
On-the-fly Emptiness Check of
Transition-based Streett Automata

Alexandre Duret-Lutz1, Denis Poitrenaud2, and Jean-Michel Couvreur3

1 EPITA Research and Development Laboratory (LRDE)
2 Laboratoire d’Informatique de Paris 6 (LIP6)

3 Laboratoire d’Informatique Fondamentale d’Orléans (LIFO)

Abstract. In the automata theoretic approach to model checking, checking a
state-spaceS against a linear-time propertyϕ can be done inO(|S| × 2O(|ϕ|))
time. When model checking undern strong fairness hypotheses expressed as a
Generalized Büchi automaton, this complexity becomesO(|S| × 2O(|ϕ|+n)).
Here we describe an algorithm to check the emptiness of Streett automata, which
allows model checking undern strong fairness hypotheses inO(|S| × 2O(|ϕ|) ×
n). We focus on transition-based Streett automata, because itallows us to ex-
press strong fairness hypotheses by injecting Streett acceptance conditions into
the state-space without any blowup.

1 Introduction

The Automata Theoretic Approach to Model Checking[29, 28] is a way to check
that a modelM verifies some property expressed as a temporal logic formulaϕ, in
other words: to check whetherM |= ϕ. This verification is achieved in four steps,
using automata over infinite words (ω-automata):
1. Computation of the state space ofM . This graph can be seen as anω-automaton
AM whose languageL (AM) is the set of all possible executions ofM .

2. Translation of the temporal propertyϕ into anω-automatonA¬ϕ whose language,
L (A¬ϕ), is the set of all executions that would invalidateϕ.

3. Synchronized product of these two objects. This constructs an automatonAM ⊗
A¬ϕ whose language isL (AM)∩L (A¬ϕ): the set of executions of the modelM
that invalidate the temporal propertyϕ.

4. Emptiness check of this product. This operation tells whetherAM⊗A¬ϕ accepts an
infinite word (a counterexample). The modelM verifiesϕ iff L (AM ⊗A¬ϕ) = ∅.

On-the-fly algorithms. In practice the above steps are usually tightly tied by the imple-
mentation, due to transversal optimizations that forbid a sequential approach. One such
optimization is theon-the-fly model checking, where the computation of the product,
state space, and formula automaton are all driven by the progression of the emptiness
check procedure: nothing is computed before it is required.

Being able to work on-the-fly has three practical advantages:
– Large parts ofAM may not need to be built because of the constraints ofA¬ϕ.
– The emptiness check may find a counterexample without exploring (and thus con-

structing) the entire synchronized product.

– To save memory we can throw away states that have been constructed but are not
actually needed. We would rebuild them later should they be needed again. [13]

From an implementation standpointon-the-fly model checkingputs requirements on
the interface of the automata representing the product, thestate graph, and the formula.
For instance the interface used in Spot [8] amounts to two functions: one to obtain the
initial state of the automata, another to get the successorsof a given state. It is common
to say that an emptiness checkis on-the-fly when it iscompatiblewith such an inter-
face. For instance Kosaraju’s algorithm [2,§23.5] for computing strongly connected
components (SCC) will not work on-the-fly because it has to know the entire graph
to transpose it. The algorithms of Tarjan [25] and Dijkstra [5, 6] are more suited to
compute SCCs on-the-fly, because they perform a single depth-first search.

Fairness hypotheses[10] is a way to restrict the verification to a subset of “fair”ex-
ecutions of the model. For instance if we have a model of two concurrent processes
running on the same host, we might want to assume that the scheduler is fair and that
both processes will get slices of CPU-time infinitely often.When considering all the
possible executions of the model, this hypothesis amounts to discarding all executions
in which a process is stuck.

Transition-based Büchi and Streett automata. We shall consider two kinds ofω-
automata that are expressively equivalent: Büchi automata and Streett automata. Büchi
automata are more commonly used because there exist simple translations fromLTL
formulæ to Büchi automata and there exist many emptiness check algorithms for these
automata [4]. Readers familiar with Büchi automata might be surprised that we use
transition-based acceptance conditions rather than state-based ones. As noted by several
authors [19, 3, 11, 12, 4, 26] this allowsLTL formulæ to be translated into smaller
automata, and for our purpose it will be useful to show whyweak(resp.strong) fairness
hypothesescan be added to a Büchi (resp. Streett) automaton without any blowup.

Streett Automata can also be used as intermediate steps in some methods to comple-
ment Büchi automata [27]. For instance in the automata theoretic approach to model
checking, we could want to express a propertyP to verify, not as an LTL formula, but
as a (more expressive) Büchi automatonAP (or equivalently, anω-regular expression).
To ensure thatM |= AP we should check thatL (AM ⊗¬AP) = ∅. One way to com-
pute¬AP is to use Safra’s construction [21] to construct a Streett automaton, and then
convert this Streett automaton back into a Büchi automaton.

Our objective is to introduce an on-the-fly emptiness check for transition-based Streett
automata, in order to efficiently verify linear-time properties under strong fairness hy-
potheses, or simply to check the emptiness ofAM⊗¬AP without the cost of converting
¬Ap into a Büchi automaton. Existing emptiness checks for Streett automata [20, 15]
share the same asymptotic complexity, but are state-based and will not work on-the-fly.

