
A quasi-linear algorithm to compute
the tree of shapes of nD images

Thierry Géraud1,2, Edwin Carlinet1,2, Sébastien Crozet1, and Laurent Najman2

1 EPITA Research and Development Laboratory (LRDE)
2 Université Paris-Est, LIGM, Équipe A3SI, ESIEE

firstname.lastname@lrde.epita.fr, l.najman@esiee.fr

Abstract. To compute the morphological self-dual representation of
images, namely the tree of shapes, the state-of-the-art algorithms do
not have a satisfactory time complexity. Furthermore the proposed al-
gorithms are only effective for 2D images and they are far from being
simple to implement. That is really penalizing since a self-dual represen-
tation of images is a structure that gives rise to many powerful operators
and applications, and that could be very useful for 3D images. In this
paper we propose a simple-to-write algorithm to compute the tree of
shapes; it works for nD images and has a quasi-linear complexity when
data quantization is low, typically 12 bits or less. To get that result, this
paper introduces a novel representation of images that has some amazing
properties of continuity, while remaining discrete.

1 Introduction

The tree of shapes [16] is an important morphological structure that represents
images in a self-dual way. Shortly put it can be seen as the result of merging the
pair of dual component trees, min-tree and max-tree, into a single tree. Using the
tree of shapes has many advantages. Since it is self-dual, it makes no assumption
about the contrast of objects (either light object over dark background or the
contrary). We only have one structure that represents the image contents so we
do not have to juggle with the couple of dual trees. It intrinsically eliminates the
redundancy of information contained in those trees. Last, it encodes the spatial
inclusion of connected components in gray-level images so it is complementary
to some other representations that focus on component (or region) adjacency. As
a consequence the tree of shapes is not only an easy access to self-dual operators
such as grain filters but it has many applications, as listed in [14] (pp. 15–17),
and some very recent works illustrate several powerful perspectives offered by
that tree (see [20,21,22], and their bibliography).

In the following we consider a nD digital image u as a function defined on
a regular cubical grid (precisely, u : Zn → Z), and to properly deal with some
subsets of Zn and with their complementary, we consider the dual connectivities
c2n and c3n−1. For any λ ∈ Z, the lower (strict) cuts3 and upper (large) cuts
of u are defined as [u < λ] = {x ∈ X | u(x) < λ } and [u ≥ λ] = {x ∈
3 We can indifferently use the term “cut” or “threshold”.

X | u(x) ≥ λ }. From them we deduce two sets, T<(u) and T≥(u), composed of
the connected components of respectively lower and upper cuts of u: T<(u) =
{Γ ∈ CCc2n([u < λ]) }λ and T≥(u) = {Γ ∈ CCc3n−1

([u ≥ λ]) }λ, where
CC denotes the operator that gives the set of connected components of a set.
The elements of T<(u) and T≥(u) respectively give rise to two dual trees: the
min-tree and the max-tree of u. We then define two other sets, S<(u) (set of
lower shapes) and S≥(u) (set of upper shape), as the sets of components of resp.
T<(u) and T≥(u) after having filled the cavities 4 of those components. With
the cavity-filling (or saturation) operator denoted by Sat, we have: S<(u) =
{Satc3n−1

(Γ); Γ ∈ T<(u) } and S≥(u) = { Satc2n(Γ); Γ ∈ T≥(u) }.

D

E

B
A

C

F

O

min-treemax-tree tree of shapes

3

2

0

1 A

C, D, E

O

B

F

B

A, F

C D E

O3

2

0

1 A

O

F

B C

D E
> 2 >1> 2

> 2

> 0

>1

>0

>3

Fig. 1. Three morphological trees of the same image.

