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Abstract
Generic programming is a powerful paradigm abstracting
data structures and algorithms to improve their reusabil-
ity, as long as they respect a given interface. Coupled with
a performance-driven language, it is a paradigm of choice
for scientific libraries where the implementation of manip-
ulated objects may change depending on their use case, or
for performance purposes. In those performance-driven lan-
guages, genericity is often implemented statically to perform
some optimization. This does not fit well with the dynamism
needed to handle objects which may only be known at run-
time. Thus, in this article, we evaluate a model that cou-
ples static genericity with a dynamic model based on type
erasure in the context of image processing. Its cost is as-
sessed by comparing the performance of the implementation
of some common image processing algorithms in C++ and
Rust, two performance-driven languages supporting some
form of genericity. Finally, we demonstrate that compile-
time knowledge of some specific information is critical for
performance, and also that the runtime overhead depends
on the algorithmic scheme in use.

CCS Concepts: • Software and its engineering → Devel-
opment frameworks and environments; • Computing
methodologies → Image processing.

Keywords: Genericity, static languages, type erasure, image
processing
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1 Introduction
Scientific tooling is an important part of the research process.
In image processing, three criteria are of prime importance:
genericity, performance, and interactivity. Genericity [11]
allows using a single algorithm on several kinds of objects
while they respect a predefined interface. The genericity
may be on the type of the values of an image [8], but also its
spatial definition [9] and its implementation (sparse-matrix,
constant image). Performance is an important criterion to be
able to handle large images in an image processing pipeline
or for real-time applications. Finally, interactivity allows the
researcher to change the pipeline at runtime without having
to perform a new compilation at every change. This kind
of interactivity is usually reached by bridging the function-
alities written in a compiled language such as C++ into a
dynamic language, more popular for algorithm prototyping,
such as Python, having a large range of scientific utilities
such as NumPy [5] for multi-dimensional arrays manipula-
tion, Matplotlib [6] for visualization or IPython/Jupyter for
interactive programming.
A lot of image processing libraries meet these criteria.

They are implemented in C++, a performance-driven lan-
guage, well-suited for efficient scientific applications through
optimizations at compile time such as partial specializa-
tion [4], and endowed with genericity capabilities, through
the use of templates. Those libraries handle a large range
of image processing objects such as multi-dimensional ar-
rays with generic values for Vigra [8], different kinds of
graphs for Higra [12], or any kind of image for Olena [9].
Furthermore, using some libraries wrapping the CPython
API into a more interactive API such as Pybind11 [7] or
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Boost.Python [1], their functionalities are easily usable in
Python. However, Python extensions being compiled mod-
ules, C++ templated algorithms must be instantiated to allow
their bridging. While Higra instantiates its functionalities
for a large range of types, generating a large amount of code
due to the monomorphization process of the C++ genericity
mechanism, Vigra limits the choice of input arguments type,
reducing the genericity of the exposed functionalities.

Thus, our main objective is to reduce the amount of gener-
ated machine code while keeping the generic abilities of the
implemented algorithm. To this aim, we present in this arti-
cle a model for generic image processing algorithms allowing
both static and dynamic genericity based on operation func-
tions and we evaluate its cost. We focus in this paper on
two programming languages with a genericity mechanism
relying on monomorphization, the C++ language, widely
used for image processing, and the Rust language, which
is increasingly becoming popular for its safety in terms of
memory usage, multi-processing, and performance.

This article is structured as follows: we first recall the basis
of genericity and we explain its application in image process-
ing in section 2. Then, we explain our proposed model to
handle both static and dynamic genericity in section 3. We
compare the performance of the static and dynamic imple-
mentation in section 4. We finally conclude in section 5.

