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ABSTRACT
Having 300 students a year implement a compiler is a debat-
able enterprise, since the industry will certainly not recruit
them for this competence. Yet we made that decision five
years ago, for reasons not related to compiler construction.
We detail these motivations, the resulting compiler design,
and how we manage the assignment. The project meets its
goals, since the majority of former students invariably refer
to it as the project that taught them the most.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Infor-
mation Science Education—Computer Science Education;
D.3.4 [Programming Languages]: Processors—Compil-
ers

General Terms Design, Management

Keywords Compiler Design, Object Oriented Program-
ming, Educational Projects, Design Patterns.

1. INTRODUCTION
epita is a private school teaching computer science to

graduate students, with a strong practical emphasis via pro-
jects. Like most French engineering schools, it is composed
of three phases: a two year preparation cycle with mostly
theoretical basic courses, a year and a half core curriculum,
and finally a year and a half specialization cycle.

Several years ago a reflection on the core curriculum pro-
jects highlighted the need for a long and challenging project,
requiring material from virtually all the computer science
courses. Compiler construction appeared as a miraculous so-
lution to a complex system of goals/constraints. Five years
later, this project is still alive, and quite successful.

Section 2 justifies having 300 students build a compiler.
Section 3 describes the constraints this compiler should ful-
fill, and Section 4 presents parts of its original design that
address them. The management of the project is sketched
out in Section 5. Finally, Section 6 proposes guidelines, and
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Section 7 concludes.

2. YET ANOTHER COMPILER PROJECT?
Writing a compiler is a common assignment in computer

science, dating back to the early days of compiler construc-
tion courses. Yet our project differs from most of its peers [2,
4, 6] in several regards, starting with the motivations: com-
piler construction is a by-product, not the primary goal. This
project was introduced because it met a set of requirements
that were not satisfied by the existing (shorter) projects:

Complete Project Parts of development that students tend
to neglect should be emphasized: specifications, docu-
mentation and testing. A long project makes the lat-
ter two points critical: students feel the need for good
(developer’s) documentation (why did we write/change
this code 4 months ago? ), and extensive test suites
(why does stage n − 2 fail now? ). None will be pro-
vided, they will have to develop theirs.

Several Iterations This is our only 6 (optionally up to
9) month project, with several deliveries and assess-
ments. Therefore, students feel the constant need to
fix errors found in earlier stages. Compared to throw-
away assignments that they are not required to fix once
rated, this completely changes their approach to pro-
gramming by introducing software life cycles: dirty or
undocumented code hinders the development of the
next phase. They will have to take our comments into
account.

Algorithmically Challenging Well known data structures
(trees, graphs, automata, scoped symbol tables, etc.)
and algorithms (LR parsing, traversals, sorting, term
rewriting, graph coloring, etc.) must be used, to have
students understand by themselves the importance and
the relevance of the techniques they learned during the
(somewhat theoretical) algorithmic courses.

Development Tools A wide spectrum of tools encompass-
ing commonly used utilities (Automake, Doxygen, Flex,
Bison, Debuggers, Valgrind, Version Control Systems,
etc.). Other projects already use some of them, but
nowhere else are so many of them required concur-
rently.

Team Management The assignment is addressed by groups
of 4 over a 6 to 9 month period: human issues become
critical. Experience shows that most students become
much more receptive to “human management” courses
afterward: sometimes we even have to intervene when
the situation degenerates.



C++ epita selected C++ for its core curriculum for its ex-
pressive power and wide acceptance in industry, not
for academic considerations about its qualities. It is
not adequate for compiler construction study, but this
seldom demanded competence is not a primary goal.
For epita students, C++, Design Patterns, and OO
Design are much more important — and highly de-
manded skills.

Object Oriented Design and Design Patterns The as-
signment must train students to OO design, and its
most common idioms, the design patterns [10]. Use of
uml is a plus.

English Every step of this project, except lectures and oral
examinations, is done in English. This is a real obsta-
cle for some students, but they have to overcome this
difficulty since computer science requires some fluency
in English.