The set of all shapes S(u) = S<(u) ∪ S≥(u) forms a tree, the so-called
tree of shapes of u [16]. Indeed, for any pair of shapes Γ and Γ ′ in S, we have
Γ ⊂ Γ ′ or Γ ′ ⊂ Γ or Γ ∩ Γ ′ = ∅. Actually, the shapes are the cavities of
the elements of T< and T≥. For instance, if we consider a lower component
Γ ∈ [u < λ] and a cavity H of Γ , this cavity is an upper shape, i.e., H ∈ S≥.
Furthermore, in a discrete setting, H is obtained after having filled the cavities
of a component of [u ≥ λ]. Figure 1 depicts on a sample image the three
components trees (T<, T≥, and S). Just note that the Equations so far rely on
the pair of dual connectivities, c2n and c3n−1, so discrete topological problems
are avoided, and, in addition, we are forced to consider two kind of cuts: strict
ones for c2n and large ones for c3n−1.

The state-of-the-art of tree of shapes computation (detailed in Section 5)
suffers from two major flaws: existing algorithms have a time complexity of
O(n2) and they cannot easily be extended to nD images. Briefly put, this is

4 In 2D, a cavity of a set S ∈ Ω is called a “hole”; in nD, it is a connected component
of Ω\S which is not the “exterior” of S. Browsing the elements of S in nD, with
n ≥ 3, does not allow to know whether S has a cavity or not[8].

due to the fact that either they follow shape contours or they have to know if
a component has a cavity4. This paper presents an algorithm that can compute
the tree of shapes with quasi-linear time complexity when image data are low
quantized; furthermore this algorithm straightforwardly applies to nD images.

This paper is organized as follows. First we explain that a well-known algo-
rithmic scheme can be reused to compute the tree of shapes (Section 2). Then
this paper introduces a new discrete representation of images (Section 3) that
has some properties borrowed from the continuous world. At that point we are
ready to glue together the algorithmic scheme and the novel image representation
to present a quasi-linear algorithm that compute the tree of shapes (Section 4).
Related works about that tree computation is presented so that the reader can
compare our approach to existing ones (Section 5). Last, we give a short conclu-
sion (Section 6) 5.

2 Algorithmic scheme and the need for continuity

This section shows that the max-tree algorithm presented in [2] is actually an
algorithmic “canvas” [7], that is, a kind of meta-algorithm that can be “filled
in” so that it can serve different aims. In the present paper it gives an algorithm
to compute the tree of shapes.

2.1 About union-find and component trees

An extremely simple union-find structure (attributed by Aho to McIlroy and
Morris) was shown by Tarjan [19] to be very efficient. This structure, also called
disjoint-set data structure or merge-find set, has many advantages that are de-
tailed in [3]; amongst them, memory compactedness, simplicity of use, and ver-
satility. This structure and its related algorithms are of prime importance to
handle connected operators [13,6].

Let us denote by R the ancestor relationship in trees: we have aR p iff a
is an ancestor of p. R can be encoded as an array of elements (nodes) so that
aR p ⇔ indexR(a) < indexR(p); browsing that array thus corresponds to a
downwards browsing of the tree, i.e., from root to leaves. To construct the max-
tree of a given image, we rely on a rooted tree defined by a parenthood function,
named parent , and encoded as an nD image (so parent(p) is an nD point).
When a node of the max-tree contains several points, we choose its first point

5 Due to limited place, this paper does not contain the following topics (they will
be included into an extended version of this paper). A comparison of execution
times of existing algorithms. Actually it is possible to reduce the space complexity
(i.e., memory usage) of the algorithm proposed in this paper so the shorter version
presented here is not our “competitive” version. The union-by-rank procedure that
guaranties quasi-linear complexity. So that the Union-Find routine (given in [2] and
recalled in Algorithm 1) remains short, its code does not feature tree balancing; yet
it is explained in [3]. A formal proof of our algorithm. This paper focuses on how
the proposed algorithm works and gives an insight into the reasons why it works; to
give a formal proof requires a large amount of materials, the first part of which can
be found in [17]. About high bit-depths data. That case is not detailled in this paper.

