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Abstract

The integration of mathematical morphology operations within convolutional neural network architectures has received an
increasing attention lately. However, replacing standard convolution layers by morphological layers performing erosions or
dilations is particularly challenging because the min and max operations are not differentiable. P-convolution layers were
proposed as a possible solution to this issue since they can act as smooth differentiable approximation of min and max
operations, yielding pseudo-dilation or pseudo-erosion layers. In a recent work, we proposed two novel morphological layers
based on the same principle as the p-convolution, while circumventing its principal drawbacks, and showcased their capacity
to efficiently learn grayscale morphological operators while raising several edge cases. In this work, we complete those
previous results by thoroughly analyzing the behavior of the proposed layers and by investigating and settling the reported
edge cases. We also demonstrate the compatibility of one of the proposed morphological layers with binary morphological

frameworks.

Keywords Morphological layer -
Morphological neural network

1 Introduction

Mathematical morphology is concerned with the nonlinear
filtering of images [23], in which the elementary operations
amount to compute the minimum or maximum of all pixel
values within a neighborhood of some given shape and size
of the pixel under study. This neighborhood is the so-called
structuring element, and applying the maximum (resp. min-
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imum) yields the well-known morphological dilation (resp.
erosion) operation. Combining those elementary operations,
one can define more advanced (but still nonlinear) filters,
such as openings and closings, top-hat transforms or alternate
sequential filters, which have many times proven successful
for various image processing tasks such as filtering, seg-
mentation or edge detection [6,23,24,27]. However, finding
the optimal sequence of operations to chain and designing
the shape and size of their respective structuring element
is always quite arduous and generally done in a tedious and
time-consuming trial-and-error fashion, since it also depends
on the pursued application. Thus, there is a practical need to
automatize the identification of the right sequence of opera-
tions to use and their structuring element. Recent advances
in machine learning techniques, and particularly in the field
of neural networks, are an attractive direction to investigate
in that respect.

As a matter of fact, the structural similarity between neu-
ron operations (weighted linear combination of input values,
potentially mapped by nonlinear activation functions) and
elementary morphological operations such as erosion and
dilation makes it tempting to substitute the former by the lat-
ter. This results in the adaptation of traditional multi-layer
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perceptron architectures [9] into morphological perceptrons
and convolutional layers implemented in deep convolutional
neural networks [13] (CNNs) into morphological layers.
Deep CNN s appear as particularly appealing solutions since
the weights of each layer filter could be interpreted as
(non-necessary flat) structuring elements, provided that the
conventional convolution operation has been replaced by ero-
sion or dilation and that the layer has a way to learn which
operation to use. However, as tempting as the idea of replac-
ing the standard convolution by morphological operations
might be, it comes in practice with several challenges, the
major one being that the min and max operations are not dif-
ferentiable and thus do not lend well to stochastic gradient
descent optimization approaches [13]. Based on asymptotic
properties of counter-harmonic mean [1,3] (CHM), the p-
convolution (hereafter abbreviated as P Conv) layer has been
proposed by Masci et al. [15] as a workaround to overcome
this non-differentiability issue since it is not only smooth, but
it can also approximate non-flat dilations, erosions and clas-
sical convolutions, depending on the value of its (trainable)
inner parameter p. Very promising results were presented
by Masci et al. [15] in terms of learning morphological
operations and their structuring element, but never further
investigated. Following this idea, we recently proposed in
Kirszenbergetal. [11] two new morphological layers, namely
the -ZMorph layer (also based on the CHM framework)
and the .¥Morph layer (based on the regularized softmax
approximation), both compatible with grayscale mathemat-
ical morphology and non-flat structuring elements. In this
preliminary study our motivation was, much alike in the
famous XOR-learning experiments for neural networks, to
determine whether the particular layers we proposed can cap-
ture some particular representation of interest, as a sanity test
prior to further experiments in larger architectures. In this
sense, we showcased the ability of these two new layers to
learn grayscale morphological operations and reported better
results than the PConv layer. However, several edge cases
were also identified and the conducted experiments remained
relatively shallow in terms of practical validation.

