole transition system underlying the
program. It means that our tool is not subject to the
state space explosion phenomenon (we store in mem-
ory only a path of fixed length).

• The method is fully automatic (nothing to do except
for writing the property we want to verify).



• The method works directly on the C or C++ source
code of the program (no modelling phase).

The structure of the paper is the following. First, we re-
view the work done by other research groups in the field of
program verification and the field of approximation-based
methods for model checking. Then, in section 3, we recall
the theory designed in [17, 15] and explain how to use it
in the framework of program verification. The section 4 is
dedicated to the presentation of our prototypical implemen-
tation and some experimental results. Finally, in section 5,
we discuss the implementation and give clues on how to de-
sign a complete tool that can work with more complicated
programs.

2 Related work

In this section, we only consider work about software
verification, that is, model checking of source code (follow-
ing [13]). Compared to the huge amount of literature about
“classical model checking” (that is, model checking of sys-
tems described using specific modelling languages), there
are only few papers and tools that work directly from the
source code of the programs. Since our prototype works
on C and C++ source code, the most related work is the
research on CMC [20] and VeriSoft [9]. There are others
tools that works on C or C++ programs but not directly. For
example, SLAM [1] and BLAST [14] are used to abstract
program code and verify the abstract program instead of the
actual program. C Wolf [8] is a toolset for extracting tran-
sition systems from C code. It means that it is not a full
model checker but an additional tool that allows classical
model checkers to verify C programs.

In this paper, we use the method of [15]. This method,
called Approximate Probabilistic Model Checking, is used
for the verification of linear temporal property against dis-
crete time Markov chains. We describe it precisely in the
following section. Other approximation methods are avail-
able. In [10], a randomized algorithm for the approximate
model checking of safety properties is given. This approx-
imation method uses the optimal approximation algorithm
of [6]. Since then, this method was used for the verification
of programs via the use of a modified version of GCC [11].

In the field of approximate verification for probabilistic
systems, there are methods based on statistical hypothesis
testing such as the methods of [25] and [22]. Using these
methods one can model check black-box probabilistic sys-
tems against specifications given in a sub-logic of Continu-
ous Stochastic Logic (CSL). These approaches differ from
the one of [15] and [10] by using statistical hypothesis test-
ing instead of randomized approximation schemes.

Finally, we want to mention the work of [19], where
both random testing and abstract interpretation are used for

the verification of C programs. The main advantage of
this method is that it applies to systems that contain non-
deterministic choices.

3 Theoretical foundations

To implement our prototype for the verification of real C
programs, we use the approximate model checking method
of [15]. Originally, the purpose of this method is the effi-
cient (w.r.t. memory) but approximate verification of mono-
tone temporal properties of discrete time Markov chains
(DTMC). Here, we use this method in a somehow different
framework. First there are programs with non-deterministic
choices. When there is such a choice, we replace the non-
determinism by a probabilistic uniform choice. Second,
since we only consider bounded temporal properties, we
don’t need to be careful about the monotonicity of the prop-
erties.

We now describe the Monte-Carlo method of [15] to
approximate satisfaction probabilities of Linear Temporal
Logic (LTL) monotone properties over fully probabilistic
transitions systems (DTMCs). LTL formulas are built over
a set of atomic propositions using temporal operators. We
first define the kind of system we will study:

Definition 1 A DTMC is a tuple M = (S, s, P ) where S is
a set of states, s is the initial state, and P is a function that
gives the probability of transition from one state to another
one.

If we modify the non deterministic choices as above, ev-
ery program can be modelled as a DTMC. Then, using the
method of [15], we can verify the program without con-
structing explicitly the DTMC. For a program, a state will
be a vector of the actual values of all program variables.

We denote by Path(s) the set of paths whose first state is
s. The length of a path π is the number of states in the path
and is denoted by |π|, this length can be infinite but we will
only consider here bounded length paths. The probability
measure Prob over the set Path(s) is defined in a classical
way. We denote by Prob[φ] the measure of the set of paths
{π | π(0) = s and M, π |= φ} (see [23]). Let Pathk(s) be
the set of all paths of length k > 0 starting at s in a PTS.
The probability of an LTL formula φ on Pathk(s) is the
measure of paths satisfying φ in Pathk(s) and is denoted
by Probk[φ].

In order to estimate the probabilities of bounded proper-
ties with a simple randomized algorithm, we generate ran-
dom paths in the probabilistic space underlying the DTMC
structure of depth k and compute a random variable which
estimates Probk[ψ]. Our approximation is good with con-
fidence (1 − δ) after a number of samples polynomial in 1

ε
and log 1

δ . The main advantage is that, in order to design
a path generator, we need only to execute the program and



store the values of all variable at each new assignment of a
variable. It means that we consider that an atomic step of
the program is the modification of the value of a variable.

Our approximation problem is defined by giving as input
x a program, a formula and a positive integer k. The pro-
gram is used to generate a set of execution paths of length
k. A randomized approximation scheme is a randomized
algorithm which computes with high confidence a good ap-
proximation of the probability measure µ(x) of the set of
execution paths satisfying the formula φ.

