
TWEAST: A Simple and Effective Technique to Implement
Concrete-Syntax AST Rewriting Using Partial Parsing

Akim Demaille Roland Levillain
∗

Benoı̂t Sigoure
EPITA Research and Development Laboratory (LRDE)

14/16, rue Voltaire, F-94276, Le Kremlin-Bicêtre, France
akim@lrde.epita.fr roland@lrde.epita.fr sigoure@lrde.epita.fr

ABSTRACT
Abstract Syntax Trees (ASTs) are commonly used to rep-
resent an input/output program in compilers and language
processing tools. Many of the tasks of these tools consist in
generating and rewriting ASTs. Such an approach can be-
come tedious and hard to maintain for complex operations,
namely program transformation, optimization, instrumen-
tation, etc. On the other hand, concrete syntax provides
a natural and simpler representation of programs, but it is
not usually available as a direct feature of the aforemen-
tioned tools. We propose a simple technique to implement
AST generation and rewriting in general purpose languages
using concrete syntax. Our approach relies on extensions
made in the scanner and the parser and the use of objects
supporting partial parsing called Texts With Embedded Ab-
stract Syntax Trees (TWEASTs). A compiler for a simple
language (Tiger) written in C++ serves as an example, fea-
turing transformations in concrete syntax: syntactic desug-
aring, optimization, code instrumentation such as bounds-
checking, etc. Extensions of this technique to provide a full-
fledged concrete-syntax rewriting framework are presented
as well.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Compil-
ers, Parsing, Translator writing systems and compiler gen-
erators

General Terms
Design, Languages

Keywords
C++, Parsing, Concrete Syntax, Program Transformation,
Rewrite Rules, Compiler Design

∗Also with Université Paris-Est, LABINFO-IGM, UMR
CNRS 8049, A2SI-ESIEE, Cité Descartes, BP 99, FR-93162
Noisy-le-Grand Cedex, France

Copyright 2009 ACM. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in SAC’09 978-1-60558-166-8/09/03
March 8-12, 2009, Honolulu, Hawaii, U.S.A.
.

1. INTRODUCTION
Compilers typically feature three parts: the front-end an-

alyzes the input program, the middle-end is independent of
the source and target languages, and the back-end generates
the output program. This paper focuses on the front-end. It
deals with an Abstract Syntax Tree (AST), a tree-structured
representation of the source. Inner nodes correspond to the
various language constructs (while loops, assignments, etc.)
and leaves are “meaningful” terminal symbols (e.g., the lit-
erals, but not punctuation, comments or other layout de-
tails). In Object-Oriented Programming (OOP), ASTs are
implemented as a simple class hierarchy (Figure 1).

Transformations are often difficult to implement: the rewrite
rules are expressed in abstract syntax — the syntax of the
transforming language, not the transformed one. Consider
the following production rule from the grammar format-
ted for the Bison [4] parser generator, corresponding to the
Boolean expression ‘exp & exp’.

/∗ Boolean and operators . We code ‘A & B’ as
‘ if A then B <> 0 else 0’. ∗/

exp: exp "&" exp
{

/∗ ‘$1’ and ‘$3’ hold the semantic values associated to
respectively the first and second ‘exp’ symbols of the
right−hand side of the production , i . e . ASTs corresponding
to the operands of ‘&’. ‘$$’ is the result . ∗/

$$ = new If($1,
new Op($3, Op::NotEqual, new Int(0)),
new Int(0));

};

Instead of building an AST using a dedicated node (e.g., new
And($1, $3)), this rule uses other (existing) nodes of the
abstract language : If (“functional” if-then-else expres-
sion), Op (binary comparison/arithmetical expression) and
Int (literal integer value). Operators like & can indeed be
considered as syntactic sugar on top of the core language, a
subset of the full language composed of primitive constructs.
By translating these complex constructs into more primitive
ones, we remove the syntactic sugar or desugar the program
to the core language.

Put differently, the semantic action of the previous pro-
duction is a program transformation directly expressed in
the parser: a substitution of an abstract syntax subtree
pattern (its leaves being replaced by labels called metavari-
ables), by another subtree pattern, as depicted on Figure 2.