In this article, we investigate more in-depth the -Z’Morph
and .¥’Morph layers introduced by Kirszenberg et al. [11], in
terms of both morphological and learning-based behaviors.
More specifically, the novel contributions of this article with
respect to Kirszenberg et al. [11] are the following:

— We thoroughly analyze the performances of #Morph
and .“’Morph layers for non-flat structuring elements.
In particular, we now conduct several runs per learning
scenario, allowing to evaluate the stability of the learned
solutions.

— The edge cases regarding some convergence issues for
some scenarios reported by Kirszenberg et al. [11] are
investigated and (partially) settled.
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— Although it was initially designed for grayscale morpho-
logical operations with non-flat structuring elements, the
-¥Morph layer is also able to learn flat (binary) structur-
ing elements. Thus, we also examine the performances of
the .’Morph layers in binary mathematical morphology
scenarios.

This article is organized as follows. In Sect. 2, we review
the related works devoted to the integration of mathemat-
ical morphology within neural network architectures, with
a focus on convolutional-like morphological networks. In
Sects. 3 and 4, we present the PConv layer introduced
by Masci et al. [15] and the .ZMorph and .¥Morph lay-
ers that we proposed in Kirszenberg et al. [11]. Sections 5
and 6 gather the conducted experiments and analyses for
grayscale morphological operations learning for the former
and binary morphological operations learning for the latter.
Finally, Sect. 7 draws some conclusions and perspectives
from our contributions.

2 Related Work

The interaction between mathematical morphology and neu-
ral network architectures is not a novel topic [2]. As a matter
of fact, morphological neural networks were introduced in the
late 1980s with a definition of neurons as weighted rank filters
[32] or, in a less general form, as performing dilations or ero-
sions [7]. Replacing the multiplication and addition of linear
perceptron units with addition and minimum/maximum oper-
ators induces a new geometry of decision surfaces, referred
to as bounding box geometry [21,28,30,33], and alterna-
tive (or complementary) strategies to gradient descent in
networks training. Hybrid approaches mixing linear and mor-
phological layers have also been developed for an even richer
geometry [5,10,20,29,34], and dilation layers showed inter-
esting pruning properties when located after linear layers
[5,31,34]. The latter studies only considered dense layers and
are little suited to image analysis, in contrast to convolutional
neural networks which can handle large images.

The rise of deep CNN architectures in the early 2010s
motivated the exploration of integrating elementary morpho-
logical operations in such networks to automatically learn
their optimal shape and weights. A first workaround to over-
come the non-differentiability of the min and max operations
of erosions and dilations in convolutional-like approaches is
to replace them by smooth differentiable approximations,
making them suited to the conventional gradient descent
learning approach via back-propagation [13]. In their seminal
work, Masci et al. [15] provided the p-convolution (P Conv)
layer by relying on some properties of the counter-harmonic
mean [3] (CHM). The PConv layer depends on a trainable
parameter p, whose value allows the layer to behave as a
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classical convolution or as a smooth approximation of either
dilation or erosion (depending on the sign of p). The CHM
was also used as an alternative to the standard max-pooling
layer in classical CNN architectures [16] and applied to
digit recognition tasks [17]. LogSumExp functions [4] (also
known as multivariate softplus) were proposed as replace-
ments of min and max operations to learn binary [26] and
grayscale [25] structuring elements.

Alternatively, non-smooth operators such as the ReLU
activation function or max-pooling layers (to name a few)
have also been efficiently trained with stochastic gradient
descent algorithms. As a matter of fact, those operators
are actually differentiable almost everywhere, and a descent
direction can be defined even in their zero-measure non-
smooth regions. Thus, translation-invariant morphological
layers were recently optimized just as usual convolutional
ones [8,18,19,22] and applied to image classification, denois-
ing, restoration as well as edge detection.

With our approach, which is using fully differentiable
functions and pseudo-morphological operations, we expect
the proposed layers to be more flexible than the previously
cited works using exact operations since we are adding an
extra degree of freedom. Increasing the learning possibilities
and potency of morphological layers is part of our motiva-
tion, but, as mentioned in the previous section, our work is
still preliminary and performance comparison with advanced
networks on user-oriented problematic cannot be expressed
pertinently in this publication.