Algorithm 1: “Union-Find”-based computation of a morphological tree.

union find(R) : T
begin

for all p do
zpar(p)← undef

for i← N − 1 to 0 do
p← R[i]
parent(p)← p
zpar(p)← p
for all n ∈
N (p) such as zpar(n) 6= undef
do

r ← find root(zpar , n)
if r 6= p then

parent(r)← p
zpar(r)← p

return parent
end

find root(zpar , x) : P
begin

if zpar (x) = x then
return x

else
zpar(x)←
find root(zpar , zpar(x))
return zpar(x)

end

compute tree (u) : Pair(Array[P], T)
begin
R ← sort(u)
parent ← union find(R)
canonicalize tree(u, R, parent)
return (R, parent)

end

(with respect to R) as the representative for this node; that point is called
a component “canonical point” or a “level root”. Let Γ denote a component
corresponding to a node of the max-tree, pΓ its canonical element, and pr the root
canonical element. The parent function that we want to construct should verify
the following four properties: 1. parent(pr) = pr ; 2. ∀ p 6= pr, parent(p)R p ;
3. p is a canonical element iff p = pr ∨ u(parent(p)) 6= u(p) ; 4. ∀ p, p ∈ Γ ⇔
u(p) = u(pΓ) ∧ ∃ i, parent i(p) = pΓ (therefore ∀ p ∈ Γ, p = pΓ ∨ pΓ R p).

The routine union find, given in Algorithm 1, is the classical “union-find”
algorithm [19] but modified so that it computes the expected morphological
tree [2] while browsing pixels following R−1, i.e., from leaves to root (let us re-
call that we do not feature here the union-by-rank version). Its result is a parent
function that fulfills those first four properties. Obtaining the following extra
property, “5. ∀p, parent(p) is a canonical element,” is extremely interesting
since it ensures that the parent function, when restricted to canonical elements
only, gives a “compact” morphological tree such as the ones depicted in Fig-
ure 1. Precisely it allows to browse components while discarding their contents:
a traversal is thus limited to one element (one pixel) per component, instead of
passing through every image elements (pixels). Transforming the parent function
so that property 5 is verified can be performed by a simple post-processing of
the union-find computation. The resulting tree has now the simplest form that
we can expect; furthermore we have an isomorphism between images and their
canonical representations.

2.2 Computing the max-tree and the tree of shapes

The algorithm presented in [2] to compute the max-tree is surprisingly also able
to compute the tree of shapes. The skeleton, or canvas, of this algorithm is the

routine compute tree given in the right part of Algorithm 1; it is composed
of three steps: sort the image elements (pixels); then run the modified union-
find algorithm to compute a tree encoded by a parent function; last modify the
parent function to give that tree its canonical form.

In the case of the max-tree, the sorting step providesR encoded as an array of
points sorted by increasing gray-levels in u, i.e., such that the array indices satisfy
i < i′ ⇒ u(R[i]) ≤ u(R[i′]). When image data are low quantized, typically
12 bit data or less, then sorting points can be performed by a distribution sort
algorithm. Last, the canonicalization post-processing is a trivial 5-line routine
that the reader can find in [2]. In the case of the tree of shapes, it is also a tree
that represents an inclusion relationship between connected components of the
input image. As a consequence a first important idea to catch is that the tree of
shapes can be computed with the exact same routine, union find, as the one
used by max-tree.

2.3 What if...

The major and crucial difference between the max-tree and the tree of shapes
computations is obviously the sorting step. For the union find routine to be
able to compute the tree of shapes using R−1, the sort routine has to sort the
image elements so that R corresponds to a downward browsing of the tree of
shapes. Schematically we expect that R contains the image pixels going from
the “external” shapes to the “internal” ones (included in the former ones).

D

E

B
A

C

F

O

A, F

C D E

O

D

E

B
A

C

F

O
B

A, F

C D E

O

D

E

B
A

C

F

O

C D E

O

D

E

B
A

C

F

O

A

C D E

O

B A C D E OF

D

E

B
A

C

F

O

O

D

E

B
A

C

F

O

E

O

D

E

B
A

C

F

O

D E

O

B FC D EO A

A
C

F

O

D

E

B

A
C

F

O

D

E

B

A
C

F

O

D

E

B

F

FE

FD E

A
C

F

O

D

E

B

D

E

B
A

C

F

O

D

E

B
A

C

F

O

D

E

B
A

C

F

O

F

C

D E

F

B C

D E

A

F

B C

D E

A

O

F

B C

D E

Fig. 2. Tree computation of the max-tree (left) and of the tree of shapes (right). For
both cases, the result R of the sorting step is given over the green arrow and the tree
computation, browsing R−1, is progressively depicted.

