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Jérôme Darbon

UCLA Mathematics Department, USA
E-mail: jerome@math.ucla.edu

Abstract. This paper copes with the optimization of Markov Random
Fields with pairwise interactions defined on arbitrary graphs. The set of
labels is assumed to be linearly ordered and the priors are supposed to
be submodular. Under these assumptions we propose an algorithm which
computes an exact minimizer of the Markovian energy. Our approach
relies on mapping the original into a combinatorial one which involves
only binary variables. The latter is shown to be exactly solvable via
computing a maximum flow. The restatement into a binary combinatorial
problem is done by considering the level-sets of the labels instead of the
label values themselves. The submodularity of the priors is shown to be
a necessary and sufficient condition for the applicability of the proposed
approach.

1 Introduction

Many early vision problems can be formulated as an optimization problem. In
particular, Markov Random Fields (MRFs) models have been widely used [21]
since the seminal work of Geman et al. [9]. These energies are generally a
weighted combination of two terms: the fidelity term and the prior. The first
one measures the fidelity of the reconstructed solution with the observed data
while the second one contains some knowledge on the result. It is generally hard
to find a global optimum since these energies are usually non-convex. For some
particular cases, computations are tractable using dynamic programming [2].
However for most of problems, considered energies remain difficult to optimize
in general and these optimization problems can even be NP-hard [12]. A gen-
eral practice is to use Simulated Annealing [9, 21] although it may be extremely
slow in practice. This paper focus on Markovian energies that involves pairwise
interactions and any data fidelity. An algorithm that computes a global mini-
mizer of a subclass of these energies in more generality that it was previously
possible is presented. Compared to non-global optimization algorithms, global
minimization algorithms allow to study the practical performance of a model.
Besides, the approach proposed in this paper can be seen as a complementary
computational point of view to the theoretical work of Nikolova on the property
of global minimizers[8, 17, 18].

Let us define the problem of minimizing a Markovian energy with pairwise
interactions in the context of computer vision. Assume that images are defined
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on a set of nodes V with cardinality |V|. The value of the image u at a site
p ∈ V is denoted by up. The lattice is endowed with a neighboring system and
the neighborhood relationship between two adjacent sites p and q is denoted by
p ∼ q. Only pairwise interactions are considered, and such a clique is referred
to as (p, q) where p ∼ q. We denote by E the set of all cliques. Thus we are
interested in minimizing the following Markovian energy:

E(u|v) =
∑
p∈V

fp(up|vp) +
∑

(p,q)∈E

gpq(up, uq) , (1)

where v is the observed image, and the functions {fp} and {gpq} are respectively
the fidelity terms and the priors.

In the seminal work [19], Picard and Ratliff show how a subclass of this energy
can be optimized by computing a maximum-flow/s-t minimum-cut [1] on a graph
associated to this energy. Then Greig et. al. use this approach in [10] to study
the behavior of the Ising model for binary image restoration. In [4] Boykov et al.
applies this technique for computer vision applications along with an excellent
approximation result for the non-binary case. In [14], Kolmogorov and Zabih
give a sufficient and necessary condition for the optimization of boolean MRF
with pairwise and also triplewise interactions via s-t minimum-cut.

Extension of these approaches for exact optimization of MRFs involving more
than two labels have been tackled by some authors. Approaches assume that la-
bels can be linearly ordered and there are no assumptions on fidelity terms.
In [13], a graph construction is proposed for MRFs where the priors are convex
functions of the difference of labels, i.e. gpq(·− ·) where gpq are convex functions.
The convexity assumption is shown to be sufficient and necessary. In [22], a class
of MRFs whose energies can be rewritten as particular boolean MRF associated
to each level is studied. In [6], the two above classes of Markovian energies are
considered. The above assumptions allow the authors to devise a graph construc-
tion scheme for which a s-t minimum-cut yields a global minimizer minimization.
Note that the topology of the underlying graph are different for each method
but the size, i.e., the number of nodes and arcs, is the same. The optimization
approach we propose in this paper can cope with all the above cases.

