
Semantics-Driven Genericity:
A Sequel to the Static C++ Object-Oriented

Programming Paradigm (SCOOP 2)

Thierry Géraud, Roland Levillain

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire, FR-94276 Le Kremlin-Bicêtre Cedex, France

thierry.geraud@lrde.epita.fr, roland.levillain@lrde.epita.fr

Web Site: http://www.lrde.epita.fr

Abstract. Classical (unbounded) genericity in C++03 defines the inter-
actions between generic data types and algorithms in terms of concepts.
Concepts define the requirements over a type (or a parameter) by ex-
pressing constraints on its methods and dependent types (typedefs).
The upcoming C++0x standard will promote concepts from abstract en-
tities (not directly enforced by the tools) to language constructs, enabling
compilers and tools to perform additional checks on generic constructs
as well as enabling new features (e.g., concept-based overloading). Most
modern languages support this notion of signature on generic types. How-
ever, generic types built on other types and relying on concepts—to both
ensure type conformance and drive code specialization—restrain the in-
terface and the implementation of the newly created type: specific meth-
ods and associated types not mentioned in the concept will not be part
of the new type. The paradigm of concept-based genericity lacks the re-
quired semantics to transform types while retaining or adapting their
intrinsic capabilities. We present a new form of semantically-enriched
genericity allowing static, generic type transformations through a sim-
ple form of type introspection based on type metadata called properties.
This approach relies on a new Static C++ Object-Oriented Programming
(Scoop) paradigm, and is adapted to the creation of generic and efficient
libraries, especially in the field of scientific computing. Our proposal uses
a metaprogramming facility built into a C++ library called Static, and
doesn’t require any language extension nor additional processing (pre-
processor or transformation tool).

1 Introduction

In the context of software library design for numerical scientific computing, we
want to meet two major objectives at the same time: efficiency because of the
large data sets to be processed, and genericity since data can have multiple
different types. Many libraries fulfilling such aims have been designed and de-
veloped with the C++ language [1], which has proved to be an appropriate tool
[2,3,4,5]. The way abstractions can be handled in scientific libraries is a subject

2 Thierry Géraud, Roland Levillain

of prime importance: practitioners mainly think about the entities of their do-
main in terms of abstractions, and consider implementation aspects in second
place. A great benefit brought by the C++ language comes from the fact that it
features multiple paradigms; as a consequence, it offers several solutions to de-
sign well-grounded scientific libraries where implementation classes are tightly
related to properly defined abstractions.

The Generic Programming (GP) paradigm is classically presented as a means
to achieve both efficiency and genericity in scientific libraries, leading to a strong
decoupling between:

– structures, the different kinds of containers offered to represent data sets;
– values, the different types of elements that can be stored in structures;
– and algorithms, some non-elementary operations that are expected to run

over data sets.

Schematically, providing S structure types, V value types, and A generic algo-
rithms—i.e S + V + A entities—a library features D = S×V different data sets
(input types) and D × A possible processing routines. Yet, another category of
entities happens to be useful:

– data modifiers, such as views, adapters, decorators, wrappers, or any trans-
formation applied on a single or several data sets to provide the user with
“other” data sets than the primitive ones.

The obvious requirements over such modifiers are those we already have for the
other entities. They shall not penalize performance at run-time. They also have
to be generic, that is, they shall apply to as many data sets as possible. Therefore
with M modifiers, the number of expressible data types becomes D(M∗). In
addition to the efficiency and genericity requirements, their main property is
the following: a modifier type is written once while being able to modify the data
types it applies to, no matter the specificity of the original data types.

Some examples of such modifiers already exist. For instance, the Boost It-
erator Library [6] proposes a collection of “specialized adaptors.” Though they
do not directly apply on containers (data sets) but on iterators (data access),
they affect the behavior of algorithms just like if the nature of the containers
had changed. All iterators do not share the exact same interface, so the adapter
classes have to handle this variability; thus, tag types are introduced in order to
discriminate between the different abstractions of iterators. Given an iterator of
type I, its tag can be retrieved through iterator traits<I>::iterator categ-
ory, that is, an associated type enclosed in a traits class. When the result is
random access iterator tag, we know that I satisfies the corresponding ab-
stractions. An adapter class targeting the type I shall then rely on this piece of
information to offer the appropriate interface and behavior.

In a generic library featuring many different abstractions, several of them
being independent from some other ones, providing dedicated modifier classes
on a per-case basis is clumsy. We really need a very general mechanism to easily
design these classes whose main characteristic is that they should be highly
adaptable.

Semantics-Driven Genericity 3

To address these problems, we have extended the Static C++ Object-Oriented
Programming (Scoop) paradigm presented in [7]. The need for this paradigm
comes from the development of two numerical scientific computing libraries,
namely Olena [8,9] for image processing and Vaucanson for finite automata
manipulation [10,11]. Scoop 1 proposed an approach mixing classical Object-
Oriented Programming (OOP) and GP, but no support to implement generic
modifiers. This lack finds its origins in the limitation of existing paradigms. To
allow the creation of generic modifiers, we propose to reverse classical OOP, by
introducing the idea of properties within the second version of Scoop. While
OOP is a top-down process (upper classes imposes type constraints on lower
classes), properties spawns a bottom-up mechanism: concrete classes express
a kind of signature from their properties, which is used to select the abstrac-
tions they conform to, and possibly, retrieve automatically some implementations
based on user-written rules.

This paper is structured as follows: first, we introduce the idea of properties
by studying existing GP-based paradigms in Section 2. Then, we present the
Scoop 2 paradigm (Section 3), and a component to apply it to generic libraries,
Static (Section 4). We compare our approach to existing work in Section 5.
Section 6 concludes.

2 The need for properties

This section compares various approaches to express generic programming in
the C++ language, and draws a first conclusion on the current GP techniques
with respect to the implementation of generic modifiers: these paradigms fail to
meet our expectations. A proposition introducing the concept of properties is
then presented.

2.1 Classic genericity: C++03

In contrast with OOP, generic programming does not require class inheritance
but heavily relies on parametric polymorphism thanks to the C++ template key-
word. Libraries built with GP [2,5,12,4] are efficient since the run-time cost of
virtual methods is avoided; furthermore, methods code can be inlined which al-
lows the compiler for extra optimizations. Abstraction interfaces are not mapped
into source code but are described in documentation. The relationship between
implementations and abstractions is implicit : an implementation class just has
to provide what is required by its abstractions.

2.2 Concept-based genericity: C++0x

With the evolution of the C++ Standard, programmers will benefit from the
introduction of the concept keyword into the upcoming C++0x proposal [13]
in order to materialize into source code a set of requirements over types, a
feature present in popular modern languages [14]. For instance, an abstraction

4 Thierry Géraud, Roland Levillain

interface could be mapped into a C++0x concept and, given a generic algorithm—
a parametrized function—this concept could be used to define a constraint over
eligible parameters. This evolution thus preserves all the benefits from “classical”
generic programming while enhancing code expressiveness, program safety, and
design capabilities. With the advent of concepts comes the notion of where-
clauses, a language construct to enforce a set of requirements using concepts
on a type. Where-clauses allow a new form of function overloading based on
concepts, which greatly enhances algorithm specialization [15].

Though we will have to wait for the next C++ standard to be able to ma-
nipulate concepts as entities of the language, there are already tools partially
reifying concepts for C++03 [16]. They help to enforce early conformance of
types to the concepts they model, and provide better error messages. Likewise,
a form of concept-based overloading is possible with C++03 [17]. However, these
techniques have less expressiveness and are less robust than their future C++0x
counterparts.

2.3 Mixing Genericity and OOP: SCOOP 1 (using C++03)

In [7] we proposed a solution to translate a classical, hence dynamic, OOP class
hierarchy into a static one. Put shortly, Scoop 1 is a mix between OOP and
GP in order to take advantage of both worlds. From OOP it borrows inheritance
so that interfaces are explicitly defined as classes; Scoop then allows for code
factoring, even if some definitions (methods or associated types) are still un-
known and deferred to sub-classes. From GP it keeps efficiency since all classes
are parametrized and statically resolved. Technically speaking Scoop 1 is based
on a generalization of the Curiously Recurring Template Pattern [18]. The main
difference between Scoop 1 and C++0x GP is that the relationship between
a concrete class and an abstraction is explicit with the former (as in OOP),
whereas it is implicit with the latter.