2 Generic Programming
2.1 Preliminaries
Reusability is important in the development process. It re-
duces the amount of code to be written and maintained.
Generic programming [11] improves the ability of program-
ming language to reuse existing components of a library. It
abstracts an algorithm through a predefined interface for the
objects used by it. As long as an object respects this interface,
it can be used by this algorithm.
Genericity in the C++ and Rust languages is particularly

interesting in terms of performance. Their mechanism for
genericity is based on monomorphization, a process produc-
ing machine code for each concrete algorithm. This machine
code is optimized by the compiler for each combination of
type parameters, resulting in performant libraries and ap-
plications. Genericity in C++ is based on templates, a list of
parameters containing either types or constant values which
are filled at the instantiation of a concrete data structure or
algorithm. Thus, each combination of parameters results in
a new concrete type or algorithm. The Rust language gener-
icity is based on a similar parameter list named generics. The
illustration in Figure 1 shows a generic implementation of the
sum function in C++ and Rust traversing an array, summing
all its elements, and returning the results. In these two cases,
the type parameter must respect the interface ensuring the
usage of the operator +, either by an operator overloading in
C++ or the implementation of the trait bound Add in Rust.

// C++ version
template <class T>
T sum(std::vector<T> lst) {

T res = T();
for (const auto e : lst)
res += e;

return res
}

// Rust version
fn sum<T: Add<Output = T> + Default>(
lst: Vec<T>,

) -> T {
let mut res : T = Default::default();
for e in lst {

res = e + res;
}
res

}

Figure 1. C++ and Rust implementation of sum

void image_max(image2d a, image2d b,
image2d& out) {

for (int y = 0; y < a.height(); y++)
for (int x = 0; x < a.width(); x++)
out(x, y) = max(a(x, y), b(x, y));

}

graph graph_max(graph a, graph b,
graph& out) {

for (int i = 0; i < a.num_nodes(); i++)
out(i) = max(a(i), b(i));

}

Figure 2. Non-generic maximum functions

2.2 Application to Image Processing
Let 𝑓 : Ω → V be an image with Ω its domain and V

its value space. The domain of definition of the image dif-
fers depending on which kind of image is used: it may be a
multi-dimensional grid, the index of a node in a graph, etc...
In the same way, the values of an image may be univariate
(boolean for binary image, numerical for grayscale image) or
multivariate (for color image). Algorithms may be used on all
these kinds of images. An example of algorithms on specific
images is shown in Figure 2. The two functions compute the
elementwise maximum between two objects. The first func-
tion takes in argument a 2D image with the value encoded as
an unsigned integer on 8 bits and the second function takes a
node-valued graph. The pattern of the algorithm is the same
for the two functions: the object is traversed, computing the
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template <class I, class J, class O>
void generic_max(I a, J b, O& out) {
for (auto p : a.domain())

out(p) = max(a(p), b(p));
}

Figure 3.C++ implementation of generic maximum function

maximum between two elements and storing it in a third
object.

These functions are limited: if a new type is introduced, a
new function has to be implemented. However, due to the
common pattern of the algorithm, they can be implemented
as a single generic function by imposing a common interface
for all the objects being accepted by the function. This is
illustrated in Figure 3. From the definition of an image given
above, the interface of an image is composed of a domain, ac-
cessible by the domain function, and the values are accessed
using the callable operator, taking into argument an element
of the domain. This element is an 𝑛-D point for an 𝑛-D image,
the index of a node for a node valued graph, etc... Thus, this
generic function has only two constraints: the domain of the
object should be the same and the type of the values of the
images should be compatible for the maximum operation.
That means the value type of the images may be different.

As explained in section 2.1, C++ and Rust generate code
for each instantiated function. The function generic_max in
Figure 3 takes three template parameters; each combination
of types generates machine code specialized for the combi-
nation of parameters. Set to all kinds of possible types, it
leads to a combinatorial explosion.

3 Dynamism for Static Genericity
As explained above, the genericity in statically typed lan-
guages has two major drawbacks:

• The generic parameters cannot be set at runtime.
• When the generic parameters are not known at com-
pile time, several generic objects and algorithms have
to be instantiated, resulting in a combinatorial explo-
sion and the code bloat resulting from the monomor-
phization process.

To solve these issues in the image processing context, we
propose to observe four models of image and apply them
to generic algorithms with few modifications in their imple-
mentation. In this section and the following ones, we only
focus on 2D images, but this method is extendible to any
kind of image, as described in Section 2.2.