Compiler construction is a miraculous answer to such a set
of constraints. It also offers features of its own. Compilers
(components) are everywhere under various disguise (xml
processing, structured formats, interpreters etc.) [8]; many
students are likely to have to work on them in their career.
In addition, like assembly language notions, compiler study
provides insight on computer functioning, kills some urban
legends (e.g., tables better and faster than code); in short it
helps programmers understand how to do a better job.

Hence, the project aims at the implementation of a com-
piler, a secondary issue, in C++, an essential goal. That
compiler construction is not the main objective must be re-
iterated sometimes, either to recalcitrant students who criti-
cize the pertinence of compiler construction on their resume,
or to enthusiastic students who regret the absence of more
advanced compiler material.

3. WHAT COMPILER?
There are numerous small languages and compiler designs

created for compiler construction projects, probably nearly
as many as there are teachers. We refrained from writing
our own, a tremendous task in itself. Rather we looked for
an existing well established project.

3.1 What Language?
The question was actually quickly answered, since we were

enthusiastic about Andrew W. Appel’s “Modern Compiler
Implementation” book [3]:

• It is a recent text book addressing modern issues and
modern techniques that more famous, but older, clas-
sic text books [1] do not mention.

• Its coverage is perfect for our students, who need to
understand one good technique well, not all the known
variations. For instance, since an implementation of
scoped symbol tables amounts to nesting C++ maps
in C++ stacks, for our purpose, most books are too
comprehensive [1, 7].

• Its balance between theory and practice suits us, and
in particular a full compiler implementation is detailed.

• Its 250 page presentation of a full compiler implemen-
tation does not frighten the students.

• It provides another 250 pages of more in-depth mate-
rial for those interested.

Therefore we chose the language Andrew W. Appel de-
signed for his book, Tiger, a small yet very complete subset
of Pascal dressed in a clean ML-like syntax.

3.2 What Compiler Design?
The Tiger books [3] come in three implementation flavors:

procedural with C, functional with ML, and object-oriented
with Java. The C book samples are barely readable due
to the low-level nature of the language. The ML edition is
beautiful but inadequate to teach OO design. Unfortunately
the Java book presents a very poor design; it is missing the
unavoidable visitor design pattern, fails to use inheritance
properly and so on. Of course, the book teaches compiler
construction, not object-oriented design. Unfortunately we
found no good compiler text book for C++; it seems that
most authors refuse to use the standard library and rede-
velop low level components.

Because OO design is a more important objective than
compiler construction (Section 2), we redesigned Appel’s
compiler, inspired by the original. In contrast to other ap-
proaches [6], we kept the same ambitions as Andrew W. Ap-
pel: the source language is fairly complete, and we target a
genuine (mips) assembly language. In addition to meeting
the aforementioned goals (Section 2), the compiler has to:

Never Repeat Itself Every stage must present/exercise
something new. Because of time pressure, we cannot
afford theme duplication. For instance we use sev-
eral different memory management techniques (regular
new/delete, reference counting, factories that reclaim
their products, C++ auto ptr).

Be Reasonably Dimensioned Some logistical details are
time consuming and present little interest, in which
case we provide the code. For instance 70% of the
repetitive 3kloc ast is provided in full, leaving out
only challenging code extracts. Because the project
is decomposed by phases, we deliver the code (with
gaps) incrementally: for each new stage, students re-
ceive patches to apply to their code.

Be Easy to Debug The compiler is similar to a long Unix
pipe, with structured data flowing through different
modules. Students need to “see” the data to control
their job. This sole requirement represents about 10
command line options in their final compiler, and twice
as many in our more feature-full reference compiler.

Be Easy to Check Automated tests for each phase are
needed, which requires tools such as an intermedi-
ate code interpreter. When unavailable, we developed
such tools as Free Software, and we also contributed to
existing projects to provide more pedagogical features
(Section 5.2).

Be Extremely Modular Because the code with gaps is
provided stage after stage, everything is made to ease
its integration into the students’ code. This is espe-
cially constraining for the compiler driver1 that cur-
rently supports about 60 options.

Follow Students in their C++ Learning Students receive
their first C++ lectures when assigned the Tiger Project.
Therefore stages should start with novice C++ mate-
rial, and become increasingly advanced, ending with
powerful C++ techniques (e.g., static programming,
smart pointers, template template parameters, stream
extensions, functional aspects, etc.).