2.4 Limitations of these approaches

The main difficulty of implementing generic modifiers comes from handling
specificity. To illustrate our point, let us consider a modifier class that acts
as an adapter. For instance, in the C++ standard library the class template
std::queue is an adapter over an underlying sequence. Some eligible type C
for the sequence can be std::list<T> (doubly linked list) or std::deque<T>
(double-ended queue), T being the queue element type. Let us imagine that this
queue type is a modifier. Under this assumption, its interface can provide a
random access facility to queue elements if and only if C already features this
same facility. That is the case when C is a deque but not when it is a list. The
interface of queue<T,C>, and its related code, thus depends upon the interface
of its parameter C. With current C++, std::queue<T> is not a modifier, and it
masks the interface of T. This is an artifact of classical genericity that we call
restraining genericity.

Semantics-Driven Genericity 5

The first restriction imposed by modifiers is that they prevent the use of
inheritance as a means to build upon an existing type. Modifiers are much more
generic than sole decorators or proxies: they shall allow any transformation from
a generic (and equipped) type, including changing its interface (and therefore
its implementation). Let us consider an example from the domain of image pro-
cessing: if we create a transformation flattening a 3-dimensional image to a 2-D
one (i.e., a generic modifier reducing the dimension of a generic 3-D image type),
we need to adjust the interface of the image type with respect to the type of
points, the type of the grid, etc. (i.e, translate them to their 2-D counterparts).

This example shows that Classical GP is too limited to implement modifiers.
Moreover, it seems the new features of C++0x evoked in section 2.2 will not
suffice to implement modifiers directly either: using a type T conforming to a
given concept C to create a new type U will not take into account the specific
part of the interface of T absent from C if T models in fact a refinement of C (i.e.,
a sub-concept). Likewise, Scoop 1 type transformations are only limited to a
fixed type signature. In any case, there is no automatic way to retrieve default
implementation while transforming types, based on a given interface (no static
introspection mechanism).

The main idea of this paper is that type transformations should be available
as a GP feature, and require an extended generic programming paradigm to be
implemented.

More generally, though templates offer useful static metaprogramming tools
in C++, the language itself lacks a general-purpose static meta-programming
facility, like complete static introspection or a meta-object protocol [19].

Some modern languages like Java and C# offer a dynamic introspection
mechanism, but this is a different service: we are looking for a static means
to interact with the compilation process. For instance, the C++ language does
not provide a actual means to inspect the typedefs of a class, though this
information is required to create non-trivial type transformations.

2.5 Semantics-driven genericity

Modifiers should therefore perform some kind of static introspection on the trans-
formed type, to acquire information on its interface and its implementation. This
work will be performed by metaprogramming algorithms [20], so the information
has to be encoded as types.

One cannot easily extract information from a C++ program without an ex-
ternal tool, in order to perform type transformations. Thus, the programmer has
to provide the compiler with some information characterizing the very nature
of the type to be transformed. With well known template-based static metapro-
gramming techniques, the compiler will be able to both fetch information form
the type (rather than inspect it) and even rely on existing implementations
through a delegation mechanism. The idea is that abstractions should be able to
express the requirements of type transformations on data using properties, that
is, parameters depending on the exact type of the implementation class. They
should therefore be part of the definition of concrete classes of the hierarchy.

6 Thierry Géraud, Roland Levillain

This separation lays down a first issue in C++, as it introduces a recursion in
the definition of a class: a concrete class needs to build its super classes first;
but these super classes, also used to represent the abstractions modeled by the
concrete class, depend on types defined in the concrete class.

We must first recall that the solution cannot solely rely on direct inheritance
from the transformed type: as the semantics of the transformation does not
always allow it. For instance, given a 3-D image of type T, it would be tempting
to define a slice (a 2-D image) of an object of type T as an instance of a subclass of
T: a slice of a 3-D image is indeed a 2-D image; a 2-D image, however is not a 3-D
image, and has a different interface. Nevertheless, inheritance is the only usual
way to have a type U automatically retrieve (a part or all of) the implementation
of a type T in C++. Therefore we propose a programming paradigm based on

– a split pattern, with abstractions expressing concepts using abstract types
(depending on the exact type of the model) on the one hand; and implemen-
tations classes on the other hand;

– a set of properties attached to any concrete class of the hierarchy, used to give
a “value” to the expected types in the signature of routines of abstractions.
Properties add semantics from the target domain (e.g., image processing) to
data types, and are used to automatically drive the inheritance relationships
from concrete classes to the right abstractions;

– a delegation mechanism to automatically retrieve implementation from a
delegatee to create generic type transformations.

These ideas are the heart of the Scoop 2 paradigm, which enriches the se-
mantics of a library: qualifying a type with is properties and using them to
retrieve both interfaces and implementations statically augment the expressive-
ness of the language.

3 The SCOOP 2 paradigm

Scoop (standing for Static C++ Object-Oriented Programming) is a program-
ming paradigm that addresses common issues raised in the context of generic
and efficient programming. Its first version has been described by Burrus et al.
[7], and was used to build the Olena generic image processing library [8], ver-
sion 0.10. This section presents the second version of the paradigm, which has
been design for the forthcoming Olena library [21].

Scoop 2 has been developed primarily to fulfill the needs of designers of scien-
tific computing libraries (especially Olena and Vaucanson), where genericity
and run-time efficiency are fundamental.

Because the paradigm has an impact on the design of the software, Scoop 2
aims mainly at building new libraries. However, one can use it within an exist-
ing code base, either non intrusively (by wrapping existing data structures), or
intrusively, by modifying existing code. We have successfully applied the first
approach to a subset of the standard C++ library (some containers and algo-
rithms), as a proof-of-concept of Scoop 2 [22].

Semantics-Driven Genericity 7

One of the main advantages of Scoop 2 is that this paradigm is expressed
directly in the host language (C++ to be specific), hence it doesn’t require any
software tool other than a compiler complying with the ISO/IEC C++ Standard
[1]. Nevertheless, to both formalize the implementation of the paradigm and fac-
tor out the development among clients, we propose a library providing a part of
the facility used to apply the paradigm: types and metaprogramming algorithms.
This component is called Static, because most of its code is used to create so-
called static class hierarchies, where the exact type of every object is known at
compile-time, replacing dynamic dispatch of method calls with static ones and
allowing some form of static class introspection. Static is built upon Metalic,
another library delivering basic C++ template metaprogramming tools (manip-
ulation of types as values, logic on types, static if and switch statements on
types expression, typedef lookup, etc.). Metalic shares similar goals with Loki
[23] and the Boost MPL library [24,25], and could be replaced by these libraries
in a future implementation of Static. Notably, the atomic conformance check
technique (for typedef introspection and subtype checks), based on SFINAE and
sizeof, is from Loki [23, section 2.9]. Section 4 is dedicated to Static. Please
note that unexplained elements from examples illustrating Static uses (figures
4, 6 and 8) are addressed in later parts of the article to enhance readability.
Their object is basically to show how Static client code reads, as these samples
are actual code.

3.1 Organizational Considerations

The design of Scoop determines the roles of people taking part in a Scoop-
based library project. We can classify these actors in a taxonomy of four cate-
gories.

Simple Users For this kind of actor, the components provided by the library
(data types and algorithms) are sufficient to solve a problem of the applica-
tive domain. A Simple User thus just assembles components and knows
nothing about the library internals.

Designers This actor designs new algorithms, so he extends the number of
algorithms (A).

Providers This actor provides the library with new data structures, hence
he increases the number of data structures (S), and possibly the number of
value types (V).

Architects At the opposite of Simple Users, this category of actors is
mainly concerned by the library internals.