However, despite the desugaring approach is worthy, the
previous implementation is tedious, error prone and makes
the compiler or processing tool hard to maintain: abstract
syntax clutters the transformation. In this paper, we show
how run-time concrete-syntax rewrite rules can be imple-
mented in general purpose languages (such as C++) using

Ast

Exp Dec ...

Int For ... Function ...

Cloner

Desugarer BoundsChecker Inliner

ParserDriver

Tweast

Parser

<<use>>

<<use>>

<<create>>

<<use>>

1*

...

Visitor

PrettyPrinter ...

Front-end tasks dealing with an AST are implemented as visitors. The Visitor design pattern [7] is a convenient
implementation of traversals that decouples the algorithm (the traversal) from the data (the AST). They all
inherit from the Visitor abstraction. Concrete syntax is written in visit methods thanks to Tweast objects holding
both Tiger sentences and sub-ASTs. The ParserDriver is then invoked to produce an AST.

Figure 1: Some of the classes involved in transformations in run-time concrete syntax.

&

e1 e2 ;

if

e1 op

e2 <> int

0

int

0

Figure 2: An abstract syntax transformation of an
& (Boolean and) expression. e1 and e2 are metavari-
ables representing expressions.

regular tools. Run-time concrete syntax is supported thanks
to a new idiom which we name Text With Embedded Ab-
stract Syntax Trees (TWEAST). This method relies on ex-
tensions in the scanner and parser to embed existing ASTs
in concrete syntax which is parsed at run-time.

As a proof of concept, we implemented the techniques
presented here in a pedagogic compiler [5], written in C++,
for the Tiger language [1, 6]. We re-implemented various
transformations of our Tiger compiler in order to simplify
and shorten the code, so as to reduce the maintenance cost
and the potential number of bugs.

This paper is structured as follows: Section 2 introduces
the concept of TWEAST and partial parsing; implemen-
tation details are exposed in Section 3; Section 4 presents
several applications of our technique, and results and related
work are discussed in Section 5. Section 6 reports on-going
work and extensions of TWEAST and Section 7 concludes.

2. TWEASTS AND PARTIAL PARSING
In language manipulation tools, conversion from concrete

syntax to abstract syntax (AST) is performed by a syntactic
analyzer or parser. Conversely, abstract-to-concrete trans-
formation is the task of a pretty-printer. A first step toward
using concrete syntax in rewrite rules is to make use of the
parser and the pretty-printer to avoid explicit AST node
instantiations and manipulations to generate the rewritten
tree. For instance the transformation from Section 1 can be
rewritten as:

exp: exp "&" exp
{

std: :ostringstream s;
// Sub−ASTs ‘$1’ and ‘$3’ are printed back to concrete
// syntax, and concatenated to the other strings into ‘ s ’.
// Spaces are needed not to transform ‘a&b’ into ‘ ifathenb ...’.
s << "if " << $1 << " then " << $3 << "<> 0 else 0";
// Then the whole string is parsed .
$$ = parse(s.str ());
};

Here, we rely on the AST pretty-printer to turn each sub-
AST into a string (each AST node is equipped to support
its conversion to concrete syntax with operator<<). This
approach is algorithmically inelegant, inefficient (some parts
of the sources are possibly parsed many times), and error-
prone (care must be taken with spaces, operator precedences
and so forth). Besides, annotations such as bindings, types,
etc. are lost.

A solution avoiding the extra costs of parsing and pretty-
printing while preserving the concrete syntax feature is to
use an object recording both the string (which may include
metavariables, labeled placeholders for sub-ASTs), and the
sub-ASTs.

In other word, this object is used to represent a state
of partial parsing: in the previous code sample, sub-ASTs
‘$1’ and ‘$3’ are the product of previous parsings while
the “piecewise” string ‘"if" (...) "then" (...) "<> 0
else 0"’ is not-yet-parsed text. We name this object Text
With Embedded Abstract Syntax Trees (TWEAST). It can
be used like the stream of the previous example:

exp: exp "&" exp
{

// Sub−ASTs are used as−is (they are not printed , then parsed ,
// as in the previous example). Spaces are no longer critical .
$$ = parse(Tweast() <<

"if" << $1 << "then" << $3 << "<> 0 else 0");
};

Concrete-syntax rewriting can be used in several places:

Within the parser. As seen on the examples of this sec-
tion, rewriting can be turned into a generation mech-
anism to replace explicit and unreadable AST instan-
tiations by concrete-syntax patterns.