3.1 Image Models
In static languages such as C++ or Rust, a practical and
basic way to implement a 2D image encoded as a buffer is
to store the values in an array contained inside an object

// Templated 2D buffer

template <class T>

struct buffer2d

{

T& operator()(point2d p);

rect2d domain() const;

T* data;

};

Interface

Implementation
details

// Type-erased 2D buffer

struct buffer2d_any

{

void* operator()(point2d p);

rect2d domain() const;

void* data;

size_t element_size;

};

Interface

Implementation
details

Figure 4. C++ implementation of a 2D buffer

trait Buffer2dInterface {

type Output: ?Sized;

fn domain(&self) -> Rect2d;

fn at(&mut self, p: Point2d)

-> Option<&mut Self::Output>;

} Interface

Implementation
details

// Generic 2D buffer

struct Buffer2d<T> {

domain: Rect2d,

data: Vec<T>

}

// Type-erased 2D buffer

struct Buffer2dAny {

domain: Rect2d,

element_size: usize,

data: Vec<u8>

}

Figure 5. Rust implementation of a 2D buffer

and to have access to the size of the image. Furthermore, to
make the image reusable, a generic parameter handles the
type of values in the buffer. Thus, the user has access to two
elements: the domain of the image (width and height for a
2D image) and the value encoded at a given position. This
is illustrated in C++ in Figure 4 and Rust in Figure 5 as the
templated and generic version of a 2D buffer. However, as
specified above, this kind of image is unusable in a dynamic
context.

One way to remove this generic parameter relies on type
erasure. This mechanism is widely used in the C++ stan-
dard library and used in several cases. For example, the
std::any [3] object is a type-safe object handling any kind
of object under certain constraints. It allocates memory for
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template <class T>

struct indirect2d {

T& operator()(point2d p);

rect2d domain() const;

std::function<T&(point2d)>

m_access;

};

Interface

Implementation
details

Figure 6. C++ implementation of indirection

this object and stores it without any static type informa-
tion, but keeps a dynamic identifier of the type internally
so that the conversion from the typed-erased object to the
statically typed one is a type-safe operation by computing
some type checking. Another use case of type erasure is the
std::function object. It stores any kind of callable inside
the object such as a function pointer or a functor storing
some data since their call operation respects a given list of
argument types and the return type.

Value type information. This second model type-erases
the values of the image. Some information about the type of
values such as the size in bytes of one value must be stored
in the implementation details in order to traverse the image
value by value. However, the interface does not change: the
type erasure does not change the nature of the definition
domain and the access operator still returns information
related to the value. In C++, this information is a pointer
to the first byte of the value and in Rust, it is an unsized
slice containing the bytes of the value. This slight difference
between the two implementations is due to the fact that Rust
syntax for pointers is different than its syntax for concrete
values. These type-erased versions are illustrated in Figures 4
and 5 as buffer2d_any and Buffer2dAny.

Data encoding information. The two previous models
are based on the type of values, but not on their implemen-
tation. However, an image may have a different implementa-
tion according to the context, such as one value for a constant
image, a sparse matrix for an image storing a few values dif-
ferent from 0, or a C++ view returning amodified image value
at access. To handle all of these implementations, a model
inspired by the C++ std::function functionality is used.
Instead of encoding the implementation of the image directly
in the structure handling the interface, it is handled by an
external object, encoding the access of the value to the image,
which is itself stored in the interface. This method makes an
indirection to access the image values. This can be done by
using a std::function in C++ or a dynamic trait object in
Rust. These structures are denoted by indirect2d<T> for the
statically typed values version and indirect2d_any for the
dynamic one. The C++ implementation of indirect2d<T>
is illustrated in Figure 6.

void qsort(void *tab, size_t nmemb, size_t size,

int (*compare)(const void *, const void *))↩→

Figure 7. qsort function prototype

// Generic operation
template <class I, class Op>
void elemwise_op(I a, I b, I& out, Op& op) {

for (auto p : a.domain())
op(a(p), b(p), out(p));