A fifth category, maintainers, contains people in charge of the low-level
components above which the library is built. As they are not directly related to
the library, their role will not be covered in this section.

The programming skills expected from an actor to enter one of those cate-
gories usually go increasingly from Simple Users to Architects; fortunately,
the size of the population of those categories follows an opposite trend. However,

8 Thierry Géraud, Roland Levillain

Components

Library client code

Library

Static

Metalic

C++ compiler

S
c
o
o
p

2

Suppliers

Library user

Library
designer

Olena
project

C++ compiler
vendor

Roles

Simple Users

Designers
Providers
Architects

maintainers

O
u
r

c
o
n
tr

ib
u
ti
o
n

Fig. 1. Components and actors in a Scoop 2-based project. The vertical layout
represents the dependencies between components: a component located on top
of another depends on the latter.

as a matter of fact in the context of scientific libraries, a lot of people are involved
in designing algorithms and there are a lot more Designers than Providers.
A quality criterion for libraries is that the compliance between algorithms and
data should be maximal. Having also in mind the notions of reusability and ex-
tensibility, this criterion has two consequences that respectively fall in the hands
of Designers and Providers. Figure 1 summarizes the roles of each user.

3.2 Key concepts of the design

Scoop 2 is to be used to build libraries composed of generic algorithms (as func-
tion templates) and generic data structure (as class templates). Conceptually,
Scoop 2 pays more attention to the data aspect than many other generic library
designs. Indeed, a lot of these libraries draw their generic orientation from their
algorithms, and data structures are often considered as mere models of the con-
cepts used by these algorithms. Although these libraries provide means to extend
data structures through adapters or wrappers [2,12,26], these approaches benefit
little or nothing from the generic strategy (from the reusability and factoring
point of view): adapters and wrappers are generally not meant to be combined.

3.3 Data structures

The developer of the library shall organize the various entities of the domain
in categories. For instance, a generic image processing library would comprise
categories such as image, point, neighborhood, etc. For each category of data
structure, Scoop 2 invites the Designer to create two class hierarchies: one
for the abstraction(s) (reified as “concepts” in C++0x) and one for the imple-
mentation(s). Following the previous example, corresponding abstractions for

Semantics-Driven Genericity 9

the category image would be Image2d, Image3d, BinaryImage, ColorImage, Muta-
bleImage, etc.

Hierarchy of abstractions Concepts are expressed as abstract classes in the
paradigm. Although the upcoming C++ Standard is to propose concepts as
actual language constructs [13], these are not powerful enough to fully sup-
port Scoop 2. “Concepts-as-classes” is notably a requirement of the delega-
tion mechanism of the paradigm (see 3.3). The hierarchy is used as a means
to organize the concepts according to their acquaintances (refinement, or-
thogonality, exclusion). The generalization relationship mimics a refinement
in this hierarchy. Abstractions are detailed in 3.3.

Hierarchy of implementations Actual data structures are organized in class
hierarchies, which serve to factor implementations. Data types are either
primary (not relying on any other data type of the same kind) or composed
(aggregating one or more objects of the same kind). In the latter case, the
paradigm uses a powerful delegation mechanism allowing type transforma-
tions and retaining the semantics of the original type, a claim brought up in
Section 2. Section 3.3 gives more insight on implementation hierarchies.

Both hierarchies can be extended independently. This is immediate for im-
plementations, thanks to inheritance—and because properties are automatically
inherited, thanks to Static (see section 4.3). Inheritance allows an extension
from the bottom of the hierarchy, which fits with the location of implementa-
tions within the whole class diagram. However, things get a little trickier when
it comes to abstractions, as existing implementations might already inherit from
them. Extending an abstraction hierarchy a posteriori requires some equipment
to allow a form of declarative inheritance and have implicit links between im-
plementation and abstraction be extended non intrusively.

Any
EXACT

A

EXACT

B

EXACT

C

Meta-hierarchy

Any<C>
EXACT

A<C>

EXACT

B<C>

EXACT

C

Instantiation of C

Fig. 2. An example of Static hierarchy unfolding.

10 Thierry Géraud, Roland Levillain

Implementation hierarchies Implementation classes are templates organized
in hierarchies using only single inheritance (though the paradigm can be ex-
tended to support multiple inheritance). Class hierarchies follow a generalization
of the Curiously Recurring Template Pattern (CRTP) [18]. In the Generalized
Curiously Recurring Template Pattern (GCRTP) [7], each derived class pass its
type as parameter to its super class recursively, so that every super class knows
the exact type of the object. (see Figure 2). The idea of GCRTP was previously
evoked by Veldhuizen [20].

Static comes with a top-level class Any to make the integration of the
GCRTP easier, and a routine exact returning a pointer with the exact type
of an object, allowing static dispatch of method calls. GCRTP-based hierarchies
are known as static hierarchies. Figure 3 gives an example of such a hierarchy.
The implementation of Any is addressed in section 4.2.

// Abstractions.
template <typename Exact >
struct A : public Any <Exact > {

// Static dispatch.
void m () { exact(this)->impl_m (); }

};

template <typename Exact >
struct B : public A<Exact > {

// Static dispatch.
void n () { exact(this)->impl_n (); }

};

// Implementation.
struct C : public B<C> {

// Implementations of m() and n().
void impl_m () { /* ... */ }
void impl_n () { /* ... */ }

};

Fig. 3. An example of static hierarchy.

The paradigm relies on properties, which determine the nature of data struc-
tures of the library and to which abstractions they conform—or, in other words,
which concepts they model. The link between implementations and abstractions
can be either explicit (thanks to traditional inheritance; this approach is similar
to using a concept map in C++0x) or implicit (computed at compile time from
the properties of the structure). Section 3.3 elaborates on this subject. These
properties are expressed for each class as virtual types (see 3.3). In the follow-
ing, we call Scoop classes the types that are part of a Scoop static hierarchy.
Figure 4 shows some Scoop classes from the Olena library.

Abstraction hierarchies Scoop 2 uses classes to reify abstractions, the en-
tities which express the concepts of the library. These classes are akin to Java
interfaces, in the sense that

Semantics-Driven Genericity 11

// image_base.
// -----------
template <typename Exact > class image_base;

template <typename Exact >
struct super_trait_ < image_base <Exact > > { typedef top <Exact > ret; };

template <typename Exact >
struct vtypes < image_base <Exact > > {
private:

typedef stc_deferred(point) point_;
public:

// Virtual type ‘category ’ is used by top <Image > to
// link image_base to the right abstraction(s).
typedef stc::final < stc::is <Image > > category;
typedef stc::final <typename point_ ::grid > grid;
typedef stc::final <point_ > psite;

};

template <typename Exact >
struct image_base

// Implicit (computed) link between image_base
// and its abstraction(s).
: top <Exact > {
// ...

protected:
image_base () {};

};

// image2d.
// --------
template <typename T> class image2d;

// image2d inherits properties from image_base.
template <typename T>
struct super_trait_ < image2d <T> > { typedef image_base < image2d <T> > ret; };

template <typename T>
struct vtypes < image2d <T> > {

typedef point2d point;
typedef T value;

};

template <typename T>
class image2d : public image_base < image2d <T> > {
public:

typedef image2d <T> self;
typedef image_base <self > super;
// Import some virtual types of image2d inside
// the scope of the class.
stc_using(point);
stc_using(value);
// Implementation of Image :: operator ().
value impl_read(const point& p) const { /* ... */ }
// ...

};

Fig. 4. Some Scoop 2 (implementation) classes for the category image from the
Olena library (abridged). stc deferred and top are explained in sections 4.3
and 4.4 respectively. As for stc::is<Image>, a common way to “tag” classes
as belonging to a given a category is to set their virtual type category to
stc::is<Abs>, where Abs is their topmost abstraction. Image is an abstraction
presented in Figure 6.

12 Thierry Géraud, Roland Levillain

– their member shall be generic routines or dispatchers;
– they shall carry no data (attributes);
– they shall define no virtual type, though they can make use of them (i.e.,

use virtual types that will be defined in implementation classes).