The similarity between the computations of both trees is illustrated in Fig-
ure 2. We can see that the modified union-find algorithm correctly computes
both trees once R is properly defined. Therefore we “just” need to know how
to compute R in the case of the tree of shapes to turn the canvas given in the
previous Section 2.2 as the expected algorithm.

A

A'
B C A, A'

B C

1 1 1 1 1 1

1 1 1 1 1 1

1
1

1

1
1

1

1 1
0
0

0 0

0 3 3
3
33

Fig. 3. A sample image and its tree of shapes (left); a step towards an ad-hoc image
representation (right).

Let us consider the image depicted on the left of Figure 3 with its tree
of shapes. We can see that we need to reach the regions A and A’ before the
regions B and C in order to properly sort pixels, i.e., to compute R. It is only
possible if we can pass “between” pixels. The representation depicted on the
right of Figure 3 is well-suited for that since it contains some elements that
materialize inter-pixel spaces. Furthermore, given a two adjacent pixels with
respective values 0 and 3, the element in-between them has to bear all the
“intermediate” values: not only 1 but also 2. Indeed, if we change the value of
regions A and A’ from 1 to 2, the tree structure is unchanged but inter-pixel
elements between regions B and C have now to make A and A’ connect with
value 2. Eventually we need an image representation that is “continuous” in
some way with respect to both the domain space and the value space.

3 Image representation

To be able to sort the image pixels so that R corresponds to a top-down brows-
ing of tree of shapes elements, this paper introduces a novel representation of
images6. It relies on a couple of theoretical tools briefly described hereafter7.

3.1 Cellular complex and Khalimsky grid

From the sets H1
0 = {{a}; a ∈ Z} and H1

1 = {{a, a + 1}; a ∈ Z}, we can
define H1 = H1

0 ∪ H1
1 and the set Hn as the n-ary Cartesian power of H1.

If an element h ⊂ Zn is the Cartesian product of d elements of H1
1 and n − d

elements of H1
0 , we say that h is a d-face of Hn and that d is the dimension of

h. The set of all faces, Hn, is called the nD space of cubical complexes. Figure 4
depicts a set of faces {f, g, h} ⊂ H2 where f = {0}×{1}, g = {0, 1}×{0, 1}, and
h = {1}×{0, 1}; the dimension of those faces are respectively 0, 2, and 1. Let us
write h↑ = {h′ ∈ Hn |h ⊆ h′} and h↓ = {h′ ∈ Hn |h′ ⊆ h}. The pair (Hn,⊆)
forms a poset and the set U = {U ⊆ Hn | ∀h ∈ U, h↑ ⊆ U} is a T0-Alexandroff
topology on Hn. With E ⊆ Hn, we have a star operator st(E) = ∪h∈E h↑ and a
closure operator cl(E) = ∪h∈E h↓, that respectively gives the smallest open set
and the smallest closed set of P(Hn) containing E.

The set of faces of Hn is arranged onto a grid, the so-called Khalimsky’s
grid, depicted in gray in Figure 4 (right); and inclusion between faces lead to a

6 In [17], a formal characterization of the discrete topology underlying this novel rep-
resentation is presented.

7 The authors recommend [12] and [1] for extra readings about those tools.

f

g

h h

f

g

Fig. 4. Three faces depicted as subsets of Z2 (left) and as geometrical objects (middle);
Khalimsky grid (right) with 0- to 2-faces respectively painted in red, blue, and green.

neighborhood relationship, depicted in gray and yellow. The set of 2-faces, the
minimal open sets of Hn, is the n-Cartesian product of H1 and is denoted by
Hn

1 .