The following section presents the resulting design.
1Roughly, the driver decodes command line options and in-
vokes the components in the right order, satisfying prereq-
uisites (such as “if type-checking is required, then parsing
must be invoked beforehand”).



4. THE DESIGN
The full presentation of our implementation goes beyond

the scope of this paper. The interested reader is referred
to our web site [9]. It is the result of a yearly redesign
to address shortcomings of the implementation, or changes
in pedagogical objectives. We also regularly change some
aspects to discourage cheaters from using compilers from
previous classes. Therefore there are many differences with
Appel’s design, two of them are detailed below because of
their importance in education.

4.1 Semantic Analysis
Andrew W. Appel describes a single semant module for

type checking and translation to the Tree intermediate lan-
guage (Section 5.2.3). We first followed his design with a
semant visitor, but it was a disaster for students. Indeed,
they were first given a partial semant visitor adressing
type checking, which they completed. Then we provided
a patch to migrate the partial type checker into a partial
type checker and translator. Since they had vastly edited
the type checker, the patches no longer applied. To avoid
this situation, we now only provide new modules and refrain
from changing code from earlier stages: students might have
customized it. Therefore the semant visitor was split into
(three) smaller components traversing the ast:

bind visitor It binds identifier uses (e.g., a variable name)
to their definition (e.g., variable declaration). This
factors once and for all the handling of scopes. Before
the introduction of this visitor, scopes were handled
several times and students often had it right in one
place, but wrong elsewhere.

type visitor It checks the type consistency, and annotates
the ast with types.

translate visitor It translates the ast to Tree code us-
ing binding and type annotations.

Visibly more adequate for students, this combination is
also a better design: in addition to factoring scopes pro-
cessing, it eases extensions. For instance, function overload-
ing support is implemented by subclassing the bind visitor

and type visitor: the translate visitor is identical.

4.2 The Task Manager
In our case not only is modularity a healthy principle, it is

also required by the fact that we deliver code in stages. For
instance, when type checking is assigned, students should be
able to integrate easily the incomplete type module that we
provide.

While modularity is claimed by many compilers, usually
the driver is all but modular: it hard-codes calls to all the
components. Our history demonstrated we cannot afford
such a driver, because it is too hairy to maintain (imag-
ine implementing “if displaying the ast is required, then
activate parsing” for 60 options), and unsuitable for an in-
cremental delivery (type module invocations cannot be left
in the driver if that module is not present). It is also incom-
patible with the addition of optional modules.

To address these issues, modules have a two level interface.
The library level is modeled after functional programming
principles: there are only type definitions, pure functions
(free of side effects), and no variable. On top of it is the
imperative style task level, composed of global variables and
actions changing these variables. When loaded, each task

registers itself under a unique name, together with its pre-
requisites (much like Make “phony” targets, and LLVM’s
Pass Manager [12]). When the user passes command line
options, the sequence of tasks to invoke is completed and
executed.

5. LOGISTICS
Managing such a project, spanning 6 to 9 months, with

300 students per class, i.e., from 7 to 10 deliveries of about
80 compilers is a challenge in itself. Everything that can be
automated must be automated, everything that should be
known must be written, everything that can help must be
done.

5.1 Organization
The Tiger team is composed of (i) one teacher who man-

ages the project, writes the assignments and examinations,
maintains the reference compiler, (ii) some co-maintainers
who contribute mandatory or optional parts of the compiler,
(iii) 18 students of the previous class who particularly en-
joyed the project and are willing to assist younger students.
They are also in charge of oral examinations.

epita being strongly oriented towards practical applica-
tions, there are numerous projects of various sizes that all
need coordination between the team and the students. We
use web sites to publish information, mailing lists to coordi-
nate ourselves, and newsgroups for asynchronous discussion
with the students. The assistants also developed a complete
web site to manage the class, including automated exami-
nations.