Abstractions are passed the exact type of the class being instantiated, like
any super class in the GCRTP. Concrete types may fulfill several abstractions
(through inheritance) to model several concepts, so as to uncouple the require-
ments of various algorithms and add statically dispatched multimethods to the
library. Static multimethods were a part of Scoop 1, and are covered in [7].
Two (or several) concepts of a library can be

related through a refinement relationship The requirements of a concept
can form a superset of another one, which translates to a relation of general-
ization (inheritance) between their corresponding abstractions. For example,
a BinaryImage is a refinement of a LabelImage.

concurrent A given concrete class can logically model one of several concurrent
concepts, because they are from the same domain (implying their correspond-
ing abstractions belong to the same hierarchy). For instance, ColorImage and
GrayLevelImage are concurrent abstractions.

orthogonal They express unrelated requirements (their abstractions belong to
different hierarchies). As an example, Image2D and ColorImage are orthogo-
nal abstractions.

The abstractions of our library are thus organized as orthogonal hierarchies
(see Figure 5). Figure 6 gives an example of abstractions corresponding to the
Scoop classes of Figure 4.

Hierarchy 1 (color)

LabelImage

BinaryImage CharImage

ColorImage

⊥

Hierarchy 2 (dimension)

Image2D Image3D

Image

Fig. 5. An example of hierarchies of abstractions. Abstractions belonging to
category image are all sub-abstractions of Image. Abstraction BinaryImage is a
refinement of LabelImage. Though this is not enforced by any language construct,
abstractions LabelImage (and its sub-abstractions) are semantically concurrent
with ColorImage , as they are part of the same (logical) hierarchy. Likewise,
abstractions of hierarchy 1 are orthogonal to abstractions of hierarchy 2.

Semantics-Driven Genericity 13

// Abstractions.
// -------------
template <typename Exact >
struct Image : public virtual Any <Exact > {

stc_typename(grid); // Type of grid.
stc_typename(point); // Type of point.
stc_typename(psite); // Type of point site.
stc_typename(value); // Type of value.
// Return the value at site P.
value operator ()(const psite& p) const {

return exact(this)->impl_read(p);
};
// ...

protected:
Image() {};

};

// Abstraction sub -hierarchy for value kind.
// ---
template <typename Exact >
struct LabelImage : public virtual Image <Exact > { /* ... */ };

template <typename Exact >
struct BinaryImage : public LabelImage <Exact > { /* ... */ };

template <typename Exact >
struct StringImage : public LabelImage <Exact > { /* ... */ };

template <typename Exact >
struct ColorImage : public virtual Image <Exact > { /* ... */ };

template <typename Exact >
struct DataImage : public virtual Image <Exact > { /* ... */ };

// Abstraction sub -hierarchy for dimension.
// ---
template <typename Exact >
struct Image1D : public virtual Image <Exact > { /* ... */ };

template <typename Exact >
struct Image2D : public virtual Image <Exact > { /* ... */ };

template <typename Exact >
struct Image3D : public virtual Image <Exact > { /* ... */ };

// Other abstraction sub -hierarchies
// ...

Fig. 6. Some abstractions for the category image from the Olena library
(abridged). Note that there are no virtual type definition here, only uses of
them.

14 Thierry Géraud, Roland Levillain

Link between implementation and abstraction(s) Linking an implemen-
tation class to its abstraction(s) can either be explicit (manifest) or implicit
(computed from the properties of the exact type of this class).

Explicit link In this case the link is an inheritance relationship between the
implementation and the abstractions corresponding to the modeled concepts.
As this type of link is explicitly written by the implementer, it is said to be
“hard”. It cannot be changed afterwards (other than by altering the definition
of the implementation), which might break the extensibility of the library with
respect to the abstractions and the type transformations that might be applied
to the class.

Implicit link One of the new features of Scoop 2 is the ability to express the link
between an implementation class of a given category and its abstractions as rules
on the properties of this class, called selectors. For instance, a class ima from the
category image whose properties contains a virtual type grid (type of grid) set to
grid2d, shall inherit from the abstraction Image2D. In addition, if this class has
two virtual types psite (type of point site) and point (type of point) having
the same value (point2d), ima shall inherit from PointWiseAccessibleImage2D
instead, which refines both the concepts Image2D and PointWiseAccessibleImage.

Stc-Is-A(source, target, abstraction)
1 val← Find(source, target)
2 return Mlc-Is-A(val, abstraction)

Image-Value-Kind-Selector(source)
1 switch
2 case Oln-Is-Binary(Find(source,value)) : return BinaryImage
3 case Oln-Is-String(Find(source,value)) : return StringImage
4 case Oln-Is-Label(Find(source,value)) : return LabelImage
5 case Oln-Is-Color(Find(source,value)) : return ColorImage
6 case default : return DataImage

Image-Dimension-Selector(source)
1 switch
2 case Stc-Is-A(source,grid, Grid1d) : return Image1D
3 case Stc-Is-A(source,grid, Grid2d) : return Image2D
4 case Stc-Is-A(source,grid, Grid3d) : return Image3D

Algorithm 1: A selector used in the Olena library for the category image,
written as pseudo-algorithm. The C++ template metaprogramming version is
given in Figure 7. The algorithm Find is detailed in section 4.3. Mlc-Is-A is
a metaprogramming algorithm provided by Metalic, while Oln-Is-Binary,
Oln-Is-String, Oln-Is-Label and Oln-Is-Color are provided by Olena.

Semantics-Driven Genericity 15

Static provides a means to express this semantics-driven (or property-based)
inheritance. The system is based on a declarative mechanism using Metalic’s
meta-switches on types. For each orthogonal trait of a category in the library
(e.g., for a category image: image dimension, kind of value held by pixels), the
Designer writes cases as specializations of the meta-case statement. As Met-
alic’s case statements are numbered template specializations, Architects of
the library or Providers of algorithms can extend the set of selectors non-
intrusively by supplying additional cases, (though the order of the cases cannot
be changed in the current implementation). Some rules linking the implemen-
tations of Figure 4 to the abstractions of Figure 6 are given in Algorithm 1.
Figure 7 shows the C++ implementation of the corresponding selector.

Contrary to the concept-based approach which relies on where-clauses and
either structural conformance or explicit modeling rules (through concept maps)
[13], the Scoop 2 approach uses a property-based template metaprogramming
algorithm to express the rules linking implementations to abstractions. This
feature allows the library Designer to write generic types based on other types
of the library (modifiers, which we also call morphers), while considering their
intrinsic specificity (see 3.3). At the present time this approach seems intractable
using solely C++0x’s concepts. The mechanism is explained in section 4.4.

Virtual Types The cornerstone of our proposal is the use of virtual types to
express properties. Semantically, a virtual type of a Scoop class plays the role
of a polymorphic associated type of this class (or a virtual typedef in the C++

terminology). A virtual type is a type declaration or definition whose “value” is
an actual C++ type. Like virtual member functions, virtual types are inherited
and can be overridden in derived classes. Such redefinitions applies to the super
classes, like polymorphic methods in the Inclusion Paradigm; that is, the value
of a virtual type is always computed from the exact type.

A virtual type can be set Abstract in a class, i.e. declared with no definition;
it might be then redefined in subclasses to be given an actual “value”. Using a
Scoop class having at least one abstract virtual type is considered invalid in the
Scoop 2 paradigm. While Static cannot automatically enforce this check when
instantiating the type, it provides some equipment macros to check the soundness
of instantiated classes afterwards. Otherwise, (previously unchecked) invalid uses
are caught the first time the abstract virtual type is used (see the algorithms
Find and Check in section 4.3). A virtual type can also be tagged Final, with
the same meaning as its homonym in the Java programming language, i.e. to
forbid redefinitions of this virtual type in subclasses.