In this paper it is assumed that up takes value in the discrete set discrete L ⊂
IR of cardinality |L| = L. This set is assumed to be linearly ordered, i.e., L =
{l0, . . . lL−1} with li < li+1 ∀i ∈ J0, L − 2K. We also assume that the functions
{fp} and {gpq} take values in IR and are respectively defined on the discrete
sets L and L2. Such functions will be referred to as discrete functions. In this
paper, the priors {gpq} shall be submodular functions. For any positive integer k,
a function g : Lk → IR is said submodular if and only if it satisfies the following
inequality [16]:

∀(x, y) ∈ (L2)k g(x ∨ y) + g(x ∧ y) ≤ g(x) + g(y) , (2)

where (x ∨ y) and (x ∧ y) respectively corresponds to the component-wise min-
imum and maximum between x and y, i.e., ∀p ∈ V (x ∨ y)p = min{xp, yp} and
(x ∧ y)s = max{xp, yp}. Submodularity can be seen as a general property of
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discrete functions that are analogous to convexity of functions defined on con-
tinuous domain [16].

The main theoretical contributions of this paper are the following. First, we
propose an algorithm which computes a global minimizer for MRFs with pair-
wise interactions where priors are submodular functions. No assumption is set on
data fidelity terms. Our approach relies on restating this problem into a binary
optimization problem that can be exactly solved with a maximum-flow-based
approach [4, 10, 14, 19]. Our mapping to the binary formulation makes use of the
level sets of the labels. Second, it is shown that submodularity of the priors is a
sufficient and necessary conditions for the application is the proposed approach.
To our knowledge, these results are new and considerably extend previous avail-
able approaches for global MRF optimization. The complexity of our algorithm
is pseudo-polynomial [1].

The remainder of this paper is organized as follows. Section 2 describes how
one can we rewrite data fidelity and prior terms using the level sets of the
variables. These rewritings are the core of our restatement of the original mini-
mization problem to a binary minimization one. In Section 3 we cope with exact
optimization of MRFs with submodular priors. Finally we draw some conclusions
in Section 4.

2 Development through Level Sets

This Section is devoted to rewrite every single data fidelity term fp(·) and all
prior terms gpq(·, ·) appearing in the Markovian energy E defined by equation (1),
as a linear combination of binary energies. These restatements will be used for
optimizing exactly first order MRFs with submodular priors. This mapping is
achieved thanks to the level sets of a label. We first define the notion of level
sets and then we give the developments on level sets for functions of one and
two variables.

Let us introduce the level set [x]λ of a variable x ∈ L at a level λ ∈ L as
follows:

[x]λ =

{
0 if x ≤ λ,
1 if x > λ .

The level sets of a variable x satisfies an monotone property:

∀λ ≤ µ [x]λ ≥ [x]µ , (3)

The original gray-level value x can be reconstructed from its level sets using the
following equality as shown in [11, 15]:

x = max{λ ∈ L, [x]λ = 0} . (4)

Conversely, it is shown in [11, 15] that any family of binary variables {[x]λ}λ=0...L−1

which satisfies the monotone properties, given by equation (3), define a label.
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In other words, knowing the label itself or its binary representation in terms of
level sets are equivalent.

The next proposition gives a development for data fidelity term as a sum-
mation on the level sets of its variable. It is based on a ”discrete” integration of
the ”discrete” variations of fp over its level sets.

Proposition 1 Any data fidelity term fp : L 7→ IR rewrites on its level lets as
follows:

fp(x) =
L−2∑
i=0

Dp(i)[x]li + fp(l0) , (5)

where ∀i ∈ J0, L− 2K Dp(i) = fp(li+1)− fp(li) .

The proof is a straightforward extension of a similar proposition in [5].
Next, we extend the previous result to cope with functions of two variables.

A natural way to perform it consists of applying the previous development firstly
on the first variable and then on the second one. By rearranging terms it yields
the following level sets-based developments.

Proposition 2 Any prior term gpq : L2 7→ IR rewrites on its level sets as
follows:

gpq(x, y) =
L−2∑
i=0

L−2∑
j=0

Rpq(i, j)[x]li [y]lj (6)

+
L−2∑
i=0

(
D1
pq(i)[x]li +D2

pq(i)[y]li
)

+ C ,

where

∀i ∈ J0, L− 2K D1
pq(li) = g(li+1, l0)− g(li, l0) ,

and

∀i ∈ J0, L− 2K D2
pq(li) = g(l0, li+1)− g(l0, li) ,

and C = gpq(l0, l0) and more importantly where

∀(i, j) ∈ J0, L−2K2 Rpq(i, j) = g(li+1, lj+1)−g(li+1, lj)−g(li, lj+1)+g(li, lj) (7)

So far, we have made no assumptions on data fidelity terms and on priors.
In other words, results given in Proposition 1 and Proposition 2 hold for any
function of one and two variables, respectively. In the next section, we specialize
these level sets developments in order to globally optimize MRFs with submod-
ular priors.
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3 MRFs with Submodular Priors