After an AST node or tree has been matched. This is
the case when an AST pattern is searched in a whole

tree, to be rewritten to something else. Our Tiger com-
piler features many AST traversals implemented as
visitors [7]. One of them, the Desugarer, removes the
syntactic sugar. For instance, operator-based string
comparisons are translated into calls to the function
strcmp:

void Desugarer::operator() (const Op& e)
{

// Desugar ‘a < b’ as ‘strcmp(a, b) < 0’, and so on.
if (e.op().kind() == Comparison

&& e.lhs().type() == String)
{

result = parse(Tweast() <<
"strcmp(" << recurse(e.lhs()) << ","

<< recurse(e.rhs()) << ")"
<< e.op() << "0");

}
// ...
}

(In Tiger, comparison operators are overloaded.) See
Section 4 for more examples.

After a concrete-syntax pattern is matched. In the pre-
vious examples, only the built pattern of a rewrite
rule uses concrete-syntax features; the matched pat-
tern either relies on a production rule of the parser or
on an abstract-syntax pattern. A full concrete-syntax
rewrite engine uses the concrete syntax for both the
building and the matching parts of the rewriting. Such
a facility allows the expression of rules in a concise and
simple manner, as in this example:

x

type annotationz }| {
::string < y

type annotationz }| {
::string| {z }

match pattern

→ strcmp(x, y) < 0| {z }
build pattern

The implementation of this technique is beyond the
scope of this article, and will not be covered here, how-
ever Section 6.2 gives some information on the subject
of full concrete-syntax matching and rewriting.

3. IMPLEMENTATION OF TWEASTS
This part details prominent aspects of the design of the

concrete-syntax rewrite engine. We present the main ac-
tors of the system, depicted on Figure 1: the Tweast class
first; ParserDriver, which abstracts the task of parsing and
scanning, the input being either text, or a composition of
text and metavariables (Tweast objects); the parser and the
scanner themselves; and cloner-based Visitors, processing
an abstract Ast recursively.

This method can be implemented in any general purpose
programming language since it only requires a couple of ex-
tensions in the scanner and parser and a TWEAST container
that is queried by the parser to fetch ASTs. The parser and
scanner used must be re-entrant in order to use TWEASTs
within the semantic rules of the parser to desugar constructs
directly at the parsing stage.

3.1 TWEAST
In the example of translation of & into if-then-else of

Section 2, it is not the pretty-printed sub-ASTs which are
stored into the Tweast, rather the ASTs themselves are
stored. When parsing TWEASTs, textual parts are ana-
lyzed and embedded ASTs are attached where appropriate.
Figure 3 shows how data are stored in the TWEAST object.

: Tweast
"if _exp(0)
then _exp(1) <> 0
else 0"

: std::string

: MetavarMap<Exp>

$1_exp(0) : Exp

_exp(1) : Exp $3

Figure 3: A TWEAST object holding the data of
the desugared & expression from Section 2.

The class Tweast aggregates a growing string, and several
typed arrays for sub-ASTs — expressions, l-values, decla-
rations. . . We overload the operator<< to append standard
material to the string, but to act differently for sub-ASTs:

Tweast& Tweast::operator<< (Exp∗ e)
{

exp [count] = e;
return ∗this << " _exp (" << count ++ << ") ";
}

In other words, the AST is kept in an array (say as ‘exp [42]’),
and " exp (42) " is appended to the text. When parsing
a Tweast the driver aggregates it, and both the scanner and
parser are extended to recognize these syntactic constructs
(see Section 3.3). The parser can then query the TWEAST
to retrieve the given expression. Because in Tiger no user
identifier may start by ‘ ’, new keywords such as ‘ exp’ can-
not introduce ambiguities in the language.