Virtual types are used to define associated types like traits in most C++

generic libraries. Generic algorithms make use of these virtual types to abstract
and generalize their definition ensuring maximum reusability [27]. Defining vir-
tual types is very similar to defining traits, although Scoop 2 cannot just rely
on traits to use virtual types. It require metaprogramming algorithms to handle
specific features like virtual type inheritance, Abstract, Final and delegation
(see 3.3). The implementation of virtual types is discussed in section 4.3.

16 Thierry Géraud, Roland Levillain

// Selector #1: value kind.
typedef selector <Image , 1> Image_value_kind;

template <typename Exact >
struct case_ < Image_value_kind , Exact , 1 >

: where_ < value ::is_binary <stc_get_type(value)> > {
typedef BinaryImage <Exact > ret;

};
template <typename Exact >
struct case_ < Image_value_kind , Exact , 2 >

: where_ < value ::is_string <stc_get_type(value)> > {
typedef StringImage <Exact > ret;

};
template <typename Exact >
struct case_ < Image_value_kind , Exact , 3 >

: where_ < value ::is_label <stc_get_type(value)> > {
typedef LabelImage <Exact > ret;

};
template <typename Exact >
struct case_ < Image_value_kind , Exact , 4 >

: where_ < value ::is_color <stc_get_type(value)> > {
typedef ColorImage <Exact > ret;

};
template <typename Exact >
struct default_case_ < Image_value_kind , Exact > {

typedef DataImage <Exact > ret;
};

// Selector #2: image dimension.
typedef selector <Image , 2> Image_dimension;

template <typename Exact >
struct case_ < Image_dimension , Exact , 1 >

: where_ < stc_is_a(grid , Grid_1D) > {
typedef Image1D <Exact > ret;

};
template <typename Exact >
struct case_ < Image_dimension , Exact , 2 >

: where_ < stc_is_a(grid , Grid_2D) > {
typedef Image2D <Exact > ret;

};
template <typename Exact >
struct case_ < Image_dimension , Exact , 3 >

: where_ < stc_is_a(grid , Grid_3D) > {
typedef Image3D <Exact > ret;

};

// Other selectors.
// ...

Fig. 7. A selector from the Olena library (C++ template metaprograms).
stc is a relies on a Metalic algorithm to test the is-a relationship (see also
Algorithm 1).

Semantics-Driven Genericity 17

Delegation Scoop 2 features a delegation mechanism allowing any concrete
instance of a static hierarchy to declare another object as being its delegatee (the
former object becoming then a delegator to the latter). For practical purposes,
the delegator holds a reference to its delegatee.

The virtual type delegatee, when defined for a type T (e.g., set to type D),
alters the behavior of Static. In fact, T may use information from zero, one or
two of these branches:

– the inheritance branch, possibly defined by the super relationship ;
– the delegation branch, defined by the delegatee virtual type.

Thus, in addition to the virtual types of its (possible) super class, T inherits
from the virtual types of D by default. In case of conflict (i.e., a virtual type
defined in both branches), the inheritance supersedes the definition of the dele-
gatee. Moreover, if T and D are linked to their abstractions thanks to Static’s
implicit link mechanism (see 3.3), T’s abstractions can be selected according to
D’s properties, if the category they belong to defines rules based on virtual types
defined by D and retrieved by T. Consequently, the paradigm can let T collect all
or some of D’s abstractions, or even model concepts computed from D’s proper-
ties. Hence, the delegation mechanism allows a type to acquire interfaces, using
the properties of the delegatee.

Scoop 2 also allows a class to retrieve the implementation corresponding
to these interfaces. The guidelines of a Scoop 2-based library require Ar-
chitects of the library to have each abstraction A derive from the special
type automatic::get impl<A, Exact> (Exact being the exact concrete type
of the class), provided by Static. By specializing another Static template,
automatic::set impl, Architects can provide implementations for each meth-
od of the abstraction A, e.g. passing on the call to the delegatee. This way,
Scoop 2 allows library Designers to fully write real type transformations, not
relying on direct inheritance, but on the properties of the transformed type.
Instances of such implementation classes performing transformations are called
morphers in the paradigm, while non-morpher implementation classes are called
basic types. Morphers offer a new vision of the generic programming paradigm
called semantics-driven genericity. These generic, composable and lightweight
objects built on one or several images, are useful in a wide range of situations.
For example, they can be used to implement:

mixins A morpher can add extra data (e.g. a neighborhood) or operations (e.g.,
an ordering on the values) to an image;

adapters E.g., a slice morpher can be used to view a slice of a 3-D image
(spacemap) as a 2-D image (bitmap);

modifiers a morpher can add a mask to an image, to restrict its (iterable)
domain;

lazy function applications A morpher can present an image seen through a
function, either bijective or not;

More generally, morphers can be used to build three kinds of services.

18 Thierry Géraud, Roland Levillain

extrusive equipment Changing the behavior of a generic algorithm non in-
trusively is a feature often wanted. Such a variation can be a logging fa-
cility tracing the execution of an algorithm, or an attached Graphical User
Interface (GUI) display depicting the evolution of an image processing. An
intrusive approach implies adding extra code in existing algorithms to han-
dle the variations or maintain several versions of these algorithms, which
is error-prone and tedious. Morphers provide an elegant, non intrusive solu-
tion: instead of altering the algorithms, one can decorate input data with the
needed equipment, using a morpher. When the algorithms manipulate this
new type, they trigger the expected additional actions (logging, updating a
GUI, etc.).

lightweight replacements These are data types constructed over existing ones,
saving the creation and copy of temporary variables, resulting in a gain of
time and space. For instance, applying a generic algorithm only to the red
channel of a color red-green-blue (RGB) image usually requires the creation
and manipulation of an object duplicating the data of the red channel, and
storing back the result of the algorithm in the original RGB image. Instead,
one can use a morpher to create a lightweight (read-write) view on the RGB
image presenting only the red channel information. The algorithm can then
be applied seamlessly, as this new type presents an interfaces similar to the
morphed image. This “adaptation” introduces very little, or even no run time
cost, thanks to compiler optimizations such as inlining; and no duplication
of initial data. Such types are named replacements as they do not appear as
new data types to practitioners.

actual data (new types) As opposed to the previous item, morphers can be
used to implement new types, built on existing types. An image region is
such a type: it behaves as an images, and yet it requires an image object
to be defined. Combined with the topological definition of a region, one can
write an image region morpher from an existing image.

Figure 8 shows an example of a morpher. Beforehand we must equip the
abstraction Image so as to retrieve implementations if needed (which is the case
when the implementation is a morpher class).

template <typename Exact >

struct Image : public virtual Any <Exact >,

public automatic ::get_impl <Image , Exact >

Then we shall give the implementation in question, which is just a set of dele-
gations to the morphed class in the case of identity-based morphers (i.e., whose
default behavior is to copy the interfaces and implementations).

// Morpher kind tag.

namespace behavior { struct identity; }

// Automatically -retrieved implementation.

namespace automatic {

template <typename Exact >

struct set_impl <Image , behavior ::identity , Exact >

: public virtual Any <Exact >

Semantics-Driven Genericity 19

{

stc_typename(psite);

stc_typename(value);

// Delegate the call.

value impl_read(const psite& p)

{

return exact(this)->image ()(p);

}

// ...

};

}

Last, we can write the morpher, and use it like any other basic type.
image2d <bool > ima1;

casted_image < image2d <bool >, int > ima2 (ima1);

// ima2 has the interface of Image2D (among others).

bool b = ima2 (point2d (42, 51));

unsigned size = bbox_size (ima2);

Stopping the delegation When a virtual type, either defined in T or inherited
from its super class, is set to Not Delegated, the delegation branch is ignored
for the resolution of this virtual type. This feature is useful from the software
engineering point of view, when subclassing a base class for a kind of morpher,
to force Providers of algorithms to define the virtual types that should be
retrieved automatically from the delegator semantically.