3.2 Set-valued maps

A set-valued map u : X Y is characterized by its graph, Gra(u) =
{ (x, y) ∈ X×Y | y ∈ u(x) }. There are two different ways to define the “inverse”
of a subset by a set-valued map: u⊕(M) = {x ∈ X |u(x) ∩M 6= ∅ } is the
inverse image of M by u, whereas u	(M) = {x ∈ X |u(x) ⊂M } is the core
of M by u. Two distinct continuities are defined on set-valued maps. The one we
are interested in is the “natural” extension of the continuity of a single-valued
function. When X and Y are metric spaces and when u(x) is compact, u is
said to be upper semi-continuous (u.s.c.) at x if ∀ε > 0, ∃ η > 0 such that
∀x′ ∈ BX(x, η), u(x′) ⊂ BY (u(x), ε), where BX(x, η) denotes the ball of X of
radius η centered at x. One characterization of u.s.c. maps is the following: u
is u.s.c. if and only if the core of any open subset is open.

3.3 Interpolation

Following the conclusions of Section 2.3, we are going to immerse a discrete nD
function defined on a cubical grid u : Zn → Z into some larger spaces in order
to get some continuity properties. For the domain space, we use the subdivision
X = 1

2H
n of Hn. Every element z ∈ Zn is mapped to an element m(z) ∈ 1

2H
n
1

with z = (z1, . . . , zn) 7−→ m(z) = {z1, z1+ 1
2}×. . .×{zn, zn+ 1

2}. The definition
domain of u, D ⊆ Zn, has thus a counterpart in X, that will also be denoted D,
and that is depicted in bold in Figure 5. For the value space, we immerse Z (the
set of pixel values) into the larger space Y = 1

2H
1, where every integer becomes

a closed singleton of H1
0 . Thanks to an “interpolation” function, we can now

define from u a set-valued map u = I(u). We have u : X Y and we set:

∀h ∈ X, u(h) =

{u(m−1(h)) } if h ∈ D
max(u(h′) : h′ ∈ st(cl(h)) ∩ D) if h ∈ 1

2H
n
1 \D

span(u(h′) : h′ ∈ st(h) ∩ D) if h ∈ X\ 12H
n
1 .

(1)

An example of interpolation is given in Figure 5. Actually, whatever u, such
a discrete interpolation I(u) can also be interpreted as a non-discrete set-valued
map IR(u) : Rn R (schematically IR(u)(x) = I(u)(h) with h such as x ∈ Rn
falls in h ∈ 1

2H
n), and we can show that IR(u) is an u.s.c. map.

8 0

0 24

000

0

0

6

24

24

24 24 24 24 24 24

24

24

24

24

24

24

24 24 24 24 24 24

24 24 24 24 24 24

0 24024 2424

8 00 6 2424

00024 2424

24 24 24 24 24 24

00

24 24 24 24 24

24 24 24 24 24

24

24

24

2424

24

24

24 24 24

24

24 24 24

24

24

24

0

0

6

6

6 8 88

8

8 8

8

24 24 24 24 24

24 24 24 24 24 24 24

24 24 24

24 24 24

24

24

24

24 24 24

24

24

24

24

24 8 08

8 2424

0 2424

[8,24] [0,24]

[0
,2

4]

[0,8]

8

8

[8
,2

4
]

[0
,8

]

2424

24
24

[8,24] [0,24]

24[0,24]

Fig. 5. The function u : Z2 → Z (left) is transformed into the set-valued map u :
1
2
H2 1

2
H1 (middle); d-faces with d ∈ {0, 1} are interval-valued in u with the span

of their respective (d+ 1)-face neighbors (right).