3.2 Parsing Driver
The whole parsing operation is complex and involves sev-

eral small components: the scanner, the parser, incoming
data (e.g., debugging flags, sub-ASTs. . .) and outgoing data
(the resulting AST). We propose the ParserDriver de-
sign pattern, which we can only sketch here. As a special
case of the Facade design pattern [7], it aggregates all the
above components and coordinates them. It is the only pub-
lic interface to the Parse module. It conducts the scanner
and parser, and handles incoming (text, library path, op-
tions, etc.) and outgoing (ASTs) data. It implements re-
cursive parsing invocations, keeping track of scanner states
and opened files (to detect cycles). ParserDriver features a
parse(Tweast&) entry point to build an AST from a Tweast
object.

3.3 Parser and Scanner
TWEAST expects some support from the parser and the

scanner:

• special codes like ‘ exp’ must be recognized as valid to-
kens in the scanner, representing metavariables;

• metavariables must be accepted by the parser as valid
right-hand sides of the corresponding non-terminal
(‘ exp(42)’ must be a valid ‘exp’).

Our implementation uses the Flex scanner generator [11]
and the GNU Bison parser generator [4], but this is not a
requirement to implement TWEASTs. The aforementioned
changes are straightforward to implement with these tools.
For each non-terminal (e.g., ‘exp’) replaceable by a metavari-
able:

• a new token definition must be added to the parser defi-
nition file:

%token EXP "_exp";

• the scanner must be equipped to recognize this token:

"_exp" return token::EXP;

• the parser must be augmented with a production accept-
ing this token, and extracting the AST corresponding to
the metavariable:

exp: "_exp" "(" INT ")" { $$ = driver.tweast−> exp[$3]; }

3.4 Visitors
As mentioned in Section 2, visitors are clients of Tweasts

objects: as they traverse ASTs, they can be used to match
one or several node(s), and trigger a rewriting process. Our
transformations rely on the duplication of the AST. Hence,
most transformation-related visitors derive from a common
Cloner class to factor the code duplicating the AST (see
Figure 1). Section 4 shows several visit methods of these
visitors.

4. APPLICATIONS OF TWEASTS
TWEAST-based transformations allow many operations,

providing a simpler, more concise and more efficient rewrit-
ing framework than bare abstract-syntax manipulations. This
section is a short catalog of some transformations using our
concrete-syntax proposal.

4.1 Simplification by Syntactic Sugar Removal
TWEAST has been primarily designed with desugaring

in mind. Reducing the size of a language to be further pro-
cessed by removing syntactic sugar reduces the number of
“active” AST nodes, as well as the number of addressed
cases in traversals (visit methods of visitors).

Simple syntactic sugar can be removed at the parsing
stage. In our Tiger compiler, this is the case for Boolean
operators (& and |, see Section 1 and 2), and for the unary
minus operator:

/∗ ‘−E’ is translated as ‘0 − E’. ∗/
exp: "-" exp
{

$$ = parse(Tweast() << "0 - " << $2);
};

Even very simple TWEAST uses like these save the burden
of implementing extra AST nodes (UnaryMinus, And, Or) and
all the corresponding visit methods (operator()) in every
visitor, which is a real benefit as far as maintenance is con-
cerned.

More complex desugaring patterns can be expressed after
the whole syntactic analysis has taken place, or even after
the semantic analysis. This is the case of the string com-
parison de-overloading from Section 2. Another desugaring
easy to implement is the translation of for-loops into while-
loops, which subsequently allows the deletion of all the code
processing For nodes after this desugaring pass.

void Desugarer::operator() (const For& e)
{

// Relaunch the visitor on the children of ‘ e ’.
Exp∗ lo = recurse(e.vardec get (). init get ());
Exp∗ hi = recurse(e.hi get ());
Exp∗ body = recurse(e.body get());

// Symbols are fly−weight character strings [7] .
const Symbol& var = e.vardec get().name get();
result =

(parse(Tweast() <<
" let"
" var _lo := " << lo <<
" var _hi := " << hi <<
" var " << var << " := _lo"
" in"
" if _lo <= _hi then"
" while 1 do"
" ("
" " << body << ";"
" if " << var << " = _hi then"
" break;"
" " << var << " := " << var << " + 1"
")"
" end"));

}

The desugar approach can even be used to translate the
input language into a simpler one. This is the strategy we
choose to augment the Tiger language with object-oriented
constructs (classes, objects, attributes, methods, inheritance).
Instead of altering the whole compiler to support OOP, we
only extended the front-end up to the semantic analysis,
then added an object-desugar step translating the OOP di-
alect into the original object-less language. The following
excerpt of our object-desugar visitor shows how method calls
are turned into regular function calls1.