For example, consider a basic library type class image2d<Value>, used to
store a 2-dimensional image (with actual data in memory); and an abstract mor-
pher template class value morpher<Image>, having a delegatee of type Image.
Types from the category image must define a virtual type value, which is per-
fectly defined for image2d<Value>, and is Value. However, this virtual type is
set to Not Delegated for value morpher<Image>. Indeed, as this class serves
to factor the development of morphers altering the values of an image (also called
value-wise transformations), its subclasses shall define a valid virtual type value,
and not use the value type of the morphed type (i.e., the delegatee) automat-
ically. Now, let us imagine that a Provider wants to implement a concrete
casted image<Image, TargetValue> morpher, whose purpose is to present an
image of type Image as a (read-only) image having values of type TargetValue.
Thus, casted image<image2d<int>, float> would be a lazy transformation
of an image of ints to an image of floats (no data is allocated, nor modified:
an instance of this class is just a function of its delegatee image2d<int>). If
this Provider forgets to give the virtual type value of casted image<Image,
NewValue> a valid definition (presumably, NewValue), Static’s equipment will
trigger an error at compile-time.

3.4 Algorithms

Following the classical generic programming (gp) paradigm, Scoop 2 expresses
algorithms as function templates, not as methods. However, methods are used

20 Thierry Géraud, Roland Levillain

// value_morpher.
// --------------
// Base class for morphers altering values.
template <typename Exact > class value_morpher;

template <typename Exact >
struct super_trait_ < value_morpher <Exact > > { typedef image_base <Exact > ret; };

template <typename Exact >
struct vtypes < value_morpher <Exact > > {

// This behavior makes subclasses of value_morpher
// retrieve methods from their delegatee by default.
typedef stc::final < behavior :: identity > behavior;
// This virtual type must be defined in subclasses.
typedef stc:: not_delegated value;

};

template <typename Exact >
class value_morpher : public image_base <Exact > {

typedef image_base <Exact > super;
public:

stc_typename(delegatee);
protected:

value_morpher () {};
};

// casted_image.
// -------------
template <typename I, typename U> class casted_image;

// casted_image gets properties from value_morpher ...
template <typename I, typename U>
struct super_trait_ < casted_image <I, U> >
{ typedef value_morpher < casted_image <I, U> > ret; };

template <typename I, typename U>
struct vtypes < casted_image <I, U> > {

//...and from its delegatee.
typedef I delegatee;
// Redefine virtual types.
typedef typename I:: point point;
typedef U value;

};

template <typename I, typename U>
class casted_image

: public value_morpher < casted_image <I, U> > {
public:

typedef casted_image <I, U> self;
typedef value_morpher <self > super;
stc_using(point);
stc_using(value);
stc_using(delegatee);
casted_image(Image <I>& image)

: image_ (*exact (&image)) {}
value impl_read(const point& p) const {

// Casted to the new value type (U).
return image_(p);

}
protected:

I& image_;
};

Fig. 8. An example of morpher.

Semantics-Driven Genericity 21

for non-generic routines attached to objects and to access to internal data of
objects. Generic algorithms benefit from the same traits of Scoop 1: abstraction-
based constraints on inputs, covariant arguments, polymorphic associated types
(typedefs), statically-dispatched multimethods. We do not discuss much of the
subject because this paper focuses on the data structure aspect, and most of its
contents is covered in [7]. Figure 9 gives a small example of abstraction-based
overloading.

// Compute the number of points of an image.
template <typename I>
unsigned npoints (const Image <I>& input) {

// Slow version iterating over all the points.
// ...

}
// Specialized version for Image2D.
template <typename I>
unsigned npoints (const Image2D <I>& input) {

// Fast version computing the result directly.
return input.nrows () * input.ncols ();

}

Fig. 9. An example of abstraction-based overloading.

4 Introducing Static

This section presents Static, a component to build libraries using the Scoop 2
paradigm. For space reasons, we try to provide as much insight as possible, but
the article cannot cover all the details of the implementation. For instance, some
metaprogramming algorithms are given in a synthetic form, in place of the longer
and complex original C++ template code1.

4.1 Equipment

To use static within a library, one must equip a namespace with some types and
functions. This prevent the mechanism from polluting the global namespace. In
this namespace, the library Designer can declare new virtual types to be used
as properties of Scoop 2 classes.

// Macros.

#include <stc/scoop.hh >

namespace my {

// Equip with types and functions.

#include <stc/scoop.hxx >

// Declare the virtual types used in this context.

1 Interested readers may want to consult the original code at http://trac.lrde.org/
olena/wiki/Static.

http://trac.lrde.org/olena/wiki/Static
http://trac.lrde.org/olena/wiki/Static

22 Thierry Géraud, Roland Levillain

mlc_decl_typedef(grid);

// ...

}

mlc decl typedef uses a technique similar to the typedef introspection tech-
nique from [28].

4.2 Static hierarchies

Static provides a class Any to make the construction and use of static hierarchies
easier. The top-most classes of the hierarchies of the library shall inherit from
Any, so that the exact type is available through the exact function.

template <typename Exact > struct Any {};

template <typename Exact > Exact* exact(Any <Exact >* ref)

{ return (Exact *)(void*)ref; }

This is admittedly the most intrusive point in using Static within a library,
as the C++ language does not allow to add super classes a posteriori. Thus,
the equipment of existing libraries might be tedious and require wrapping the
existing classes.

4.3 Virtual types

Virtual types for the type T are defined as a specialization of the class vtypes<T>,
defined in the stc/scoop.hxx equipment.

struct point2d;

template <> struct vtypes <point2d > {

typedef mlc::uint_ <2> dim;

typedef int coord;

typedef grid2d grid;

};

Semantically, a class inherits from the virtual types of its super class, but
this inheritance is implicit: the user needs not mention it, since this task is
taken care of by Static’s virtual type look-up algorithm (see Algorithm 2).
To make the recursive retrieval of virtual types possible, Static cannot simply
rely on the C++ inheritance relationship. The language doesn’t provide any
means to actually retrieve the type of a super class. Hence, Static needs the
author to inform a special traits to keep this information, super traits . This
relationship shall not mirror the C++ inheritance exactly: it shall be limited to
implementation classes, as they are the only classes defining properties. A class
having no implementation super class must inherit from the special type None
(mlc::none).

template <>

struct super_trait_ <point2d > { typedef mlc::none ret; };

Semantics-Driven Genericity 23

Virtual types can take any “value” (i.e. C++ type, defined by the language or
the user). However, Static uses some special values (the C++ names are given
in parenthesis).

Abstract (stc::abstract) Used to declare an abstract virtual type.
Final(val) (stc::final<val>) Final is a qualifier that does not change the

value of the virtual type defined, but prevents any subclass or delegator to
redefine the virtual type.

Not Delegated (stc::not delegated) Prevents the lookup algorithm from
using the delegation branch to retrieve a virtual type; only the inheritance
branch will be used.

Virtual types are domain-related; their meanings have no impact on Static,
except delegatee (delegatee). This special virtual type is used to attach a del-
egation branch to a given class and its subclasses (see 3.3). The retrieving of the
virtual type T from class C uses the lookup algorithm Find. If no error occurred
during the lookup (e.g., due to a erroneously-designed hierarchy) Find(C, T) re-
turns the “value” of the virtual type if found, Not Found (mlc::not found)
otherwise. Algorithm 2 shows Find as a pseudo-algorithm. The translation to
the corresponding C++ metaprogram is immediate.

Find makes use of several routines and values. The ones that are not defined
in Algorithm 2 are described hereinafter.

Super(type) (super traits <type>::ret) This function returns the super class
of type.

None (mlc::none) The value returned by a class having no super class (in the
Static acceptation).

Find(source, target) (find<source, target>::ret) Recursively look for the
value of the virtual type target for class source. The virtual type is searched
in the inheritance branch as well as in the delegation branch (if it exists).
Find expects a virtual type to have a concrete definition. If the virtual type
lookup ends up with Abstract, Find triggers a compile-time error.

Find-Local(source, target)
(find local<source, target>::ret) Query the class source for the value
of the virtual type target directly, using vtypes. This algorithm is used by
Find.