To the authors knowledge the notion of cuts (or thresholds) have not been
defined for set-valued maps. Since they are of prime importance for mathematical
morphology, and for the tree of shapes in particular, we propose in this paper
the following definitions. Given λ ∈ Y , let us state that [u C λ] = {x ∈
X | ∀µ ∈ u(x), µ < λ } and [u B λ] = {x ∈ X | ∀µ ∈ u(x), µ > λ }. We can
show [17] that, with those definitions, ∀u, ∀λ, [I(u) C λ] and [I(u) B λ] are
well-composed [9]. That is, strict cut components and their complementary sets
can be handled both with the same unique connectivity, c2n. As a consequence,
the operators star and Sat commute on those sets, and we can prove [17] that:

SI(u) = {Satc2n(Γ); Γ ∈ {CCc2n([I(u) C λ])}λ ∪ {CCc2n([I(u) B λ])}λ }

is a set of components that forms a tree. Moreover, we can also prove that
T<(u) = {Γ ∩ D; Γ ∈ { CCc2n([I(u) C λ+ 1/2]) }λ∈H0

} and T≥(u) = {Γ ∩
D; Γ ∈ {CCc2n([I(u) B λ+1/2]) }λ∈H0

}. So eventually we have: S(u) = {Γ ∩
D; Γ ∈ SI(u)}. That final property means that strict cuts of the interpolation
of u, considering only c2n for the different operators, allows for retrieving the
shapes of u, as defined with the pair of dual connectivities c2n and c3n−1.

4 Putting things altogether

4.1 About saturation and initialization

Classically the root node of the tree of shapes represents the whole image and,
formally, the saturation operator is defined w.r.t. a point at infinity, p∞, located
outside the image domain D. A rather natural idea is that the root level, `∞,
should only depend on the internal border of D (which is unfortunately not
the case for the algorithms proposed in the literature). To that aim, before
interpolating u, we add to this image an external border with a unique value,
`∞, set to the median value of the internal border. p∞ is then one point from
the added border.

4.2 Handling the hierarchical queue

To sort the faces of the domain X of U , we use a classical front propagation
based on a hierarchical queue [15], denoted by q, the current level being denoted

Algorithm 2: Sorting for tree of shapes computation.

priority push(q, h, U, `)
/* modify q */
begin

[lower , upper]← U(h)
if lower > ` then

`′ ← lower
else if upper < ` then

`′ ← upper

else
`′ ← `

push(q[`′], h)
end

priority pop(q, `) : H
/* modify q, and sometimes ` */
begin

if q[`] is empty then
`′ ← level next to ` such as q[`′]
is not empty
`← `′

return pop(q[`])
end

sort(U) : Pair(Array[H], Image)
begin

for all h do
deja vu(h)← false

i← 0
push(q[`∞], p∞)
deja vu(p∞)← true
`← `∞ /* start from root level */
while q is not empty do

h← priority pop(q, `)

u[(h)← `
R[i]← h
for all n ∈
N (h) such as deja vu(n) = false
do

priority push(q, n, U, `)
deja vu(n)← true

i← i+ 1

return (R, u[)
end

by `. The sorting algorithm is given in Algorithm 2. There are two notable
differences with the well-known hierarchical-queue-based propagation. First the
d-faces, with d < n, are interval-valued so we have to decide at which (single-
valued) level to enqueue those elements. The solution is straightforward: a face
h is enqueued at the value of the interval U(h) that is the closest to ` (see
the procedure priority push). Just also note that we memorize the enqueuing
level of faces thanks to the image u[(see the procedure sort). Second, when
the queue at current level, q[`], is empty (and when the hierarchical queue q is
not yet empty), we shall decide what the next level to be processed is. We have
the choice of taking the next level, either less or greater than `, such that the
queue at that level is not empty (see the procedure priority pop). Practically
choosing going up or down the levels does not change the resulting tree since it
just means exploring some sub-tree before some other disjoint sub-tree.

The result R of the sorting step is the one expected since the image U ,
in addition with the browsing of level in the hierarchical queue, allows for a
propagation that is “continuous” both in domain space and in level space. An
interesting property due to the interpolation and the well-composedness of cuts
is that the neighborhood N , used for faces in the propagation, corresponds to
the c2n connectivity on the Khalimsky’s grid.

4.3 Max-tree versus tree of shapes computation

The main body of the tree of shapes computation algorithm is given in Algo-
rithm 3. The major differences between this algorithm and the one dedicated
to the max-tree (see the procedure compute tree in Algorithm 1) are the
following ones.