In this Section, we assume that all priors {gst} are submodular functions and
we show that such MRFs can be exactly optimized via computing a maximum
flow on an associated graph [4, 14, 19]. Our approach consist of first applying
the previous proposition to restate the original energy given by Eq. (1) in terms
of binary variables. So we rewrite all data fidelity and prior terms using the
expansions given by Proposition 1 and Proposition 2, respectively. So we get:

E(u|v) =
∑

(p,q)∈E


L−2∑
i=0

L−2∑
j=0

Rpq(i, j)[up]li [uq]lj +
L−2∑
i=0

D1
pq(i)[up]li +D2

pq(i)[uq]li


+
∑
p∈V

L−2∑
i=0

Dp(i)[up]li +K ,

where the constant K comes from the constant C in the previous propositions.
Note that the latter rewriting of the energy E(u|v) only involve the level sets of
the image u, i.e., {[u]li}i=0...L−1. So let us define a new energy Ẽ whose variables
are now |L| binary images {bi}i=0...L−1 as follows:

Ẽ({bi}i=0...L−1|v) =
∑

(p,q)∈E


L−2∑
i=0

L−2∑
j=0

Rpq(i, j)bipb
j
q +

L−2∑
i=0

D1
pq(i)b

i
p +D2

pq(i)b
i
q


+
∑
p∈V

L−2∑
i=0

Dp(i)bip +K .

Now if for all sites p ∈ V, the families of binary images {bi}i=0...L−1 satisfy the
monotone property given by Eq (3), then this family defines an image using the
reconstruction given by Eq (4). However if any of the families {[bis]λ}λ=0...lL−1

violates the monotone property, then a gray level image cannot be defined. Be-
sides note that for any image u we have E(u|v) = Ẽ({[u]λ}λ=0...lL−1 |v). Thus,
if we are able to minimize the energy E({[·]λ}λ=l0...lL−1 |v) while preserving the
monotone property, then we get a global minimizer of E(·|v). In order to force
the monotone property to hold we define the following new energy:

Ẽα({bi}i=0...L−1|v) = Ẽ({bi}i=0...L−1|v) +
∑
p∈V

α

L−2∑
i=0

H(bi+1
p − bip) , (8)

where H : IR 7→ IR is the Heaviside function defined as H(x) = 0 if x ≤ 0 and
1 else. It is shown in [6] that if α is set to a sufficiently large finite value, then
we are assured that any global minimizer of Eα({·}i=0...L−1|v) never violates the
monotone property give by Eq. (3).

Now we show that the boolean energy (8) can be optimized via a maximum
flow or by duality a s-t minimum-cut [1]. Following the seminal work of [19] or



6 J. Darbon

equivalently [4, 14] it is enough to show that every pairwise interaction terms
of binary variables are submodular. Specializing the definition of submodularity,
Eq. (2) for a binary function f of two variables, i.e., f : {0, 1}2 → R, we get
that:

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0) . (9)

For the case we are considering we shall check the submodularity of the terms
H([up]li+1− [up]li) and Rpq(i, j)bipb

j
q. It is easily seen that the terms H(bi+1

p −bip)
satisfy the submodular property; see also [6] for further details. Thus it remains
to show the submodularity of the terms Rpq(i, j)bipb

j
q. Using the inequality (9)

it means to show that J0, L− 2K2 R(i, j) ≤ 0 . This property is assured by the
submodularity assumption of the priors, Eq. (2), as shown in the next proposi-
tion.

Proposition 3 Assume g : L2 7→ IR. The following two assertions are equiva-
lent:

1. g is submodular,
2. g writes as

g(x, y) =
L−2∑
i=0

L−2∑
j=0

R(i, j)[x]li [y]lj (10)

+
L−2∑
i=0

(
D+(i)[x]li +D−(i)[y]lj

)
+ C ,

where ∀(i, j) ∈ J0, L− 2K2 R(i, j) ≤ 0 , D+ and D− are two functions and
C is a constant.

Proof. Case 1)⇒ 2) We apply Proposition 2 to g and we get the form given in 2).
It is straightforward to see that any unary function is submodular. The submodu-
larity condition given by Eq. (9) applied for the remaining terms R(i, j)[x]li [y]lj ,
reduces to show that ∀(i, j) ∈ J0, L− 2K2 R(i, j) ≤ 0.
Recall that Eq. (7) of Proposition 2 also states that

R(i, j) = g(li+1, lj+1)− g(li+1, lj)− g(li, lj+1) + g(li, lj) .