/∗ Translate :
o.m(a1, a2) [with ‘o’ having static type ‘c ’]

as :
method c m(o, a1, a2) ∗/

Tweast
ObjectDesugarer::method call(const Symbol& class name,

const Symbol& method name,
const std:: string& target,
const Formals& formals)

{
Tweast res;
res << "_method_" << class name << "_" << method name

<< "(" << target;
// Pass arguments.
foreach (const ast::VarDec∗ arg, formals)

res << ", " << arg−>name get();
res << ")";
return res;
}

4.2 Code Instrumentation
A task easily performed by program transformation is to

add new statements to instrument the compiled code. Such
additions can be used to

• add run-time checks of array accesses,
• trace the execution of the program by logging events like

function entries and exits, memory allocation, etc.,
• record run-time information (time elapsed in functions,

memory consumption) for profiling purpose.

4.3 Optimization
Term rewriting is also a good strategy to implement high-

level language optimizations (i.e., performed in the front-
end), while keeping the code very readable. Example of
such optimizations include

• inlining of function bodies,
• loop unrolling (when the bounds are statically known),
• partial evaluation (when some or all of the terms of an

expression are statically known).

1The foreach statement is an alias for the BOOST FOREACH
macro.

We implemented a simple inlining pass able to translate
the following code� �
let function add(x : int, y : int) =

x + y
in

add(42, 51)
end� �into

� �
let var x := 42

var y := 51
in

x + y
end� �

Additional visitors can statically replace x and y by their
value, then evaluate the sum and replace the binary + ex-
pression by its result.

void Inliner ::operator() (const Call& e)
{

// Get the AST node corresponding to this function call .
const Function∗ fundec = e.definition get();
// A recursive function cannot be inlined .
if (recursive functions set .has(fundec))

// Don’t inline , simply clone the function call .
return clone(e);

Tweast input;
input << "let";
// Introduce temporaries to evaluate formal arguments once.
foreach (const Exp∗ exp, e.args get())
{

Symbol v = symbol::fresh();
Type∗ type = exp−>type get();
Exp∗ init = clone(∗exp);
input << "var" << v << " : " << type << " := " << init;
}

// Inlined call .
input << "in"

<< recurse(∗fundec−>body get())
<< "end";

result = parse(input);
}

5. DISCUSSION AND RELATED WORK
The TWEAST approach is correct since it does not pretty-

print and re-parse the ASTs variables involved in concrete
syntax constructs, which would lose the various existing an-
notations and would require special care with respect to op-
erator precedences. However, this is inefficient compared to
the other traditional approach that transforms concrete syn-
tax in abstract syntax at compile-time of the compiler, since
the parser is re-invoked multiple times at the execution of
the compiler.

For instance, the Stratego/XT tool set [3] allows one to
implement any kind of standalone program transformation
system. It relies on a modular Syntax Definition Formalism
(SDF) [12] and a Scanner-less Generalized LR (SGLR) parser
[13] to analyze any context-free language. All sorts of anal-
yses or transformations can be written in the Stratego pro-
gramming language [15], which features concrete-syntax [14].
The advantage of our method compared to Stratego is that
no special language is needed: it can be directly imple-
mented in any compiler written in a general-purpose pro-
gramming language.

Other alternatives to our proposal include

• functional languages such as Haskell or Caml, featur-
ing matching capabilities that considerably simplify the
implementation of rewrite rules (the Visitor pattern is
made worthless);
• language extensions such as Prop [9] or Tom [2], aug-

menting one or several general-purpose languages with
pattern matching and abstract (not concrete) syntax re-
write rules;
• AST classes and traversal generation tools, like Treecc

[16], which takes a similar approach to ours. (The project

Table 1: Code reduction thanks to concrete syntax.

Measure Abstract Concrete Gain
Syntax Syntax

C++ new expressions 146 1 99%
Non-whitespace characters 995 671 32%
Words 886 340 61%

seems to be no longer maintained though.) Some parser
generators automate the AST generation [10], and some
even derive it from the SDF grammar [13]. JJForester [8]
can derive a set of visitors from the same SDF grammar.