Not Found(mlc::not found The value returned by Find when a virtual type
is not found.

In addition to Find, Static proposes a Check algorithm performing addi-
tional checks not directly required by the lookup task (see Algorithm 3).

Macros As Static is almost only composed of template types, we wrote several
macros to serve as syntactic sugar. This section explains the meaning of each
macro used in the paper.

stc typename and stc using are just shortcuts to equip classes: they re-
spectively inject a virtual type in the scope of the current class and retrieve a
virtual type from a super class.

24 Thierry Géraud, Roland Levillain

Find(source, target)
1 if source = delegatee
2 then return Superior-Find(source, target)
3 (where, res)← First-Stm(source, target)
4 switch
5 case res = Not Found :
6 return Delegator-Find(source, target)
7 case res = Abstract :
8 res delegator ← Delegator-Find(source, target)
9 if res delegator = Not Found

10 then error “target is abstract.”
11 case res = Not Delegated :
12 return Superior-Find(source, target)
13 case default : return res

Delegator-Find(source, target)
1 deleg ← Superior-Find(source,delegatee)
2 if Superior-Find(source,delegatee) = Not Found
3 then return Not Found
4 else return Find(deleg, target)

Superior-Find(source, target, current = source)
1 if current = None
2 then return Not Found
3 stm← Find-Local(current, target)
4 switch
5 case stm = Abstract :
6 error “target is abstract”
7 case stm = Not Found or stm = Not Delegated :
8 sup← Super(current)
9 return Superior-Find(source, target, sup)

10 case stm = Final(val) :
11 return val
12 case default : return stm

First-Stm(source, target)
1 if source = None
2 then return (None,Not Found)
3 stm← Find-Local(source, target)
4 switch
5 case stm = Not Found :
6 return First-Stm(Super(source), target)
7 case stm = Final(val) :
8 return (source, val)
9 case default : return (source, stm)

Find-Local(source, target) locally queries the source class for the virtual type
target. If the set of virtual types attached to source (i.e., vtypes<source>) has a
definition for target, this “value” is returned, otherwise Not Found is returned.

Algorithm 2: Virtual type lookup.

Semantics-Driven Genericity 25

Check(source, target)
1 if source = None
2 then return — Stop condition.
3 stm← Find-Local(source, target)
4 sup← Super(source)
5 switch
6 case stm = Abstract :
7 orig ← (source,Abstract)
8 Check-No-Stm-Defined(orig, sup, target)
9 case stm = Final(val) :

10 Check-Final-Stm(val)
11 orig ← (source, val)
12 Check-No-Final-Defined(orig, sup, target)
13 case stm = Not Delegated :
14 orig ← (source,Not Delegated)
15 Check-No-Final-Defined(orig, sup, target)
16 case stm = Not Found :
17 — Nothing.
18 case default :
19 orig ← (source, stm)
20 Check-No-Final-Defined(orig, sup, target)
21
22 return Check(sup, target)

Check-No-Stm-Defined(orig, source, target)
1 if source = None
2 then return — Stop condition.
3 stm← Local-Find(source, target)
4 if stm← Not Found
5 then error “target re-declared abstract in orig.”
6 else sup← Super(source)
7 Check-No-Stm-Defined(orig, sup, target)

Check-Final-Stm(source, target, stm)
1 if stm = Abstract
2 or stm = Final(val)
3 or stm = Not Delegated
4 or stm = Not Found
5 then error “Ill-formed final vtype.”

Check-No-Final-Defined(orig, source, target)
1 if source = None
2 then return — Stop condition.
3 stm← Local-Find(source, target)
4 if stm = Final(val)
5 then error “Final vtype target redefined in orig.”
6 else Check-No-Final-Defined(orig,Super(source), target)

Algorithm 3: Additional type-checking rules.

26 Thierry Géraud, Roland Levillain

define stc_typename(T) typedef stc_type(Exact , T) T

define stc_using(T) typedef typename super::T T

stc type (source, target) and stc deferred (source, target) are macros
performing the same task: they call the template metaprogramming algorithm
Find and expand as the result of the lookup. However, the former also calls the
Check algorithm (Algorithm 3) to ensure the rules given above are followed.
Because of the recursive nature of the approach, we cannot always perform all
checks on virtual types (C++ compilers consider types coming across their own
definition through successive type instantiations as empty, which would break
our algorithms). Hence we use stc deferred in problematic cases (virtual type
definitions, for instance).

4.4 Extensible inheritance

Scoop 2 features an extensible inheritance mechanism used to link the top
classes of implementation hierarchies to the right abstractions. The entry point
of this system is the class top<Exact>, which recursively inherits from the results
of the static switch statements (selectors) tagged internal::selector<Exact,
n>, where n covers the first values of N∗. The technique used is similar to gen-
erating scattered hierarchies (GenScatterHierachy) exposed in [23].

5 Related Work

Many generic programming techniques have been invented to develop C++ li-
braries. First of all, traits [29] have been widely used to attach properties and
associated types to generic types, notably within the Standard Template Library
[2].

The idea of adding and checking constraints on the parameters of C++ tem-
plates with respect to a given contract (structural conformance, name confor-
mance) is not new, and has led the way to the current work on future C++0x
concepts [13]. McNamara and Smaragdakis have proposed a solution based on
static interfaces [30]. Siek and Lumsdaine have formalized the principle of con-
cept checking [16] within the Boost Concept Check Library (BCCL). Building
on similar metaprogramming techniques, a new form of concept-based polymor-
phism can be obtained [17]. One of the advantages of these solutions is that they
require no language extension, and can therefore be applied under the form of
portable libraries with C++ compilers conforming to the 2003 ISO/IEC stan-
dard. Many of them will be superseded by the use of reified concept features in
the forthcoming C++ standard.

As a matter of fact, several of these techniques are used within the Olena
project: traits serve to define properties (although querying their value requires a
non-trivial metaprogramming algorithm); Static interfaces and concept-checking
are part of Scoop 2 thanks to the Generalized Curiously Recurring Template
Pattern.

Semantics-Driven Genericity 27

Static introspection is a technique implemented in Metalic and used by
Static to retrieve properties. Zólyomi and Porkoláb have described a framework
providing these services (among others) as part of a C++ library [28].

Last, the extensible inheritance in Static is based on a technique similar
to the typelists described by Alexandrescu in [23] and which has proved to be
useful to design recursively-defined class hierarchies [31].

Several existing libraries have proposed solutions to express type transfor-
mations [2,32,6]. However, all these approaches create types whose interfaces are
limited to a known abstraction, and do not handle the specificity of the original
type if it conformed to a subabstraction.

6 Conclusion

We have presented an extended generic programming paradigm (Scoop 2), al-
lowing library designers to express generic type transformations called morphers.
The paradigm relies on the presence of semantically-enhanced data types thanks
to properties expressed as virtual types in implementation classes. These prop-
erties are used to connect concrete classes to the abstractions they model. As
abstractions are expressed as actual C++ classes, they can provide implementa-
tions as well, based on the nature of the object, thanks to a delegation mechanism
which is part of the paradigm.

Scoop 2 is intended for designers of new libraries; it might not be easy to
adapt to existing libraries, though the task can be achieved by wrapping existing
classes. Indeed, we have successfully applied this approach on a small subset of
the standard C++ library.

We provide a software component to help users design their libraries using
Scoop 2 and reify idioms of the paradigm, Static. This component has been
conceived in the context of the Olena project. We are working on providing
syntactic sugar for the constructs of the paradigm using a language masking
the verbosity of the C++ templates; however, we don’t want to make this extra
language mandatory, and we will keep Static as a pure C++ project, since
library-based language extensions are generally less costly and more sustainable
than domain-specific languages [33].

We ran our tests using the GNU C++ Compiler (GCC) version 4.1 on Debian
GNU/Linux, and we are working on porting Static to other configurations,
notably using the Intel C++ Compiler (ICC). The paradigm itself is expressed
solely using C++03 constructs. We have conducted some experiments with the
ConceptGCC compiler [34] to check whether Scoop 2 can benefit from C++0x
new features, but the compiler did not properly support mixing inheritance and
where-clauses at that time.