Outline. Section 2 briefly reviewsLTL and transition-based Büchi automata. Section 3
then introduces fairness hypotheses and Streett automata.We recall that weak fair-
ness hypotheses are free and show that strong fairness hypotheses are less costly to
express with Streett automata. Finally section 4 gives an on-the-fly algorithm to check
the emptiness of a Streett automaton in a way that is only linearly slower (in the number
of acceptance conditions) than the emptiness check of a Büchi automaton.

2 Background

2.1 Linear-time Temporal Logic (LTL)

An LTL formula is constructed from a setAP of atomic propositions, the usual boolean
operators (¬,∨,∧,→) and some temporal operators:X (next),U (until), F (eventually),
G (globally). An LTL formula can express a property on the execution of the system
to be checked. Because we focus on fairness properties we shall not be concerned with
the full semantics ofLTL [1, 18], it is enough to describe the following two idioms:

– G F p means that propertyp is true infinitely often (i.e., at any instant of the execu-
tion you can always find a later instant so thatp is true),

– F G p means that propertyp is eventually true continuously (i.e., at some instant in
the futurep will stay true for the remaining of the execution).

The size|ϕ| of anLTL formulaϕ is its number of operators plus atomic propositions.

2.2 Büchi Automata

Definition 1 (TGBA) ATransition-based Generalized Büchi Automaton [12]overΣ is
a Büchi automaton with labels and generalized acceptance conditions on transitions. It
can be defined as a tupleA = 〈Σ,Q, q0, δ,F〉 whereΣ is an alphabet,Q is a finite
set of states,q0 ∈ Q is a distinguished initial state,δ ⊆ Q × Σ × Q is the (non-
deterministic) transition relation,F ⊆ 2δ is a set of sets of accepting transitions.

Graphically we represent the elements ofF (which we callacceptance conditions)
as small circles such asor on Fig. 1a, 1b and 1d. We will also merge into a single
transition all transitions between two states with identical acceptance conditions, as if
the transition relation was actually inQ× 2Σ ×Q.4

For the purpose of model checking we haveAP equal to the set of all atomic propo-
sitions that can characterize a configuration, and we use these automata withΣ = 2AP

(i.e., each configuration of the system can be mapped into a letter ofΣ). Graphically,
with the aforementioned merging of transitions, it is therefore equivalent to label the
transitions of the automata by propositional formulæ overAP .

An infinite wordσ = σ(0)σ(1) · · · over the alphabetΣ is accepted byA if there
exists an infinite sequenceρ = (q0, l0, q1)(q1, l1, q2) . . . of transitions ofδ, starting at
q0 = q0, and such that∀i > 0, σ(i) = li, and∀f ∈ F , ∀i > 0, ∃j > i, ρ(j) ∈ f .
That is, each letter of the word is recognized, andρ traverses each acceptance condition
infinitely often.

Given two TGBAsA andB, the synchronous product ofA andB, denotedA⊗ B

is a TGBA that accepts only the words that are accepted byA andB. If we denote
|A|s the number of accessible states ofA, we have|A ⊗ B|s ≤ |A|s × |B|s. If we
denote|A|t the number of transitions ofA, we always have|A|t ≤ |A|2s × |Σ|. Also
|A ⊗ B|t ≤ (|A|s × |B|s)2 × |Σ| ≤ |A|t × |B|t. Finally if a TGBAC has only one
state and is deterministic, then|A⊗ C|s ≤ |A|s and|A⊗ C|t ≤ |A|t.

4 This optimization is pretty common in implementations; we only use it to simplify figures.

¬en ∨ oc

en ∧ ¬oc

(a)F = { }

⊤

oc¬oc ¬en ¬en

⊤

¬enoc¬oc

(b)F = { , }

oc

en ∧ ¬oc

¬en ∧ ¬oc

(c)F = {(,)}

¬en

oc

⊤¬en

⊤

(d)F = { }

¬en

oc

⊤¬en
⊤

(e)F = {(,)}

Fig. 1: (a) A TGBA equivalent to theLTL formulaG F((¬en) ∨ oc); (b),(d) two TGBAs equiv-
alent toϕ = (G F en → G F oc); (c),(e) two TSAs equivalent toϕ.⊤ denotes thetrue value.

3 Coping with Fairness Hypotheses

Fairness hypotheses are a way to filter out certain behaviorsof the model that are
deemed irrelevant. For instance when modeling a communication between two pro-
cesses over a lossy channel, we might want to assume that any message will eventually
reach its destination after a finite number of retransmissions. Although there is one be-
havior of the model in which the retransmitted message is always lost, we may want to
ignore this possibility during verification.

3.1 Weak and Strong Fairness

Let us give a definition of fairness involving a pair of eventsen andoc in a modelM .
An event could be the progress of some process, the executionof a particular instruction
of the model, or even the fact that an instruction is enabled (i.e., could be executed).

Definition 2 (Unconditional fairness) An eventoc is unconditionally fairif it will hap-
pen infinitely often, i.e., ifM |= G F oc.

Definition 3 (Weak fairness) A pair of events(en, oc) is weakly fair if wheneveren
occurs continuously, thenoc will occur infinitely often:M |= (F G en → G F oc).