As noted by Kirszenberg et al. [11], the integration of
morphological operations in place of standard convolutions
in deep CNN architectures is clearly a hot topic since all cited
approaches exploring this research direction are very recent
(apart from the article of Masci et al. [15], all other works
date back to no later than 2017).

3 The P-Convolution Layer

This section is devoted to mathematical morphology pre-
liminaries as well as the presentation of the PConv layer
introduced by Masci et al. [15].

3.1 Grayscale Mathematical Morphology

In mathematical morphology, it i common to represent an
image as a 2D function f : E — R with x € E being the
pixel coordinates in the 2D grid E € Z? and f(x) € R
being the pixel value. In this formalism, a binary structuring
element B € E defines a neighborhood of a given shape
(square, circle, diamond, etc.), size and origin on the pixel
grid. If B, denotes the translation of B by x (that s, the origin
of B is translated on x), then the erosion f & B and dilation
f @ B of image f with the binary structuring element B are

2 (21(20]14] 8
DS = max( 25 (19137 |1 ) 20
18126 |5 |24

1n|10] 42317 1nfof 42317
9|3 |22]|16]15 9|3 |22]|16]15
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2519|137 |1 EB 3|63 — maX( 25 2219|101 ) =22
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Fig.1 Top: illustration of the dilation of the pixel 13 (with red borders)
with a cross-shaped binary structuring element. Bottom: illustration of
the dilation of the same pixel 13 with a grayscale structuring element
(Color figure online)

defined as:
(feB)x)=inf{f(y),y € By} (D
(f® B)(x) =sup{f(y),y € By}. 2

In grayscale mathematical morphology, the structuring ele-
ment b is defined as a real-valued function » : E — R, and
erosion f © b and dilation f @ b operations are written as:

(febx) = ;Ielg {f(y) =b(x —y)} 3)
(f®b)x)= Sug {f(») +bx—y}. )
ye

This formalism also encompasses the use of a flat (binary)
structuring element B by defining the structuring function b
as

0 ifx e B

b(x) = o
—o0  otherwise

&)

In that case, Eq. (3) (resp. Eq. (4)) coincides with Eq. (1)
(resp. Eq. (2)). Figure 1 illustrates the difference between a
dilation with a binary structuring element and a grayscale
structuring element. In the first case, the binary structuring
element defines a neighborhood around a given pixel, and
the dilation amounts to taking the maximum value within
this neighborhood. In the case of a grayscale dilation, the
grayscale structuring element again defines a neighborhood
around the pixel to be dilated, but the maximum value is taken
on the sum of the image and structuring element contents.

3.2 The Counter-Harmonic Mean

Letx = (x1,...,x,) € RN andw = (wy,...,w,) €
(R™)" be two non-negative vectors,and p € R. The weighted
counter-harmonic mean (CHM), also known as the Lehmer
mean [3] of order p € R of vector x with weights w, is
defined as
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D Wi xip

CHM(x,w, p) = —
Z?:l wixl'lj

(6)

Defined as such, the Lehmer mean CHM (x, w, p) cor-
responds to the weighted harmonic mean (resp. weighted
arithmetic mean) for p = 0 (resp. p = 1) and to the con-
traharmonic mean when p = 2 and w = 1 (all entries of
w being equal to 1). In addition, because both vectors x and
w have non-negative entries, the maximum (resp. minimum)
among all entries of x dominates the numerator and denom-
inator of Eq. (9) when p goes to 400 (resp. —00) , yielding
the following asymptotic behavior for the CHM:

lim CHM(x,w,p) = sup x;, 7
p——+00 ie[l,n]

lim CHM(x,w,p)= inf x;. ®)
p—>—00 ie[l,n]

Thus, the CHM also allows for smooth approximations of
min and max operations for large negative and positive values
of p.