Definition 2 A fully polynomial randomized approximation
scheme (FPRAS) for a probability problem is a randomized
algorithm A that takes an input x, two real numbers 0 <
ε, δ < 1 and produces a value A(x, ε, δ) such that:

Prob
[
|A(x, ε, δ)− µ(x)| ≤ ε

]
≥ 1− δ.

The running time of A is polynomial in |x|, 1
ε and log 1

δ .

The probability is taken over the random choices of the
algorithm. We call ε the approximation parameter and δ the
confidence parameter. The algorithm we use is the follow-
ing:

Generic approximation algorithm GAA
Input: program, k, ψ, ε, δ
Output: approximation of Probk[ψ]
N := ln( 2

δ )/2ε2

A := 0
For i = 1 to N do

A := A+ Random Path(program, k, ψ)
Return A/N

where Random Path is:

Random Path
Input: program, k, ψ
Output: samples a path π of length k and check formula
ψ on π

1. Generate a random path π of length k in the program

2. If ψ is true on π then return 1 else 0

Theorem 1 (from [15]). This approximation algorithm is a
fully randomized approximation scheme for the probability
p = Probk[φ] of an LTL formula φ if p ∈]0, 1[.

This result is obtained by using Chernoff-Hoeffding
bounds [16] on the tail of the distribution of a sum of inde-
pendent random variables. The time complexity of the al-
gorithm is polynomial in log(1/δ) and 1/ε. The space com-
plexity is linear in the length of execution paths. This algo-
rithm can be deployed on a distributed computation model
to distribute path generation and formula verification on a
cluster of workstations. Measurements demonstrated ([12])

that this distribution scheme is scalable and provides a lin-
ear acceleration.

Note that sometimes we are only interested in finding
bugs, so we just want to verify if the probability is strictly
positive. It means that we don’t have to generate all the
paths needed to approximate the value of the probability. In
order to apply our method to the framework of programs
written in a real programming language such as C, we need
to modify non deterministic steps (e.g. interaction with the
user) into probabilistic ones (e.g. random inputs).

There is a similar probabilistic approach in the work of
[10]. This approach uses an adaptive approximation algo-
rithm with multiplicative error.

4 Implementation and results

4.1 Implementation

We designed a prototype that implements the approxi-
mation method for the verification of ANSI C and C++ pro-
grams. One of our goals was to make sure that the prototype
worked without human intervention on the source code. In
order to verify a program with the method described in sec-
tion 3, we had two tasks to achieve:

• Generate execution paths of bounded length using the
program without modification.

• Verify a given formula on each of these paths.

These two tasks are done by encapsulating the program
into a larger C++ program whose general architecture is de-
scribed in figure 1. Basically, we construct a modified ver-
sion of the program that runs several times the original ver-
sion and that computes the approximate value of the proba-
bility of the property to verify.

At the beginning of the program, we add a header that
contains:

• a tracker: a piece of code that generates bounded exe-
cution paths,

• a rewriting of the classical types (integer, float etc.),
in order to track the modifications of the values (see
figure ,

• a specific declaration of formula variables: this is done
automatically in order to track only the important vari-
ables.

To generate an execution path, we use the tracker (see
figure 2). Basically, for each variable var i of the for-
mula to check, the tracker contains two internal variables
p.var i and MW i. The variable p.var i is in fact a
pointer that links to var i. This means that the value of
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p.var i is always the value of var i (even after a mod-
ification of var i). MW i (Modification Witness of var
i) is pointed by (an automatically modified version of) var
i. It means that each time var i is modified, the tracker
will be aware of that. Using this mechanism, each time a
variable is modified, the tracker outputs all the values of the
variables of the formula as a vector state i. An execu-
tion path will be a list of the vectors state i for i ranging
from 1 to the length choosen (indicated by the formula since
we considered bounded temporal formulas).

For the first task, i.e. generating traces, the tracker main-
tains a counter of the current length of the path. When ar-
riving at the desired length, the tracker send a SIGUSR1
system signal to its process. The signal triggers an interrup-
tion in the program that stops the path generation and starts
the path verification. Once the verification is completed,
the program frees the memory (essentially the vectors that
represent states), summarizes the results (i.e. computes the
approximate value of the probability) and then re-launches
the whole process until enough paths have been generated to
compute the approximate value of the probability or enough
information has been collected (for bug reporting).

For the second task, i.e. verification of the formula on
one path, we just use a simple function (the specific veri-
fier of the figure 1) that verifies recursively a formula using
the bounded semantic of temporal logic. More information
about the semantic of such a temporal logic can be found
in [2]. This function also has an other goal: it sorts out the
variables that are important for the verification of the for-
mula. This has to be done since this information will be
used in the header of the encapsulated program (see above).

Using this mechanism, we can output, by running the
modified program, the probability that the original program
satisfies the property.