}

Figure 8. Elementwise operations function

3.2 Application to Generic Algorithm
The image models described above have a common interface,
which is a criterion for generic programming. However, the
untyped models return values that cannot be directly ma-
nipulated by the algorithm, such as the addresses returned
by the access operation in the C++ implementation of a 2D
untyped buffer. Thus, these values should be converted into
a statically typed one to be manipulated by the algorithm.
The model used to manipulate these algorithms is based

on the qsort function from the C standard library whose
prototype is recalled in Figure 7. This function sorts the el-
ements of the table pointed by the address tab, composed
of nmemb elements of size bytes. It sorts the elements ac-
cording to the result returned by the function pointed by the
compare pointer. This approach has several advantages: first,
the qsort function does not require the knowledge of the
static type of the object being sorted at compile time. Then,
the sorting criterion can be changed at runtime without hav-
ing to generate too much code. However, as pointed out by
Meyers in [10], the std::sort function from the C++ Stan-
dard Template Library (STL) is 670% faster than the qsort
function on a table containing one million of double typed
elements. This is due to the fact that statically typed code is
optimized at compile time and the cost of a function call is
reduced by function inlining for the std::sort function.

This model is adapted to generic programming by adding
operations to the algorithm manipulating the values of an
object in the same way as the qsort function. The operator
interface used in Figure 3 is changed to support type erasure.
It changes from (T, T) -> T to (T, T, T&) -> void to
store the result of the computation in the last function ar-
gument. It yields the generic elementwise_op depicted in
Figure 8, that traverses a and b and stores the result of the
operation op in the out image.
Table 1 summarizes the different image structures pre-

sented and their properties. The Operation type column
shows two kinds of max operation, one where the operand
types are known at compile-time, and a "dynamic" one whose
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Table 1. Summary of the different image structures and their properties

Image type Access policy Static value
type

𝑓 (𝑝) return
type

Operation type

buffer2d<T> Direct to the buffer ✓ T& void max<T>(T a, T b, T& out)
indirect2d<T> Indirect ✓ T& void max<T>(T a, T b, T& out)
buffer2d_any Direct to the buffer ✗ void* void (*max)(const void* a, const void* b,

void* out)
indirect2d_any Indirect ✗ void* void (*max)(const void* a, const void* b,

void* out)

(a) Raster pattern (b) Random pattern (c) Local pattern
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(f) C++ dilation
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(g) Rust maximum
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(h) Rust max-tree
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Figure 9. Benchmarks results of the implementation of the three algorithmic pattern in C++ and Rust

arguments are type-erased, unknown at compite-time. In the
context of the elementwise_op function, these two opera-
tions are valid as they respect the required interface. The
statically-typed operation can be inlined because both the
operator and the operand type are known at compile-time.
However, the second one requires an indirection because the
operand type is not known.

4 Results
In order to measure the cost of our models, we implemented
in C++ and Rust three image processing algorithms following
different algorithmic schemes, illustrated in Figures 9a to 9c.

The raster pattern is implemented using an elementwise max-
imum operation between two images. The random pattern
is used in the construction of a max-tree [13] using Berger’s
algorithm [2]. Finally, the local pattern is implemented by
a dilation [14] using a square of size 1 as a structuring el-
ement. Each operation has been run on square images of
side 𝑠 = {2𝑛 | 𝑛 ∈ J4 − 12K}. The experiments have been
performed on a Linux Debian 11 machine equipped with
a processor Intel i7-3770, 3.40GHz. The C++ benchmarks
have been run using the Google Benchmark library from
binary compiled with GCC 10.2.1 using the optimization
flags -03, -ftree-vectorize, -mavx and -unroll-loops. The Rust
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Table 2. Execution time overhead (in percentage) of the
algorithmic schemes compared to the statically-typed with
direct access image of side size of 4096

Statically Typed Yes No
Direct Access Yes No Yes No

C++
Raster +0% +176% +183% +367%

Random +0% +20% +18% +29%
Local +0% +208% +174% +283%

Rust
Raster +0% +388% +251% +574%

Random +0% +9% +6% +15%
Local +0% +61% -14% +66%

benchmarks have been compiled with the Rustc compiler
using the third optimization level (-C opt-level=3) and the
measurements have been performed using the Criterion.rs
library.
The results of the benchmark are displayed in Figure 9.