Now let us introduce the couples a = (li, lj+1) and b = (li+1, lj). Then it is
readily seen that R(i, j) rewrites as follows:

R(i, j) = g(a ∧ b)− g(a)− g(b) + g(a ∨ b) .

The latter is non-positive due to the submodularity of g. This concludes the
proof for the first case.

Case 2) ⇒ 1): Let x ∈ L2 and y =∈ L2. Note that the only interesting case
happens when x /∈ {(x ∨ y) ∪ (x ∧ y)} (otherwise the submodularity property is
obviously satisfied).
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Let us denote by (xm, ym) = (x ∧ y) and (xM , yM ) = (x ∨ y). We need to
show that g((xm, ym)) + g((xM , yM ))− g((xm, yM ))− g((xM , ym)) ≤ 0 .

To prove this inequality we write each term in the level-set development form
given by Eq. (10). One sees that the constant C and the terms involving the single
summation

(∑L−2
i=0 ·

)
cancels each other. Thus only the double summation terms

remain, i.e., we need to show:

L−2∑
i=0

L−2∑
j=0

R(i, j)
(
[xm]li [ym]lj + [xM ]li [yM ]lj − [xM ]li [ym]lj − [xm]li [yM ]lj

)
≤ 0 ,

which is equivalent to

L−2∑
i=0

L−2∑
j=0

R(i, j) ([xM ]li − ([xm]li)
(
[yM ]lj − ([ym]lj

)
≤ 0 . (11)

Since xM ≥ xm and yM ≥ ym get that

∀i ∈ L ([xM ]li ≥ ([xm]li) ∧ ([yM ]li ≥ ([ym]li) ,

and thus every term in the double summation in (11) are non-positive since
R(i, j) ≤ 0. This concludes the proof. �

So far we have shown that the binary energy 8 can be exactly optimized
using a maximum flow approach [4, 10, 14, 19]. Minimizing the latter energy is
equivalent to minimize a first order MRF with submodular priors. Note that
Proposition 3 gives a sufficient and necessary condition for applying the proposed
approach. This result highly generalizes the results presented in [6] and [13].

We now consider the case where the priors are a unary function of the differ-
ence of the labels. These are widely used in image analysis because it corresponds
to regularize the gradient of an image. The most well-known example of such a
prior is most probably the Total Variation [20]. Under the above assumption the
next proposition shows that only a convex regularization of the difference of the
labels can be considered using the approach presented in this paper.

Proposition 4 Assume g : L2 → IR is submodular and has the following
g(x, y) = g̃(x− y) then g̃ is a unary convex function.

Proof. First we apply Prop 2. Now, due to the form of g̃ we have that R(i, j) =
2g̃(i−j)−g̃(i−j+1)−g̃(i−j−1). We also have R(i, j) ≤ 0 by the submodularity
of g. By letting k = i−j we get that 2g̃(i−j) ≤ g̃(i−j+1)+ g̃(i−j−1) which is
exactly the discrete second variation convexity criteria for a unary function [16]
applied for g̃. �

Note that although computing a maximum can be performed in polynomial
time [1] our approach, like those of [6] and [13], is not. Indeed, an algorithm has a
polynomial time if it performs a polynomial number of operations with respect to
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the number of bits required to describe the optimization problem. The necessary
number of bits to describe an integer n is dlog2 ne. The graph we built has for
each pixel one node per gray level (i.e., for each pixel we have (L−1) nodes) and is
thus exponential with respect to dlog2 ne. This exponential behavior prevents us
from applying this approach on very large images (such as 3D volumes) because
it requires to much memory. However, The proposed approach is manageable for
standard size images and we refer the reader to [6] and [7] for image restoration
and time results. Finally note that the maximum flow algorithm described in [3]
has been shown to be extremely efficient in practice though its time complexity
might not be polynomial. For image processing purposes it outperforms other
polynomial algorithms as reported in [3]. This makes the method applicable as
reported in [6] and [7].

4 Conclusion

In this paper we have presented a method to globally optimize a Markovian
energy with pairwise interactions whose priors are submodular functions. The
approach consists of restating the original problem as binary optimization prob-
lem that can be efficiently solved using a graph approach. The binarization
makes use of the level set of the image. The submodularity of the priors has
been shown to be a necessary and sufficient condition for the applicability the
proposed approach.
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