Because we haveF G en → G F oc ≡ G F((¬en) ∨ oc) weak fairness can be
handled like unconditional fairness.

Fig. 1a shows an example of a1-state TGBA recognizingG F((¬en) ∨ oc). This
TGBA is deterministic: for any configuration given by a set oftruth values ofen and
oc, there is only one transition that can be followed. In fact, any formula of the form
∧n
i=1(F G eni → G F oci), representing a combination ofn weak (or unconditional)

fairness hypotheses, can be translated into a1-state deterministic TGBA with2n tran-
sitions. Note that this “1-state determinism” property holds both because we are con-
sideringgeneralizedautomata andtransition-basedacceptance conditions, it would not
not hold forstate-basedacceptance conditions.

Definition 4 (Strong fairness) A pair of events(en , oc) is strongly fairif wheneveren
occurs infinitely often, thenoc will occur infinitely often:M |= (G F en → G F oc).

Fig. 1b and 1d show two TGBAs corresponding to the formulaG F en → G F oc.
The first, bigger automaton is produced byLTL-to-Büchi translation algorithms such
those of Couvreur [3] or Tauriainen [26]. The smaller one is aTGBA adaptation of
an automaton shown by Kesten et al. [14]; we do not know of any generalLTL-
to-Büchi translation algorithm that would produce this automaton. Attempts to con-
struct automata for conjunctions of strong fairness hypotheses, i.e. formulæ of the form
∧n
i=1(G F eni → G F oci), will lead to a nondeterministic automaton that has either

3n + 1 or 3n states depending on whether we base the construction on Fig.1b or 1d.
These automata have2O(n) transitions.

3.2 Fairness in the Automata Theoretic Approach

Given a modelM and anLTL formulaϕ, we can check whetherM |= ϕ by checking
whether the automatonAM ⊗ A¬ϕ accepts any infinite word (such a word would be a
counterexample). Because|A¬ϕ|t = 2O(|ϕ|), we have|AM⊗A¬ϕ|t ≤ |AM |t×2O(|ϕ|).
Checking the emptiness of a TGBA can be done in linear time with respect to its size,
regardless of the number of acceptance conditions [4], so the whole verification process
requiresO(|AM |t × 2O(|ϕ|)) time.

Verifyingϕ under some fairness hypothesis represented as anLTL formulaψ amounts
to checking whetherM |= (ψ → ϕ), i.e.,ϕ should hold only for the runs whereψ also
holds. We can see thatAM ⊗A¬(ψ→ϕ) = AM ⊗Aψ∧¬ϕ = AM ⊗Aψ⊗A¬ϕ. In other
words, a fairness hypothesis could be represented by just anextra synchronized product
before doing the emptiness check.

Weak fairness.We have seen thatn weak fairness hypotheses can be represented
by a1-state deterministic TGBA. This means that the operationAM ⊗ Aψ is basically
free: it will not add new states to those ofAM . In practice each transition ofAM would
be labelled during its on-the-fly construction with the acceptance conditions ofAψ.
Model checking undern week fairness hypotheses is therefore independent ofn5 and
requiresO(|AM |t × 2O(|ϕ|)) time.

Strong fairness.Model checking undern strong fairness hypotheses is costly with
Büchi automata: we have seen that thesen hypotheses can be represented by a TGBA
with 2O(n) transitions, the verification therefore requiresO(|AM |t × 2O(|ϕ|+n)) time.

3.3 Streett Automata

Definition 5 (TSA) ATransition-based Streett Automatonis a kind of TGBA in which
acceptance conditions are paired. It can be also be defined asa tupleA = 〈Σ,Q, q0, δ,F〉

5 This is because we assume that we are using a generalized emptiness check [4].

whereF = {(l1, u1), (l2, u2), . . . , (lr, ur)} is a set of pairs of acceptance conditions
with li ⊆ δ andui ⊆ δ.

The difference between TSA and TGBA lies in the interpretation ofF . An infinite
word σ over the alphabetΣ is accepted byA if there exists an infinite sequenceρ =
(q0, l0, q1)(q1, l1, q2) . . . of transitions ofδ, starting atq0 = q0, and such that∀i >

0, σ(i) = li, and∀(l, u) ∈ F , (∀i > 0, ∃j > i, ρ(j) ∈ l) =⇒ (∀i > 0, ∃j > i, ρ(i) ∈
u). That is, each letter of the word is recognized, and for each pair (l, u) of acceptance
conditions, ifρ encountersl infinitely often, then it encountersu infinitely often.

Given two TSAA andB, it is also possible to define their synchronous product
A⊗B such that|A⊗B| = O(|A| × |B|) andL (A⊗B) = L (A) ∩ L (B).

Büchi and Streett automata are known to be expressively equivalent [21]. Obviously
a TGBA with acceptance conditionsF = {u1, u2, . . . , un} can be translated into an
equivalent TSA without changing its structure: we simply use the acceptance conditions
F ′ = {(Q, u1), . . . , (Q, un)}. For instance Fig. 1e shows the TSA resulting from this
rewriting applied to the TGBA of Fig. 1d.