In practice the performance penalty introduced by TWEASTs
is most likely unnoticeable. When concrete syntax is used in
all the key places of a compiler where it greatly enhances the
code and maintainability, the overall slowdown is negligible.
In our Tiger compiler we observed that, for the changes in
Table 1, TWEASTs account for 1.5% of the run-time of the
front-end and less than 0.1% of the run-time of the entire
compiler. Given the enormous code reduction entailed by
concrete syntax, the trade-off is worth the small run-time
penalty.

Errors in the concrete syntax are not reported until the
compiler is run, thus losing most of the static safety guar-
anteed by languages such as C++. This, however, is the
price to pay to have a system of concrete syntax without
extending the host language (that in which the compiler is
written) and without requiring an extra pre-processing step
to expand concrete syntax in abstract syntax. In our expe-
rience, these limitations are outweighed by the advantages
of the system.

6. EXTENDING THE TWEAST CONCEPT
This section presents current work on TWEAST to im-

prove both their efficiency and usability.

6.1 Static TWEAST
A great part of the cost from using Tweasts comes from

the parsing of the string they contain. However, the parsed
string is always the same: the changing parts are only the
value of the metavariable. As their contents does not influ-
ence the parsing itself, Tweast objects can be turned into
static objects, and use a memoization strategy: parse the
string they hold the first time they are used, keep the result-
ing AST, and assemble sub-ASTs at metavariable locations;
then re-use the saved AST on subsequent Tweast uses.

Applying this ideas to the first desugaring example of Sec-
tion 1 and 2 results in the following code.

exp: exp "&" exp
{

/∗ Build a static TWEAST from a build pattern (with
typed metavariable) only . ∗/

static Tweast bool and("if %exp:1 then %exp:2 <> 0 else 0");
/∗ ‘‘ Apply’’ it on sub−ASTs $1 and $3 to create the

final AST, using ‘ operator%’. ∗/
$$ = exp(bool and % $1 % $3);
};

6.2 Full Concrete-Syntax Rewriting
One of the weakness of our approach is that the concrete

syntax is only used to produce ASTs, not to match them.
We still have to rely on abstract syntax to identify a match-
pattern. With a concrete-syntax matcher, one could write
transformations fully expressed in the compiled language:

// A rewrite rule translating ‘0 + e’ as ‘ e ’.
RewriteRule r("0 + %exp:1", "%exp:1");
Ast∗ ast = r("0 + 42"); // Rewritten as ‘42’.

Concrete-syntax matching requires several additions to
the technique proposed here:

• a means to write match-patterns in concrete-syntax. This
can be easily achieved by a small extension of Tweast;
• a Matcher taking a pattern and an AST as input, record-

ing every location where the pattern matches in the AST;
• a Producer, using a set of locations produced by a

Matcher, a build-pattern and an AST, rewriting the
latter using the formers;
• a Rewriter taking a match- and a build-pattern as in-

put, as well as an AST, and coordinating a Matcher and
a Producer objects to perform bottom-up or top-down
rewriting on the whole tree.

We have added a simple implementation of this exten-
sion to our compiler to carry experiment on full concrete-
syntax rewriting. First results are promising, and our com-
piler is able to apply rules like the one desugaring for-loops
to while-loops (Section 4.1), fully in concrete syntax.

7. CONCLUSION
We described a set of techniques to implement concrete-

syntax rewrite rules within stock C++. Concrete-syntax is
featured by a new facility, Text With Embedded Abstract
Syntax Trees, which reuses the parser at run-time and em-
beds existing stubs of AST. Experiments were conducted
on our compiler for Tiger, a small and simple language.

The rewrite rules are used within a compiler or language-
processing tool to easily desugar various constructs down
to simpler ones, perform optimizations or instrument the
code of the compiled program. This requires a minimum of
equipment in the front-end (in particular in the parser and
scanner) but offers a unique chance to the user to write his
own rules.

The advantages of these techniques are manifold. They
make the compiler much more maintainable by fostering
stepwise desugaring with concrete syntax rewrite rules. They
are also generic and easily portable to other general-purpose
languages.

