Probabilistic Verification of Sensor Networks Experimenting a New Framework for Sensor Networks

Akim Demaille¹ Thomas Hérault² Sylvain Peyronnet¹

¹EPITA Research and Development Laboratory (LRDE)

²LRI - University of Paris XI

Research, Innovation and Vision for the Future 2006

Probabilistic Verification of Sensor Networks

2 APMC

3 Modeling & Experiments

4 Conclusion

A. Demaille et al. (LRDE & LRI)

18 N

Sensor

A sensor:

- miniature device
- low-cost (\$1)
- limited computation power
- limited energy

-

< A

Sensor

A sensor:

- miniature device
- low-cost (\$1)
- limited computation power
- limited energy

A sensor network:

- a large number of sensors (1M)
- ad-hoc network
- randomly spread

Sensor

A sensor:

- miniature device
- low-cost (\$1)
- limited computation power
- limited energy

To monitor an area, e.g.,

- intrusion detection
- fire surveillance

• . . .

A sensor network:

- a large number of sensors (1M)
- ad-hoc network
- randomly spread

- to design efficient communication algorithms
- to ensure their correctness

- to design efficient communication algorithms
- to ensure their correctness

The Complications

- the behavior of the network is probabilistic
- the number of nodes is huge

- to design efficient communication algorithms
- to ensure their correctness

The Complications

- the behavior of the network is probabilistic
- the number of nodes is huge

The Techniques

- Simulation
- Model checking

- to design efficient communication algorithms
- to ensure their correctness

The Complications

- the behavior of the network is probabilistic
- the number of nodes is huge

The Techniques

- Simulation
- Model checking
- Approximate Probabilistic Model Checking

A. Demaille et al. (LRDE & LRI)

Sensor Networks

RIVF'06 5 / 21

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 のへの

Testing: No guarantee Model checking: combinatorial explosion

Probabilistic Verification of Sensor Networks

Sensor Networks

3 Modeling & Experiments

4 Conclusion

A. Demaille et al. (LRDE & LRI)

 $p = \operatorname{Prob}[\psi]$

A. Demaille et al. (LRDE & LRI)

- < /⊒ > < ∃ > <

 $p = \operatorname{Prob}[\psi]$

$$\operatorname{Prob}\left[\left(\boldsymbol{p}-\varepsilon\right)\leq\boldsymbol{A}\leq\left(\boldsymbol{p}+\varepsilon\right)
ight]\geq1-\delta$$

A. Demaille et al. (LRDE & LRI)

RIVF'06 6 / 21

- < /⊒ > < ∃ > <

 $p = \operatorname{Prob}[\psi]$

$$\operatorname{Prob}\left[\left(\boldsymbol{p}-\varepsilon\right) \leq \boldsymbol{A} \leq \left(\boldsymbol{p}+\varepsilon\right)\right] \geq 1-\delta$$

 $p = \operatorname{Prob}[\psi]$

$$\operatorname{Prob}\left[\left(\boldsymbol{p}-\varepsilon\right) \leq \boldsymbol{A} \leq \left(\boldsymbol{p}+\varepsilon\right)\right] \geq 1-\delta$$

Algorithm (Generic approximation)

input: ψ , diagram, ϵ , δ Let P := 0Let $N := \frac{1}{2} \log(\frac{2}{\delta})/\epsilon^2$ For *i* from 1 to N do

Generate a random path σ of depth k
If ψ is true on σ then P := P + 1
Return A = P/N

A. Demaille et al. (LRDE & LRI)

Algorithm (Generic approximation)

input: ψ , diagram, ϵ , δ Let P := 0Let $N := \frac{1}{2} \log(\frac{2}{\delta})/\epsilon^2$ For *i* from 1 to N do

Generate a random path σ of depth k
If ψ is true on σ then P := P + 1

Return A = P/N

Theorem

This algorithm is an additive FPRAS for $Prob[\psi]$

Architecture

イロト イヨト イヨト イヨト

Modeling & Experiments

A. Demaille et al. (LRDE & LRI)

Sensor Networks

RIVF'06 9 / 21

A single sensor

A. Demaille et al. (LRDE & LRI)

(日) (周) (三) (三)

A sensor network

	 	.	 	

<ロト < 団ト < 団ト < 団ト

The detection of an event

A. Demaille et al. (LRDE & LRI)

RIVF'06 14 / 21

<ロト </p>

The detection of an event

· · · · · · · · ·

Estimating the path length

Estimating the path length

RIVF'06 15 / 21

< A

Estimating the path length

 ${\rm pathlength} = 15 \times {\rm area}$

Impact of the limited energy

A. Demaille et al. (LRDE & LRI)

RIVF'06 16 / 21

Impact of the limited energy

This amount of energy is insufficient.

Impact of the limited energy

This amount of energy is insufficient.

Application: optimize the time spent in each mode.

Resistance to the initial loss

Image: A matrix

Resistance to the initial loss

RIVF'06 17 / 21

Resistance to the initial loss

Two phases:

 \leq 35% linear, elastic, robust — delayed delivery.

 $35\% \leq$ brutal decreasing, compromised delivery.

Sensor Networks

3 Modeling & Experiments

A. Demaille et al. (LRDE & LRI)

Sensor Networks

RIVF'06 18 / 21

• APMC is suitable for large models

- APMC is suitable for large models
- Our straightforward modeling with DTMC does not model faithfully battery consumption

- APMC is suitable for large models
- Our straightforward modeling with DTMC does not model faithfully battery consumption
- Reactive Module is inconvenient for large simple models

- APMC is suitable for large models
- Our straightforward modeling with DTMC does not model faithfully battery consumption
- Reactive Module is inconvenient for large simple models
- Some design decisions made for protocol study have to be reconsidered for large models

• Extend Reactive Modules to program in the large

< ∃ > <

- Extend Reactive Modules to program in the large
- Remove arbitrary limitations from APMC

.∃ >

- Extend Reactive Modules to program in the large
- Remove arbitrary limitations from APMC
- Use CTMC to model conveniently battery consumption

- Extend Reactive Modules to program in the large
- Remove arbitrary limitations from APMC
- Use CTMC to model conveniently battery consumption
- Use a CTMC-able probabilistic model checker

Questions?

A. Demaille et al. (LRDE & LRI)

Sensor Networks

RIVF'06 21 / 21