The converse operation, translating Streett automata to B¨uchi, induces an exponen-
tial blowup of the number of states [22]. For instance Löding [17] shows how to trans-
late a state-based Streett automaton of|Q| states andn pairs of acceptance conditions
into a state-based Büchi automaton with|Q| × (4n − 3n + 2) states (and1 acceptance
condition). The following construction shows how to translate a TSA of|Q| states and
n pairs acceptance conditions of into a TGBA of|Q|× (2n+1) states andn acceptance
conditions. (The same construction could be achieved for state-based automata: here
the gain is only due to the use of generalized acceptance conditions.)

Given a TSAA = 〈Σ,Q, q0,F , δ〉 with F = {(l1, u1), (l2, u2), . . . , (ln, un)}, let
N = {1, 2, . . . , n}, and for any(S, t) ∈ 2N × δ let pending(S, t) = (S ∪ {i ∈ N | t ∈
li})\{i ∈ N | t ∈ ui}. Now define the TGBAA′ = 〈Σ,Q′, q0, δ′,F ′〉 whereQ′ = Q∪
(Q×2N), δ′ = δ∪{(s, g, (d, ∅)) | (s, g, d) ∈ δ}∪{((s, S), g, (d, pending(S, (s, g, d))) |
(s, g, d) ∈ δ, S ∈ 2N}, andF ′ = {fi | i ∈ 2N} with fi = {((s, S), l, (d,D) ∈ δ′ |
N \ S = i}. ThenL (A) = L (A′).

The justification behind this construction is that any run accepted by a Streett au-
tomaton can be split in two parts: a finite prefix, where any transition can occur, fol-
lowed by a infinite suffix where it is guaranteed that any transition in li will be even-
tually followed by a transitions inui. The original TGBA is therefore cloned2n + 1
times to construct the corresponding TSA. The first clone, using Q andδ, is where the
prefix is read. From there the automaton can non-deterministically switch to the clone
that is using states inQ × {∅}. From now on the automaton has to remember which
ui it has to expect: this is the purpose of the extra set added to the state. An automaton
is in state(s, S) that follows a transition inli will therefore reach state(s, S ∪ {i}),
and conversely, following a transition inui will reach state(s, S \ {i}). The function
pending(S , t) defined above computes those pendinguis. The acceptance conditions
are defined to complement the set of pendinguis, to be sure they are eventually fulfilled.

3.4 Strong Fairness with Streett Automata

The TSA of Fig. 1e is however not the most compact way to translate a strong fairness
formula: Fig. 1c shows how it can be done with a1-state deterministic TSA.

Actually any LTL formula
∧n
i=1 G F en → G F oc representingn strong fairness

hypotheses can be translated into a1-state deterministic TSA withn pairs of accep-
tance conditions and4n transitions. It is the TSAA = 〈2AP , {q}, q, δ,F〉 where
AP = {oc1, oc2, . . . , ocn, en1, en2, . . . enn}, δ = {〈q, E, q〉 | E ∈ 2AP}, and
F = {(l1, u1), (l2, u2), . . . , (ln, un)} with li = {(q, E, q) ∈ δ | eni ∈ E} and
ui = {(q, E, q) ∈ δ | oci ∈ E}. Again this “1-state determinism” would not hold
for state-based Streett acceptance condition.

Combining this automaton with the construction of section 3.3, we can representn
strong fairness hypotheses using a TGBA of2n + 1 states (and4n(2n + 1) transitions).
This is better than the TGBA of3n states presented in section 3.1, but the complexity
of the verification would remain inO(|AM |t × 2O(|ϕ|+n)) time.

As when model checking under weak fairness hypotheses, the Streett acceptance
conditions representing strong fairness hypotheses can beinjected in the automatonAM
during its on-the-fly generation: any transition ofAM labelled byE ∈ 2AP receives
the acceptance conditionsα(E). The verification undern strong fairness hypotheses
amounts to checking the emptiness of a TSA of sizeO(|AM |t × 2O(|ϕ|)), with n pairs
of acceptance conditions.

We now show how to check this TSA emptiness inO(|AM |t×n× 2O(|ϕ|)) time by
adapting an algorithm by Couvreur [3, 4] that was originallydesigned for the emptiness
check of TGBA.

4 Emptiness Check for Streett Automata

The behavior of the algorithm is illustrated on Fig. 2 on a TSAwith 2 pairs of ac-
ceptance conditions:(,) and (,). We are looking for runs that visit (resp.)
infinitely often if they visit (resp.) infinitely often.

As its older brother (for TGBA [3, 4]) this algorithm performs a DFS to discover
strongly connected components (SCC). Each SCC is labelled with the set of acceptance
conditions that can be found on its edges, and will stop as soon as it finds an SCC whose
label verifies(→)∧(→). Figures 2a–2f show the first steps until a terminal SCC
(i.e. with no outgoing transition) is found. Let us denoteF = {(l1, u1), (l2, u2), . . . ,
(ln, un)} the set of acceptance conditions of the Streett automaton, andacc ⊆ F the set
of acceptance conditions of the terminal SCC encountered. When such a terminal SCC
is found we can be in one of the three following cases.