4.2 Experimental results

To show the effectiveness of our approach, we made sev-
eral experiments. All the experiments were done on an In-
tel P4 3 GHz with 1 GB RAM and 1 MB cache. For all
the runs, we set ε = 10−2 and δ = 10−5. We tested our
prototype on two program examples. For each program, we
verified the correct version of the program, and a buggy one.
Dining philosophers. We made several experiments on
the dining philosophers problem [21]. Dining philosophers
implement a simple mutual exclusion process. Being well
studied, it allows us to validate the results of our prototype.
Here, we conducted two set of experiments, one on a cor-
rect version of the algorithm and another one on a buggy
version. For the correct version, we verified that the proba-
bility of a reachability property is 1. To create a buggy ver-
sion we just changed one assignment of a variable in order
to simulate a keystroke error while programming. The prop-
erty we verified is that there exists at least an execution of
the program where a philosopher does not release the forks
(thus violating the fact that eventually each philosopher will
eat).

The following table summarizes the results of the verifi-
cation process for several values of the number of philoso-
phers we consider.

correct version
# phil. time (sec.) memory (KB)

25 708.4 960
50 2970 1176

100 6711 1432
300 71400 4368

1000 out of reach1 60296

1The predicted computation time is around 9 days on a single worksta-
tion.



buggy version
# phil. time (sec.) memory (KB)

25 7× 10−3 936
50 0.02 992

100 0.04 1116
300 0.86 1592
1000 13 3272

For the correct version the computation time given is
the time necessary to ensure that the probability is approxi-
mately 1. For the buggy one, this is the time to find a bug,
that is the time to make sure that the probability is greater
than 0. One can see that checking the correctness of the pro-
gram is still a computationaly heavy task, but that finding a
bug can be done in a very short time (and gives, as usual in
model checking, a counter-example to the property).
Bubble sort. We also conducted the verification of a simple
program that implements bubble sort. The property we veri-
fied for both versions of the program is that, at the end of the
computation, the integer list given as input is well sorted.
We construct the buggy version by modifying a value of a
bound of a loop, basically, writing < instead of <=.

correct version
# int. time (sec.) memory (KB)

10 138 884
20 940 976
30 5076 1340

buggy version
# int. time (sec.) memory (KB)

10 0.01 884
20 0.03 976
30 0.08 1340

Again, the experimental results show that the memory
needed to complete the verification is very small and that
the computation time remains reasonable.

5 Discussion

Traditionally, model checking is a highly expensive com-
putational activity. The main drawback of the method is
the memory needed to finalize the verification of large sys-
tems. On the contrary, our method has the advantage of
storing only one execution path of bounded length at a time.
This is why the experimental results show that the method
is extremely efficient in both computation time and mem-
ory comsuption. This is also due to the fact that we work
directly on the C source code of the program. Indeed, we
don’t have to go through a translation phase from a specific
description language to an internal representation suitable
for the model checker.

However, our implementation is still too naive to be gen-
eralized into the design of a complete verification tool.

Firstly, since we use a SIGUSR1 system signal in or-
der to stop the path generation, we cannot verify programs
that use this kind of signal. There are really a lot of such
programs (automount, apache, snort and most of the sys-
tem daemons). Moreover, since the program is not entirely
under an interpreter control, the program might deadlock,
and therefore the tracker might never be able to send a SI-
GUSR1 interrupt. As a consequence, taking a sample might
never terminate. In order to avoid this, we added a timer that
breaks the program whenever a fixed timeout expires.

Another problem of our implementation is that we en-
capsulate the original program into a C++ program. It
means that we can only deal with languages compatible
with C++. To enlarge the spectrum of the target languages,
the use of external tools could maybe lead to some improve-
ments. Some research groups started to work with GCC in
order to deal with more languages [11], but they deal with
one of the intermediate representation of the compiler, and
this has an over-cost in term of computation time/memory
consumption.

To overcome these problem, we started recently the de-
sign of a tool based on the same mechanism as GDB (the
Gnu Debugger). Using GDB, we have access to more in-
formation than the ones given by our prototype. For ex-
ample using GDB we can consider non determinism in a
more clever way, due to the presence of breakpoints. Since
we don’t need all the functionalities of GDB, we use the
ptrace() function. Indeed, this function is at the heart of the
breakpoint mechanism of GDB.

6 Conclusion and Future Work

In this paper, we presented a prototype implementation
of an approximation-based model checking method for the
verification of programs written in C and C++. The main
characteristics of this method are the following:

• The method handles C and C++ source code directly,
without any modelling phase (that otherwise must be
done by a highly qualified engineer). It gives the
method two advantages: it saves human time and cost,
and avoid modelling errors.

• Since we proceed by a sampling of program execution,
we never construct the whole transition system under-
lying the program. So the prototype never stores more
than one execution trace in memory, thus avoiding the
state space explosion phenomenon.

From the efficiency point of view, we showed in section 4
that the computation times are very good and that the mem-
ory comsuption is low.



In future work, we plan to develop a complete program
verification platform for more languages using the ideas we
presented in section 5. We also plan to use the natural
massive distribution scheme usable for verification method
based on sampling [12] in order to verify efficiently very
large programs.
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