The Tiger project starts in January, after students have
completed a “Languages, Automata, Grammars, Parsing”
course. To learn the language they first have to write a sig-
nificant program in Tiger, e.g., an infix calculator, Huffman
coding, or lzw compression. They will use this assignment,
together with other provided big programs, to exercise their
compilers. Contrary to tiny languages such as J-- [5], Tiger
is rich enough so that compiling higher level languages to
Tiger is not needed. Almost concurrently they start writing
the scanner and parser. At the same period C++ lectures
start. The mandatory part (down to intermediate repre-
sentation, see section 5.2.2) ends in June and the optional
mips back-end in September. Examples of assignments in-
clude writing the bind visitor from scratch, most of the
type checking, smart pointers, additional containers, and the
last (optional) stage is the full implementation of a graph-
coloring register allocator. In July, the class is invited to
debate about the project. Changes are always suggested.
From October to January, the team hacks the compiler for
the following year, taking comments into account.

Assignment and support code for a stage are typically
published on a Monday, and the delivery is two to three
weeks afterward. In the meanwhile, the assistants are avail-
able at almost any time. Of course, the project newsgroup is
very active a couple of days before the delivery. On the Fri-
day at noon, students must have uploaded their package on
the web site. It launches the automated testing procedure,
which evaluates each stage of the compiler. It computes
a global correction grade from these figures, giving higher
penalties to errors in earlier phases. The result is published
to the members of the group who may decide to “re-upload”
within two days, which causes a 10% penalty. The follow-
ing week the oral examination is organized. Each assistant



spends about 45 minutes with the group, asking questions,
evaluating answers, browsing the code, and helping students
to understand and overcome their problems. Finally the
product of the compiler correction grade and examination
grade gives the final grade for one stage. There has been
much debate about this formula, but epita emphasizes the
importance of producing effective software: if you fail half
the test, you can’t decently expect to have half the highest
grade.

A 170+ page document details all the assignments and
makes explicit what students are expected to learn. It also
proposes ideas of optional extensions. Because the project
is created for the whole class, suggesting options is manda-
tory. Indeed, the compiler has to remain very simple, serving
other purposes than compiler construction (Section 2). But
this frustrates the most enthusiastic students who do not
find the challenge (and pride!) they expected. Modularity,
especially thanks to the Task manager, lets students plug-
in their extensions (Section 4.2). Most notable extensions
students have designed and implemented include copy prop-
agation, support for an import feature, object orientation,
function overloading, static link optimization, tail recursion
elimination, bounds checking, improvements to the “stock”
register allocation algorithm, various forms of pretty print-
ing etc. As extreme examples, a student implemented a
Tiger front end for gcc, another rewrote his compiler in
C# to learn it, and Francis Maes published his astonishing
results in compiling towards static C++ [13].

5.2 Tools
In such a complex environment (300 students), automa-

tion is salvation. Many auxiliary tools were written to en-
sure via a daily build that the reference compiler suffers no
regression, to check the students packages, to run the test
suites, to generate the documentation samples, to generate
the ast, to produce the code delivered to student etc.

Most of these tools are private. For instance, students
write the ast because it is an excellent means to under-
stand inheritance, but we generate ours, to easily change
parts of the compiler (and because we understand inheri-
tance). There are also tools that we want them to use to
save time, such as Valgrind or Automake2. Some of these
tools had to be developed (a generator of code generators in
C++ is ongoing work) or extended. A more in depth presen-
tation of these tools and their relevance to computer science
education is deferred to another paper, but we present three
significant examples below.

5.2.1 GNU Bison
No tool was available to produce LALR(1) automaton di-

agrams for Yacc grammars, so we extended GNU Bison. We
also enriched its textual automaton description with miss-
ing information such as the lookahead sets, and conflict res-
olutions. We transformed GNU Bison to support several
output formats and implemented a C++ parser output. To
have students make precise error messages, we implemented
location tracking. Finally, measuring memory leaks in the
student compilers, we found that Bison parsers leak memory
during error recovery, a well known issue going back to the
original Yacc. We introduced the %destructor directive to

2The first year they wrapped their packages by hand: the
archives used to contain incredible material, from core dump
and other object files, to packages of other groups!

fix this problem.

5.2.2 Havm
Andrew W. Appel designed Tree, a simple register-based

high level intermediate code. In a later stage, the compiler
transforms Tree code into a lower level subset of Tree.
Havm, by Robert Anisko, is an interpreter for these high
and medium level intermediate languages. It features a run-
time library, support for recursion, a debugging mode, and
a simple code performance measurement.