Acknowledgments

We thank Alexandre Duret-Lutz, Olivier Gaça, Maxime van Noppen, Benôıt
Sigoure and Didier Verna for their proofreading and comments.

28 Thierry Géraud, Roland Levillain

References

1. ISO/IEC: ISO/IEC 14882:2003 (e). Programming languages — C++ (2003)

2. Stepanov, A., Lee, M., Musser, D.: The C++ Standard Template Library. Prentice-
Hall (2000)

3. Project, T.B.: Boost C++ libraries. http://www.boost.org/ (2008)

4. Siek, J.G., Lumsdaine, A.: The Matrix Template Library: A generic programming
approach to high performance numerical linear algebra. In: International Sympo-
sium on Computing in Object-Oriented Parallel Environments. Number 1505 in
Lecture Notes in Computer Science (1998) 59–70

5. The Cgal Project: Cgal, Computational Geometry Algorithms Library (2008)
http://www.cgal.org.

6. Abrahams, D., Siek, J.G.: Policy adaptors and the Boost Iterator Adaptor Library.
In: Second Workshop on C++ Template Programming. (October 2001)

7. Burrus, N., Duret-Lutz, A., Géraud, Th., Lesage, D., Poss, R.: A static C++
object-oriented programming (SCOOP) paradigm mixing benefits of traditional
OOP and generic programming. In: Proceedings of the Workshop on Multiple
Paradigm with Object-Oriented Languages (MPOOL), Anaheim, CA, USA (Oc-
tober 2003)

8. Duret-Lutz, A.: Olena: a component-based platform for image processing, mix-
ing generic, generative and OO programming. In: Proceedings of the 2nd Inter-
national Symposium on Generative and Component-Based Software Engineering
(GCSE)—Young Researchers Workshop; published in “Net.ObjectDays2000”, Er-
furt, Germany (October 2000) 653–659

9. Géraud, Th.: Advanced static object-oriented programming features: A sequel to
SCOOP. http://www.lrde.epita.fr/people/theo/pub/olena/olena-06-jan.

pdf (January 2006)

10. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson. Theo-
retical Computer Science 328 (November 2004) 77–96

11. Claveirole, Th., Lombardy, S., O’Connor, S., Pouchet, L.N., Sakarovitch, J.: Inside
Vaucanson. In Springer-Verlag, ed.: Proceedings of Implementation and Applica-
tion of Automata, 10th International Conference (CIAA). Volume 3845 of Lecture
Notes in Computer Science Series., Sophia Antipolis, France (June 2005) 117–128

12. Siek, J.G., Lee, L.Q., Lumsdaine, A.: The Boost Graph Library: User Guide and
Reference Manual. 1st edn. C++ In-Depth Series. Addison Wesley Professional
(December 2001)

13. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Con-
cepts: Linguistic support for generic programming in C++. In: Proceedings of
the 2006 ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), ACM Press (October 2006) 291–310

14. Garcia, R., Järvi, J., Lumsdaine, A., Siek, J.G., Willcock, J.: A comparative study
of language support for generic programming. In: Proceedings of the 18th annual
ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
And Applications (OOPSLA), New York, NY, USA, ACM Press (2003) 115–134

15. Järvi, J., Gregor, D., Willcock, J., Lumsdaine, A., Siek, J.: Algorithm specialization
in generic programming: challenges of constrained generics in C++. In: Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Ottawa, Ontario, Canada, ACM Press (June 2006) 272–
282

http://www.boost.org/
http://www.cgal.org
http://www.lrde.epita.fr/people/theo/pub/olena/olena-06-jan.pdf
http://www.lrde.epita.fr/people/theo/pub/olena/olena-06-jan.pdf

Semantics-Driven Genericity 29

16. Siek, J., Lumsdaine, A.: Concept checking: Binding parametric polymorphism in
C++. In: Proceedings of the First Workshop on C++ Template Programming,
Erfurt, Germany (October 2000)

17. Järvi, J., Willcock, J., Lumsdaine, A.: Concept-controlled polymorphism. In Pfen-
nig, F., Smaragdakis, Y., eds.: Generative Programming and Component Engineer-
ing (GPCE). Volume 2830 of LNCS., Erfurt, Germany, Springer-Verlag (September
2003) 228–244

18. Coplien, J. In: A Curiously Recurring Template Pattern. In [35].
19. Chiba, S.: A metaobject protocol for C++. In: ACM Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA). SIG-
PLAN Notices 30(10), Austin, Texas, USA (October 1995) 285–299

20. Veldhuizen, T.L.: Techniques for scientific C++. Technical Report 542, Indiana
University Department of Computer Science (August 1999)

21. EPITA Research and Developpement Laboratory (LRDE): The Olena image pro-
cessing library. http://olena.lrde.epita.fr (2003)

22. EPITA Research and Developpement Laboratory (LRDE): A prototype using
SCOOP 2 and the C++ standard library. https://trac.lrde.org/olena/wiki/

SCOOP/MiniStd (2007)
23. Alexandrescu, A.: Modern C++ Design: Generic Programming and Design Pat-

terns Applied. Addison-Wesley (2001)
24. Gurtovoy, A., Abrahams, D.: The Boost MPL library. http://www.boost.org/

libs/mpl/doc/index.html (2004)
25. David Abrahams, A.G.: C++ Template Metaprogramming: Concepts, Tools, and

Techniques from Boost and Beyond. 1st edn. C++ In-Depth Series. Addison Wes-
ley Professional (December 2004)

26. Adobe: The Adobe Generic Image Library (GIL). http://opensource.adobe.

com/gil/ (2007)
27. Siek, J.G., Lumsdaine, A.: Modular generics. In: Concepts: a Linguistic Foundation

of Generic Programming, Adobe Systems (April 2004)
28. Zólyomi, I., Porkoláb, Z.: Towards a general template introspection library. In

Karsai, G., Visser, E., eds.: Generative Programming and Component Engineering
(GPCE). Volume 3286 of LNCS., Vancouver, Canada, Springer-Verlag (October
2004) 266–282

29. Myers, N.C.: Traits: a new and useful template technique. C++ Report 7(5) (June
1995) 32–35

30. McNamara, B., Smaragdakis, Y.: Static interfaces in C++. In: First Workshop on
C++ Template Programming, Erfurt, Germany. (October 10 2000)

31. Zólyomi, I., Porkoláb, Z., Kozsik, T.: An extension to the subtype relationship
in C++ implemented with template metaprogramming. In Pfenning, F., Smarag-
dakis, Y., eds.: Generative Programming and Component Engineering (GPCE).
Volume 2830 of LNCS., Erfurt, Germany, Springer-Verlag (September 2003) 209–
227

32. Weiser, M., Powell, G.: The View Template Library. In: First Workshop on C++
Template Programming, Erfurt, Germany (October 2000)

33. Stroustrup, B.: A rationale for semantically enhanced library languages. In: Pro-
ceedings of the Workshop on Library-Centric Software Design (LCSD), San Diego,
California, USA (October 2005)

34. Indiana University: ConceptGCC. http://www.generic-programming.org/

software/ConceptGCC/ (2007)
35. Lippman, S.B., ed.: C++ Gems. Cambridge Press University & Sigs Books (1998)

http://olena.lrde.epita.fr
https://trac.lrde.org/olena/wiki/SCOOP/MiniStd
https://trac.lrde.org/olena/wiki/SCOOP/MiniStd
http://www.boost.org/libs/mpl/doc/index.html
http://www.boost.org/libs/mpl/doc/index.html
http://opensource.adobe.com/gil/
http://opensource.adobe.com/gil/
http://www.generic-programming.org/software/ConceptGCC/
http://www.generic-programming.org/software/ConceptGCC/

	Semantics-Driven Genericity: A Sequel to the Static C++ Object-Oriented Programming Paradigm (SCOOP 2)
	Thierry Géraud, Roland Levillain