We also presented improvements of TWEAST, both from
the performance and usability point of view: static TWEASTs
use memoization to avoid repetitive run-time parsing costs,
while concrete-syntax matching complete the system to pro-
vide a full concrete-syntax engine. The latter extension of-
fers interesting evolutions: as our rewriting technique takes
place during the execution of the compiler, concise concrete-
syntax rewrite rules could be passed as command-line op-
tions or even better, embedded in the source code itself.

Acknowledgments
We thank Raphaël Poss for his proofreading of this paper.

8. REFERENCES
[1] A. W. Appel. Modern Compiler Implementation in C,

Java, ML. Cambridge University Press, 1998.
[2] E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and

A. Reilles. Tom: Piggybacking rewriting on Java. In
Proceedings of the 18th Conference on Rewriting
Techniques and Applications, Lecture Notes in
Computer Science. Springer-Verlag, 2007.

[3] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/XT 0.16. Components for
transformation systems. In ACM SIGPLAN 2006
Workshop on Partial Evaluation and Program
Manipulation (PEPM’06), Charleston, South
Carolina, January 2006. ACM SIGPLAN.

[4] R. Corbett, R. Stallman, and P. Hilfinger. Bison:
GNU LALR(1) and GLR parser generator, 2003.
http://www.gnu.org/software/bison/bison.html.

[5] A. Demaille. Making compiler construction projects
relevant to core curriculums. In Proceedings of the
Tenth Annual Conference on Innovation and
Technology in Computer Science Education
(ITICSE’05), pages 266–270, Universidade Nova de
Lisboa, Monte da Pacarita, Portugal, June 2005.

[6] A. Demaille and R. Levillain. The Tiger Compiler
Reference Manual. EPITA Research and Development
Laboratory (LRDE), 14-16 rue Voltaire, FR-94270 Le
Kremlin-Bicêtre, France, 2007.
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley
Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1995.

[8] T. Kuipers and J. Visser. Object-oriented tree
traversal with JJForester. Science of Computer
Programming, 47(1):59–87, 2003.

[9] A. Leung. Prop: A C++-based pattern matching
language. Technical report, Courant Institute of
Mathematical Sciences, 1996.

[10] T. J. Parr and R. W. Quong. ANTLR: A
predicated-LL(k) parser generator. Software, Practice
and Experience, 25(7):789–810, 1995.

[11] V. Paxson, W. Estes, and J. Millaway. The Flex
Manual. The Flex Project, September 2007.
http://flex.sourceforge.net/manual/index.html.

[12] E. Visser. A family of syntax definition formalisms. In
M. G. J. van den Brand et al., editors, ASF+SDF’95.
A Workshop on Generating Tools from Algebraic
Specifications, pages 89–126. Technical Report P9504,
Programming Research Group, University of
Amsterdam, May 1995.

[13] E. Visser. Scannerless generalized-LR parsing.
Technical Report P9707, Programming Research
Group, University of Amsterdam, July 1997.

[14] E. Visser. Meta-programming with concrete object
syntax. In D. Batory, C. Consel, and W. Taha,
editors, Generative Programming and Component
Engineering (GPCE’02), volume 2487 of Lecture Notes
in Computer Science, pages 299–315, Pittsburgh, PA,
USA, October 2002. Springer-Verlag.

[15] E. Visser. Program transformation with Stratego/XT:
Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors,
Domain-Specific Program Generation, volume 3016 of
Lecture Notes in Computer Science, pages 216–238.
Springer-Verlag, June 2004.

[16] R. Weatherley. Treecc, the Tree Compiler-Compiler.
http://www.southern-storm.com.au/treecc.html,
2002.

http://www.gnu.org/software/bison/bison.html
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf
http://flex.sourceforge.net/manual/index.html
http://www.southern-storm.com.au/treecc.html

	1 Introduction
	2 TWEASTs and Partial Parsing
	3 Implementation of TWEASTs
	3.1 TWEAST
	3.2 Parsing Driver
	3.3 Parser and Scanner
	3.4 Visitors

	4 Applications of TWEASTs
	4.1 Simplification by Syntactic Sugar Removal
	4.2 Code Instrumentation
	4.3 Optimization

	5 Discussion and Related Work
	6 Extending the TWEAST Concept
	6.1 Static TWEAST
	6.2 Full Concrete-Syntax Rewriting

	7 Conclusion
	8 References