5.2.3 Nolimips
Nolimips is a basic mips architecture simulator written by

Benôıt Perrot composed of a mips assembler and of a vir-
tual machine. Compared to spim [11] it features uninitial-
ized memory access and calling convention respect checks
(a la Valgrind), unlimited pseudo register number ($x42,
$x51, etc.), and variable (real) register number. The last
two features deserve more attention since they prompted
the development of Nolimips3.

The compiler first produces assembly code with unlim-
ited pseudo-registers, then performs “register allocation”:
allocating real registers to these pseudo-registers. To help
students and examiners checking the compilers we needed
an interpreter that would allow for unlimited registers.

The possibility to limit the number of mips registers is mo-
tivated by two reasons. (i) Our register allocation is based on
graph coloring, and such a graph, even for simple functions,
is large and “unreadable”. This is due to the 8 callee-save
registers saved in 8 pseudo-registers (8 nodes) colliding with
(connected to) every other pseudo. Controlling the number
of hard registers makes the process much more tractable for
humans, and for students. (ii) The mips architecture fea-
tures 32 registers and the whole set is seldom needed, so
register allocators are unlikely to be exercised on extreme
situations. Bounding the number of registers addresses both
concerns. None of these reasons require a register starving
mips, what matters is that the compiler produces code for
such a register starving mips. But to check that the compiler
respects this limitation requires a limited mips.

6. DISCUSSION
The Tiger project meets its goals: (most) students have

good C++ programming skills and know the principal design
patterns, do not hesitate to implement complex algorithms
or to use an auxiliary tool, pay attention to documentation
and tests, and understand how compilers work. This is the
result of hard work, including regular overhauls, to take into
account student criticism. Even though the first class suf-
fered from many defects (we were one week ahead of them!),
the majority of them invariably refer to Tiger as the project
that taught them the most.

The constant redesign also improves the understandabil-
ity, as can attest the assistants who followed the evolution.
Because the phases also change and incorporate new peda-
gogical material, grades are incomparable between classes.

We drew some guidelines from our experience that we now
follow. They can serve groups managing long-term projects
with objectives similar to ours (Section 2):

3For a number of reasons, technical and political (it is not
Free Software) we did not extend spim, but rather developed
another emulator.



Define the Objectives Make sure students know the ob-
jectives of the project, otherwise they might focus on
auxiliary points, and miss the important ones.

Use Hierarchized Media Web sites should contain often
needed documents, including an FAQ. Any question
asked twice should be answered there. Then use news-
groups or public mailing lists for questions to delegate
the effort: students will often answer, otherwise assis-
tants will. Make clear that private messages are for
private matters exclusively.

Involve Other Students Students who enjoyed the project
are likely to spend a considerable amount of time to
assist younger students. Sometimes they also have a
better understanding of their problems. Working with
them is enriching. Of course, it doesn’t work the first
year, but bootstrapping is always a problem in com-
piler construction.

Be Modular Incremental code delivery requires a fixed base
code. A task-driven top level is a fine answer (Section
4.2).

Keep it Simple Do not aim too high: a long and hard
project excludes students. Do not leave nice and orig-
inal extensions, or even auxiliary code, to students.
Such pieces of code can distract or incredibly hinder
weak students who can’t even tell the difference be-
tween the core of the project and decorations.

Promote Extensions Conversely, meet the expectations
of enthusiasts by proposing extensions, possibly ambi-
tious ones. In addition, they are happy to contribute
their code to the reference compiler to ease the check-
ing of such extensions in the future.

Automate Nothing is overkill: everything that can be au-
tomated must be. That may require additional de-
velopment, but the time spent to assist students will
be overwhelming anyway. In the long run, tools are
always a better option.

Constantly Refactor The maintenance of such a project
is extremely demanding. Be ready to adjust the code
to follow pedagogical changes, to address issues raised
during the year, etc.

Write Your History It is often too late that one realizes
data from early experiments is lost.

7. CONCLUSIONS
We explained why a compiler construction project is rel-

evant to a core curriculum, even if compiler study is not
the starting point. We emphasized a few key aspects of the
design such a long project should feature, and their impact
on student involvement. We also proposed simple guidelines
for similar projects.
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