1. Either the SCC is trivial (i.e. has no loops): it cannot be accepting and all its states
can be ignored from now on.

2. Or the SCC is accepting:∀i, li ∈ acc =⇒ ui ∈ acc.
In that case the algorithm terminates and reports the existence of an accepting run.
It is better to check this condition any time a non-trivial SCC is formed, not only
for terminal SCC: this gives the algorithm more chance to terminate early.

3. Or∃i, li ∈ acc ∧ ui 6∈ acc.
In that case we cannot state whether the SCC is accepting or not. Maybe it contains
an accepting run that does not use any transition ofli. Fig. 2f is an instance of this
case:F = {(,), (,)} andacc = { , , } so the algorithm cannot conclude
immediately.

To solve third case, the algorithm will revisit the whole SCC, but avoiding transi-
tionst such that∃i, t ∈ li ∧ui 6∈ acc. Practically, we define the setavoid = {li ∈ acc |
ui 6∈ acc} of li that cannot be satisfied, all the states from the SCC are removed from
the hash table of visited states, and the algorithm makes another DFS with the following
changes:

– amongst the outgoing transitions of a state, those who carryacceptance condition
of avoid are visited last

– crossing a transition labelled by an avoided acceptance condition sets up a threshold
(denoted by a dashed vertical line on Fig. 2i)

– if a transition going out from a SCC goes back to another SCC inthe search stack,
then the two SCC will be merged only if the two SCC are behind the last threshold
set. Fig. 2j shows one case where merging has been allowed, while Fig 2k shows a
forbidden attempt to merge two SCCs.

1 2

(a) A DFS numbers states and stacks them as
trivial SCCs.

1 2

(b) Backlinks cause SCCs to be merged.

1 2 3 4

(c) DFS continues. . .

1 2 3 4

(d) . . .

1 2 3 4

(e) . . .

1 2 3 4 5

(f) This terminal SCC could hide an accepting
run that visits only finitely often.

1 2

(g) We start another DFS, this time handling
differently.

1 2

(h) . . .

1 2 3 4
2

(i) Crossing sets a threshold.

1 2 3 4
2

(j) Merges are allowed above the threshold. . .

1 2 3 4
2

(k) . . . but disallowed across the threshold.

1 2 3 4 5
2

(l) The right SCC is accepting; we stop.

Fig. 2: Running the emptiness check on a TSA withF = {(,), (,)}.

This new visit will construct smaller SCCs instead of the original terminal SCC. The
only way to merge these smaller SCCs would be to accept a cycleusing a transition
from an acceptance condition (ofavoid) that cannot be satisfied. For each of these
smaller SCCs we can then decide whether they are trivial, accepting, or if they contain
acceptance conditions (not already listed inavoid) that cannot be satisfied. In the latter
caseavoid is augmented and the process is repeated. This recursion cannot exceed|F|
levels since we completeavoid at each step with at least one pair ofF .

Compared to the original emptiness check for TGBA that visits each state and tran-
sitions only once, this variant will in the worst case visit each state and transitions
|F| + 1 times. On a TSAA this algorithm therefore works inO(|A|t × |F|) time.

Relation to other algorithms. The basic idea of using strongly connected components
to check strong fairness is old [16, 9], and has been declinedin a few algorithms to

Input : A Streett automatonA = 〈Σ,Q, q0, δ,F〉1

Output :⊤ iff L (A) = ∅2

Data: SCC: stack of3

〈state ∈ Q, root ∈ N, la ⊆ F , acc ⊆ F , rem ⊆ Q, succ ⊆ δ, fsucc ⊆ δ〉
H : map ofQ 7→ N

avoid: stack of〈root ∈ N, acc ⊆ F〉
min: stack ofN
max← 0

begin4

min.push(0)5

avoid.push(〈1, ∅〉)6

DFSpush(∅, q0)7

while ¬SCC.empty()do8

if SCC.top().succ = ∅ then9

if SCC.top().fsucc 6= ∅ then10

swap(SCC.top().succ, SCC.top().fsucc)11

min.push(max)12

else13

DFSpop()14

else15

pick one〈s, e, d〉 off SCC.top().succ16

a← {f ∈ F | (s, e, d) ∈ f}17

if d 6∈ H then18

DFSpush(a, d)19

else ifH [d] > min.top() then20

merge(a, H [d])21

acc← SCC.top().acc22

if ∀〈l, u〉 ∈ F , (l ∈ acc) =⇒ (u ∈ acc) then return ⊥23

return ⊤24

end25

Fig. 3: Emptiness check of a Streett automaton (continued onnext page).