Each plot displays the performance of an algorithm in sec-
onds related to the size of the side of an image. The second
row is the result of the algorithms implemented in C++ and
the third one of the algorithms implemented in Rust. Except
for the Rust implementation of the dilation (Figure 9i), the
statically typed buffer is the fastest implementation of the
algorithm, which is particularly true when traversing the
image in raster order as for the elementwise operation (Fig-
ures 9d and 9g). This is due to the number of cache misses,
low for the elementwise operation, due to the fact the images
are traversed in the same order they are stored in memory.
Furthermore, the knowledge of the type at compile time en-
ables optimizations by the compiler such as automatic vector-
ization of the instruction in the produced binary. Finally, the
implementations of the algorithms with the buffer2d<T>
knowing the nature of the input object values type and the
input object implementation details, the operations given
to the algorithm are processed by the compiler, enabling its
inlining and avoiding the indirection induced by a function
call.
Furthermore, we observe in Figures 9e and 9h that the

algorithmic scheme is an important criterion to choose the
generic model to use. For the max-tree algorithm, whatever
the model used, the performance of its computation is similar
for each one. Indeed, the random algorithmic scheme does
not access the memory in the same order as the memory is
used. Thus, it results in several cache misses, but also the
compiler is unable to optimize the generated machine code.
We can conclude from these benchmarks that the static

information of the image values type is important, but also
the algorithmic scheme. This is even more obvious in Table 2,
where the dynamism overhead is shown. In the context of
a bridge between the C++ or Rust language and Python,
specializing generic algorithms to a wide variety of types

in the case of a pattern such as the random pattern is not
necessary in term of performance.
The second experiment performed in this paper is the

measurement of the size evolution of the generated machine
code from the C++ implementation of the max-tree algo-
rithm related to the number of handled image value types.
To make it, we used the Bloaty1 profiler which measures
the size of different elements in binaries. The max-tree al-
gorithm has been chosen because its compilation generates
the largest amount of machine code from the three previ-
ous algorithms, but also because the cost of dynamism of
its algorithmic scheme is negligible and permits the usage
of its dynamic version. The result of this measurement is
shown Table 3. Both version exhibit a linear increase with
the addition of new image types. However, the quantity of
new code generated in the dynamic version ( 100b/type) is
26 times lower than in the static version (2.6Kb/type) where
a new full algorithm is instantiated. Therefore, the dynamic
version prevents code bloat.

5 Conclusion
In this paper, we presented different models of generic pro-
gramming and we compared them applied to image pro-
cessing by implementing different algorithmic schemes in
C++ and Rust. We showed that the performance of each
model was dependent on the algorithmic scheme used, and
we highlight the fact that some information such as the type
of the values of an image, was more important to be known
statically by the compiler in some cases. To reduce the loss
of performance induced by the lack of static information
knowledge, some leads may be explored: first, the usage of
external modules downloaded at runtime and linked to the
application, with precompiled algorithms, optimized for this
particular use case. The second lead may be the usage of
Just-In-Time compilation to generate optimized assembly
code such as SIMD instruction at runtime for critical opera-
tions. Then, as observed in the benchmark’s result Figure 9,
for a small square image, the difference in performance is
negligible. Looking for the best side size related to the per-
formance of an algorithm for distributed tile-based image
processing algorithm would be a means to reduce this gap in
performance. Finally, this work is intended to be used in the
context of a bridge from a static language to a dynamic one
to provide an interface for dynamic environments without
a loss of performance for a C++ image processing library.
Thus, we will use it as a basis for efficient bindings of our
algorithms from C++ to Python.
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Table 3. Max-tree generated machine code related to the number of handled types

Number of handled types 1 2 3 4 5 6 7 8 9 10 11
Size for static version (in Kb) 2.9 5.3 7.9 10.5 13.2 15.8 18.5 21.1 23.8 26.5 29.2
Size for dynamic version (in Kb) 3.7 3.8 3.9 4.0 4.1 4.2 4.4 4.5 4.6 4.7 4.9
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