Algorithm 3: Tree of shapes computation in five steps.

compute tree of shapes (u) : Pair(Array[P], T)
begin

U ← interpolate(u)

(R, u[) ← sort(U)
parent ← union find(R)

canonicalize tree(u[, R, parent)
return un-interpolate(R, parent)

end

First the three basic steps (sort, union-find, and canonicalization) are now
surrounded by an interpolation and un-interpolation process. Note that the un-
interpolation just cleans up both R and parent to keep only elements of D.
Second, as emphasized in Section 2.2, the sorting step is of course dedicated to
the tree of shapes computation. Last, a temporary image, u[, is introduced. It
is defined on the same domain as u, namely X, and contains only single-valued
elements. This image is the equivalent of the original image u when dealing with
the max-tree: it is used to know when an element h is canonical, that is, when
u[(parent(h)) 6= u[(h) (so that image is thus required by the canonicalization
step that runs on X).

Complexity analysis of the algorithm presented here is trivial. The interpola-
tion, canonicalization, and un-interpolation are linear. The modified union-find
(once augmented with tree balancing, i.e., union-by-rank) is quasi-linear when
values of the input image u have a low quantization (typically 12 bits or less).
Last, the time complexity of the sorting step is governed by the use hierarchical
queue: it is linear with low quantized data8. Eventually we obtain a quasi-linear
algorithm. The representation of the tree with the pair (R, parent) allows for
any manipulation and processing that one expects from a morphological tree [3].

5 Related works

The first known algorithm, the “Fast Level Line Transform (fllt)” [16], com-
putes the max-tree and the min-tree of an image and obtains the tree of shapes
by merging both trees. The main drawback of the fllt is the need to know

8 Formally the sorting step has the pseudo-polynomial O(k n) complexity, k being the
number of different gray values. Though, since we consider low bit-depths data, k
shall only be considered as a complexity multiplicative factor.

that a component has an hole (in order to match it with a component of the
other tree). To that aim the Euler characteristic is computed, which can be done
locally (while following the border of components) but in 2D only. In [4,14] the
authors show that this fusion approach is sound in nD with n > 2; yet it cannot
be effective in practice due to unacceptable complexity.

In [5] the “Fast Level Set Transform” (flst) relies on a region-growing ap-
proach to decompose the image into shapes. It extracts each branch of the tree
starting from the leaves and growing them up to the root until at least one saddle
point is encountered. Each time a saddle point is encountered, the branch ex-
traction procedure has to stop until every parallel branch meeting at this point is
extracted. So each saddle point invalidates the shape currently being extracted,
forcing the algorithm to visit its pixels again once a parallel branch is extracted.
Since an image like a checkerboard contains O(n) saddle points meeting on O(n)
pixels, the flst has a O(n2) worst case time complexity.

Song [18] takes a top-down approach to build the tree of level lines in O(n+t)
time, where t is the total length of all level lines (note that filling the interior
of each level line allows for retrieving the tree of shapes). The algorithm is re-
stricted to 2D images with hexagonal pixels. Its key idea is to perform a recursion
(starting from the image boundary): for a given component, follow every con-
tours of its holes, and repeat this procedure for each hole component. Since the
total length of level lines of an image can be of order O(n2), the worst case has
a quadratic-time complexity.

6 Conclusion

In this paper, we have presented a new algorithm to compute the tree of shapes
of an image which features a quasi-linear time complexity, runs on nD images,
and benefits from a much simpler implementation than existing algorithms. We
have also proposed a novel representation of images as set-valued maps which
has some continuity properties while remaining discrete.

Actually we believe that this representation is a good start to get a “pure”
self-duality for images and operators, that is, a way to get rid of the pair of dual
connectivities c2n and c3n−1, and of the dissymmetry of cuts (strict and large
cuts for respectively lower and upper cuts). In particular, replacing the maximum
operator by the median operator in Equation 1 leads to a pure self-dual definition
of the tree of shapes of 2D images [17]. Furthermore the perspectives offered by
that new representation might be far from being limited to the tree of shapes
computation.