DFSpush(a ⊆ F , q ∈ Q)26

max← max + 127

H [q]← max28

SCC.push(〈q, max, a, ∅, ∅, {〈s, l, a, d〉 ∈ δ | s = q, a ∩ avoid.top().acc = ∅},29

{〈s, l, a, d〉 ∈ δ | s = q, a ∩ avoid.top().acc 6= ∅}〉)
end30

DFSpop()31

〈q, n, la, acc, rem, , 〉 ← SCC.pop()32

max← n− 133

if n ≤ min.top() then34

min.pop()35

old avoid← avoid.top().acc36

if n = avoid.top().root then37

avoid.pop()38

new avoid← old avoid ∪ {l | 〈l, u〉 ∈ F , l ∩ acc 6= ∅, u ∩ acc = ∅}39

if new avoid 6= old avoid then40

foreach s ∈ rem do41

deleteH [s]42

avoid.push(n, new avoid)43

DFSpush(la, q)44

else45

foreach s ∈ rem do46

H [s]← 047

end48

merge(a ⊆ F , t ∈ N)49

r ← ∅50

s← ∅51

f ← ∅52

while t < SCC.top().root do53

a← a ∪ SCC.top().acc ∪ SCC.top().la54

r ← r ∪ SCC.top().rem ∪ SCC.top().state55

s← s ∪ SCC.top().succ56

f ← f ∪ SCC.top().fsucc57

SCC.pop()58

SCC.top().acc← SCC.top().acc ∪ a59

SCC.top().rem← SCC.top().rem ∪ r60

SCC.top().succ← SCC.top().succ ∪ s61

SCC.top().fsucc ← SCC.top().fsucc ∪ f62

end63

Fig. 3: (Continued from previous page.)

check the emptiness of (state-based) Streett automata [20,15]. But these algorithms
modify the graph before visiting it again, hindering on-the-fly computations.

At a high level, our algorithm is close to the one presented byLatvala and Heljanko
[15], who suggests using any algorithm to compute SCCs. However we have more
than implementation detail differences. Our algorithm is targeted to transition-based
acceptance conditions, actually shows how to make the emptiness check on-the-fly, and
uses two tricks that are dependent on the algorithm used to compute SCC. As mentioned
in the introduction, there exists two similar algorithms tocompute SCCs on-the-fly:
Tarjan’s [25] and Dijkstra’s [5, 6]. The latter is less known, but better suited to model
checking (it has less overhead and can abort earlier). Our trick to use a threshold to
prevent SCC merges could work with either algorithms, but for the emptiness-check to
be correct we also need to perform the DFS in terms on SCCs instead of working in
terms of states. This ordering is possible with Dijkstra’s algorithm, but not Tarjan’s.

Implementation. Fig. 3 presents the algorithm. Its structure mimics that of the empti-
ness check for TGBA of Couvreur et al. [4], especially it profits from the idea of per-
forming the DFS in terms of SCCs rather than states: the stackSCC serves both as a
stack of connected components and as the DFS stack. The constituents of each entry are
state (the root state of the SCC),root (its DFS number),la (the acceptance conditions
of the incoming transition tostate), acc (the acceptance conditions of the cycles inside
the SCC),rem (the other states of the SCC),succ andfsucc (the unexplored successors
of the SCC).

These unexplored successors are split intosucc and fsucc to ensure a proper or-
dering with respect to avoided acceptance conditions. Whena state is pushed down on
SCC at line 29,fsucc is loaded with all transitions in acceptance conditions that must
be avoided, whilesucc receive the others. The latter will be visited first: the algorithm
always pick the next successor to visit fromsucc (line 16) and will swapfsucc andsucc
oncesucc is empty (lignes 9–11).

Thresholds, meant to prevent merging SCCs using a cycle thatwould use an un-
satisfiable acceptance condition, are represented by the number (in DFS order) of the
last state of the SCC from which the threshold transition is going out (that is2 on our
example). These numbers form themin stack; they are used line 20 before deciding
whether to merge; they are pushed whenfsucc andsucc are swapped line 12, and are
popped when the state of that number is removed line 35.

The acceptance conditions to avoid are pushed on top of a stack calledavoid which
is completed anytime the algorithm needs to revisit an SCC (line 43). Each element
of this stack is a pair(ar, acc) whereroot is the number of the first state of the SCC
starting at which acceptance conditions inacc should be avoided. This stack is popped
when the SCC rooted atroot has been visited and has to be removed (lines 37–38).

Correctness.Termination is guaranteed by the DFS and the fact that the number of
avoided acceptance conditions cannot exceed|F|. By lack of space, we only give the
scheme of our proof that this algorithm will return⊥ if an accepting run exists in the
input TSA, and will return⊤ otherwise. (A complete proof is available in French [7].)

Let us use the following notations to describe the state of the algorithm:

SCC =〈state0, root0, la0, acc0, rem0, succ0, fsucc0〉

〈state1, root1, la1, acc1, rem1, succ1, fsucc1〉

...

〈staten, rootn, lan, accn, remn, succn, fsuccn〉

min =min0min1 . . .minp

avoid =〈ar0, acc0〉〈ar1, acc1〉 . . . 〈arr, accr〉

Furthermore, let us denoteSi the set of states represented bySCC[i], andϕ(x) the
index of the SCC containing the state numberedx:

Si ={s ∈ Q | rooti ≤ H [s] < rooti+1} for 0 ≤ i < n

Sn ={s ∈ Q | rootn ≤ H [s]}

ϕ(x) =max{i | rooti ≤ x}

Lemma 1 At any time between the execution of lines 8–15, for any pair〈ari, acci〉 on
theavoid stack, there exists a unique entry〈statej , rootj , laj, accj , remj , succj, fsuccj〉
on theSCC stack such thatari = rootj . In other words, theavoid entries are always
associated to roots of SCCs.
Lemma 2 When line 16 is run to pick a state amongst the successors of the top ofSCC,
the value ofaccr is the same as when this set of successors was created at line 29.
Lemma 3 The values of(rooti)i∈[[0,n]] are strictly increasing and we haverootn ≤
max at all times between the execution of lines 8–15.
Lemma 4 Let us calln′ the value ofn at a moment right after lines 11–12 have been
run. The setssuccn′ andfsuccn′ will never increase.
Lemma 5 The functiong that to anyi ∈ {0, ..., p} associatesg(i) = ϕ(mini) is
injective. In other words, two states numberedmini1 andmini2 (with i1 6= i2) cannot
belong to the same SCC. Furthermore, ifn > minp, rootϕ(minp)+1 = minp + 1. In
other words,minp is the number of the last state of the SCC whoseroot has the number
rootϕ(minp). Finally, rootϕ(minp) ≤ minp ≤ max.

The state setQ of the TSA to check can be partitioned in three sets:

– active statesare those which appear inH associated to a non-null value,
– removed statesare those which appear inH with a null value,
– unexplored statesare not yet inH .

The algorithm can move a state from theunexploredset to theactiveset, and from there
it can move it either to theremovedset or back to theunexploredset (lines 41–42).

The following invariants are preserved by all the lines of the main function (lines 8–
15). They need to be proved together as their proofs are interdependent.
Invariant 1 For all i ≤ n, the subgraph induced by the states ofSi is a SCC. Fur-
thermore there exists a cycle in this SCC that visits all acceptance conditions ofacci.
Finally S0,S1, . . . ,Sn is a partition of the set ofactive states.

Invariant 2 ∀i < n, ∃s ∈ Si, ∃s′ ∈ Si+1, ∃p ∈ 2Σ , {f ∈ F | (s, p, s′) ∈ f} =
lai+1. I.e., there exists a transition between the SCCs indexed byi andi + 1 that is in
all that acceptance conditions oflai+1.

Invariant 3 There is exactlymax active states. No state ofH is associated to a value
greater thanmax. If two different states are associated to the same value inH , this
value is0. In particular, this means that for any valuev between1 andmax, there
exists a uniqueactive states such thatH [s] = v.

Invariant 4 For all integeri ≤ n, the setremi holds all the states ofSi \ {statei}.

Invariant 5 Anyremoved stateq cannot be part of an accepting run.

Invariant 6 There is no state accessible fromstaten from which we could find an ac-
cepting cycle using a transition in an acceptance conditionfromaccr.

Invariant 7 All transitions going fromSϕ(minp) to Sϕ(minp)+1 are labelled by an
acceptance condition ofaccr. (In particular, laϕ(minp)+1 ∩ accr 6= ∅.)

Invariant 8 ∀j ≥ ϕ(minp), accj ∩accr = ∅ and∀j > ϕ(minp)+1, laj ∩accr = ∅.
In other words, the SCC built after the last threshold, and the transitions between them,
are not in acceptance conditions fromaccr, except for the first transition visited after
the last threshold (inlaϕ(minp)+1).

The first two invariants imply that if the algorithm finds ani such that∀(l, u) ∈
F , acci ∈ l =⇒ acci ∈ u, thenSCC[i] is an accepting SCC (inv. 1) that is accessible
(inv. 1 & 2), so the algorithm can terminate with⊥. Invariant 5 assures that no accepting
run exists once all states have beenremoved: the algorithm therefore terminates with⊤.

5 Conclusion

We have introduced a new algorithm for the on-the-fly emptiness check of transition-
based Streett automata (TSA), that generalizes the algorithm for transition-based Büchi
automata of Couvreur [3]. This algorithm checks the emptiness of a TSAA with |A|t
transitions and|F| acceptance pairs inO(|A|t × |F|) time. We have seen that this
algorithm allows us to check a linear-time property on a model AM undern strong
fairness hypotheses inO(|AM |t×2O(|ϕ|)×n) time instead of theO(|AM |t×2O(|ϕ|+n))
we would have using Büchi automata.

It should be noted that since Büchi automata can be seen as Streett automata without
any structural change, this very same algorithm can also be used to check the emptiness
of Büchi automata. In that case SCCs will never have to be revisited (theavoid stack
stays empty) and the algorithms performs the same operations as the original algorithm
for Büchi automata.

Using Streett automata could also be useful to translate some LTL properties that
look like strong fairness properties. For instance Sebastiani et al. [24] give the following
LTL formula as an example of a property whose negation is hard to translate to Büchi

automata (most of the tools blow up):
(

(G F p0 → G F p1) ∧ (G F p2 → G F p0)∧

(G F p3 → G F p2) ∧ (G F p4 → G F p2)∧

(G F p5 → G F p3) ∧ (G F p6 → G F(p5 ∨ p4))∧

(G F p7 → G F p6) ∧ (G F p1 → G F p7)
)

→ G F p8

Spot’sLTL-to-Büchi translator [8] produces a TGBA with 1731 states for the nega-
tion of this formula. With a dedicated algorithm Sebastianiet al. were able to produce
a 1281-state Generalized Büchi automaton. However this formula has the formψ → ϕ

whereψ is a combinaison of8 strong fairness hypotheses, and¬ϕ can be expressed
as a Büchi automaton with2 states and no acceptance condition. The whole formula
can therefore be expressed as a transition-based Streett automaton with two states and
8 pairs of acceptance conditions.6 This reduction should not be a surprise since Streett
automata are exponentially more succinct than Büchi automata [23], however this ex-
ample shows that it would be useful to have an efficient algorithm to translateLTL
formulæ to Streett automata. Unfortunately we are not awareof any published work in
this area.

Bibliography

[1] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press,
2000.

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algo-
rithms. The MIT Press, 2nd edition, 2001.

[3] J.-M. Couvreur. On-the-fly verification of temporal logic. In Proc. FM’99, vol.
1708 ofLNCS, pages 253–271, Toulouse, France, Sept. 1999. Springer-Verlag.

[4] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks
for generalized Büchi automata. InProc. SPIN’05, vol. 3639 ofLNCS, pages
143–158. Springer-Verlag, Aug. 2005.

[5] E. W. Dijkstra. EWD 376: Finding the maximum strong components in a directed
graph. http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD376.PDF, May 1973.

[6] E. W. Dijkstra. Finding the maximal strong components ina directed graph. InA
Discipline of Programming, chapter 25, pages 192–200. Prentice-Hall, 1976.

[7] A. Duret-Lutz. Contributionsà l’approche automate pour la vérification de pro-
priét́es de systèmes concurrents. PhD thesis, Université Pierre et Marie Curie
(Paris 6), July 2007.

[8] A. Duret-Lutz and D. Poitrenaud. Spot: an extensible model checking library
using transition-based generalized Büchi automata. InProc. MASCOTS’04, pages
76–83, Volendam, The Netherlands, Oct. 2004. IEEE ComputerSociety.

[9] E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
logic strikes back.Science of Computer Programming, 8(3):275–306, June 1987.

6 Combining this with the TSA to TGBA construction from section 3.3 yields a TGBA of2 ×
(28 + 1) = 514 states that is even smaller than that of Sebastiani et al.

[10] N. Francez.Fairness. Springer-Verlag, 1986.
[11] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc.

CAV’01, vol. 2102 ofLNCS, pages 53–65, Paris, France, 2001. Springer-Verlag.
[12] D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation

of LTL formulæ to Büchi automata. InProc. FORTE’02, vol. 2529 ofLNCS, pages
308–326, Houston, Texas, Nov. 2002. Springer-Verlag.

[13] P. Godefroid, G. Holzmann, and D. Pirottin. State-space caching revisited.Formal
Methods in System Design, 7(3):227–241, Nov. 1995.

[14] Y. Kesten, A. Pnueli, and M. Y. Vardi. Verification by augmented abstraction:
The automata-theoretic view.Journal of Computer and System Sciences, 62(4):
668–690, 2001.

[15] T. Latvala and K. Heljanko. Coping with strong fairness. Fundamenta Informati-
cae, 43(1–4):1–19, 2000.

[16] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. InProc. the 12th ACM Symposium on Principles
of Programming Languages (POPL’85), pages 97–107. ACM, 1985.

[17] C. Löding. Methods for the transformation ofω-automata: Complexity and con-
nection to second order logic. Diploma thesis, Institue of Computer Science and
Applied Mathematics, 1998.

[18] S. Merz. Model checking: A tutorial overview. InProc. MOVEP’00, vol. 2067 of
LNCS, pages 3–38. Springer-Verlag, 2001.

[19] M. Michel. Algèbre de machines et logique temporelle.In Proc. STACS’84, vol.
166 ofLNCS, pages 287–298, Paris, Apr. 1984.

[20] M. Rauch Henzinger and J. A. Telle. Faster algorithms for the nonemptiness of
Streett automata and for communication protocol pruning. In Proc. SWAT’96, vol.
1097 ofLNCS, pages 16–27, Reykjavı́k, Iceland, July 1996. Springer-Verlag.

[21] S. Safra.Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institute of Science, Rehovot, Israel, Mar. 1989.

[22] S. Safra. Exponential determinization forω-automata with strong-fairness accep-
tance condition. InProc. STOC’92. ACM, May 1992.

[23] S. Safra and M. Y. Vardi. Onω-automata and temporal logic (preliminary report).
In Proc. STOC’89, pages 127–137. ACM, 1989.

[24] R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, explicit properties:
on hybrid approches for LTL symbolic model checking. InProc. CAV’05, vol.
3576 ofLNCS, pages 350–363, Edinburgh, July 2005. Springer-Verlag.

[25] R. Tarjan. Depth-first search and linear graph algorithms.SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[26] H. Tauriainen.Automata and Linear Temporal Logic: Translation with Transition-
based Acceptance. PhD thesis, Helsinki University of Technology, Espoo, Fin-
land, Sept. 2006.

[27] M. Y. Vardi. The Büchi complementation saga. InProc. STACS’07, Aachen,
Germany, Feb. 2007. Invited paper.

[28] M. Y. Vardi. Automata-theoretic model checking revisited. InProc. VMCAI’07,
vol. 4349 ofLNCS, Nice, France, Jan. 2007. Springer-Verlag. Invited paper.

[29] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. InProc.
Banff ’94, vol. 1043 ofLNCS, pages 238–266. Springer-Verlag, 1996.