For our experiments we use our free software library [10]; in particular, the
fact that our tool makes it easy to write generic software in the case of math-
ematical morphology and discrete topology is discussed in [11]. The work pre-
sented here will be available in the next release of our software for we advocate
reproducible research.

Acknowledgements. The authors would like to thanks Michel Couprie and Jean Cousty for fruit-

ful discussions. This work received funding from the Agence Nationale de la Recherche, contract

ANR-2010-BLAN-0205-03 and through “Programme d’Investissements d’Avenir” (LabEx BEZOUT

n◦ANR-10-LABX-58).

References

1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Modern Birkhäuser Classics,
Birkhäuser (2008)

2. Berger, C., Géraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Ef-
fective component tree computation with application to pattern recognition in
astronomical imaging. In: Proceedings of ICIP. vol. 4, pp. 41–44 (2007)

3. Carlinet, E., Géraud, T.: A (fair?) comparison of many max-tree computation
algorithms. In: Proceedings of ISMM (2013), This volume

4. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an
image by fusion of the trees of connected components of upper and lower level
sets. Positivity 12(1), 55–73 (2008)

5. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps,
Lecture Notes in Mathematics Series, vol. 1984. Springer (2009)

6. Géraud, T.: Ruminations on tarjan’s union-find algorithm and connected opera-
tors. In: Proceedings of ISMM. CIVS, vol. 30, pp. 105–116. Springer (2005)

7. Géraud, T., Talbot, H., Van Droogenbroeck, M.: Mathematical Morphology—From
Theory to Applications, chap. 12, pp. 323–353. ISTE & Wiley (2010)

8. Henle, M.: A Combinatorial Introduction to Topology. Dover Publications Inc.
(1994)

9. Latecki, L., Eckhardt, U., Rosenfeld, A.: Well-composed sets. Computer Vision
and Image Understanding 61, 70–83 (1995)

10. Levillain, R., Géraud, T., Najman, L.: Why and how to design a generic and effi-
cient image processing framework: The case of the Milena library. In: Proceedings
of ICIP. pp. 1941–1944, http://olena.lrde.epita.fr (2010)

11. Levillain, R., Géraud, T., Najman, L.: Writing reusable digital geometry algorithms
in a generic image processing framework. In: Applications of Discrete Geometry and
Mathematical Morphology. LNCS, vol. 7346, pp. 96–100. Springer-Verlag (2010)

12. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: A unified topological
framework. Journal of Mathematical Imaging and Vision 44(1), 19–37 (2012)

13. Meijster, A., Wilkinson, M.H.F.: A comparison of algorithms for connected set
openings and closings. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 24(4), 484–494 (2002)

14. Meinhardt-Llopis, E.: Morphological and Statistical Techniques for the Analysis of
3D Images. Ph.D. thesis, Universitat Pompeu Fabra, Spain (March 2011)

15. Meyer, F.: Un algorithme optimal de ligne de partage des eaux. In: Actes du 8e
congrès AFCET. pp. 847–859 (1991)

16. Monasse, P., Guichard, F.: Fast computation of a contrast invariant image repre-
sentation. IEEE Transactions on Image Processing 9(5), 860–872 (May 2000)

17. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Pro-
ceedings of ISMM (2013), This volume

18. Song, Y.: A topdown algorithm for computation of level line trees. IEEE Transac-
tions on Image Processing 16(8), 2107–2116 (August 2007)

19. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of
the ACM 22(2), 215–225 (1975)

20. Xu, Y., Géraud, T., Najman, L.: Context-based energy estimator: Application to
object segmentation on the tree of shapes. In: Proceedings of ICIP (2012)

21. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applica-
tions using tree-based image representations. In: Proceedings of ICPR (2012)

22. Xu, Y., Géraud, T., Najman, L.: Two applications of shape-based morphology:
Blood vessel segmentation and generalisation of constrained connectivity. In: Pro-
ceedings of ISMM (2013), This volume

http://olena.lrde.epita.fr

	A quasi-linear algorithm to compute the tree of shapes of nD images