3.3 The P-Convolution Layer

The p-convolution (also known as p-deformed convolution)
of animage f at pixel x for a given non-negative convolution
kernelw : W € E — R" andsome p € Rhasbeen defined
by Masci et al. [15] as:

PConv(f,w, p)(x) = (f *p w)(x)
P s w)(x)
O (fPrw)(x) ©)
C Yyewen P w —y)
Y eww fPOwx —y)

where f7(x) denotes the pixel value f (x) raised to the power
of p and W (x) is the spatial support of kernel w centered at
X

Based on the asymptotic properties of the CHM, the mor-
phological behavior of the PConv operation with respect
to p has notably been studied by Angulo et al. [1]. More
precisely, the PConv operation coincides with a classical
convolution with filter w when p = 0. When p > 0
(resp. p < 0), the PConv operation can be interpreted as
a pseudo-dilation (resp. pseudo-erosion), and when p — oo
(resp. —o0), the largest (resp. smallest) pixel value in the
local neighborhood W (x) of pixel x dominates the weighted
sum (9) and the PConv(f,w, p)(x) acts as a non-flat
grayscale dilation (resp. a non-flat grayscale erosion) with
the structuring function b(x) = % log(w(x)):
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1
{f(y) + ;10g (w(x — y))}
(10)

lim (f *p w)(x) = sup
p—>+00 yGW(X)

. . 1 3
pgriloo(f *p w)(x) = yelal/f(x) {f(y) » log (w(x y))} .
(1D

In practice, Egs. (10) and (11) hold true for |p| > 10. The
flat structuring function (5) can be recovered by using con-
stant weight kernels, i.e., w(x) = 1 ifx € W and w(x) =0
if x ¢ W and |p| > 0. As stated by Masci et al. [15],
the P Conv operation is differentiable, thus compatible with
gradient descent learning approaches via back-propagation.
Thus, a PConv layer implementing operation (9) can read-
ily be integrated to CNN-like neural network architectures
and its kernel w can be optimized in the same fashion as
the weights of a classical convolution layer. However, the
PConv layer has an additional trainable parameter p that
controls its morphological behavior. The learning scheme
can alternate between learning p while keeping w fixed, and
vice-versa, or the learning can be performed simultaneously
on p and w.

3.4 Limits of the P-Convolution Layer

The definition and training of the P Conv layer comes with
several numerical issues. As a matter of fact, w and f must
be strictly positive in order for the PConv to be defined on
all its possible input parameters. Otherwise, the following
numerical errors can occur:

— If f(x) contains null values and p is negative, f?(x) is
not defined;

— If f(x) contains negative values and p is a non-null,
non-integer real number, f”(x) can contain complex
numbers;

— If w(x) or f”(x) contain null values, (th))(x) is not
defined.

Therefore, in order to avoid any aforementioned issue, it is
necessary to rescale the input image before feeding it to the
PConv layer. In practice, we experienced some numerical
instabilities during training when rescaling the input within
the range [0, 1], so we rescale between [1, 2] instead:

Jf(x) —mingeg f(x)

+(x) =1.0 : .
fr®) + maxyer f(x) —mingeg f(x)

12)

Moreover, if several PConv layers are concatenated one
behind the other (to achieve (pseudo-) opening and clos-
ing operations for instance), a rescaling must be performed
before each layer. Particular care must also be taken with
the output of the last PConv layer of the network. Indeed,
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because of these rescaling operations throughout the net-
work, the range of the output may not match the range of
the target, which can be problematic for MSE-based train-
ing losses. Thus, to avoid this effect, a trainable scale/bias
1 x 1 x 1 convolution layer is added at the end of the net-
work.

Last but not least, a notable drawback of the P Conv layer
when it comes to learning a specific (binary or non-flat) struc-
turing element is that it tends to be hollow and flattened out
in the center (see further presented results in Sect. 5).

4 Proposed .ZMorph and .’ Morph Layers

In this section, we detail two novel morphological layers
introduced by Kirszenberg et al. [11]. Similar to the PConv
operation, those two layers intend to act like trainable smooth
approximations of min and max operators, thus achieving
(pseudo-) erosion and dilation while being compatible with
general grayscale mathematical morphology.

4.1 The -ZMorph Layer

The first proposed layer is named .Z’Morph (for .Zehmer-
mean-based morphological operation). As the PConuv, it is
designed to rely on the asymptotic behavior of the CHM
to approximate min and max operations in a smooth and
differentiable manner. Specifically, if w : W — R is the
structuring function and p € R, the .ZMorph operation is
defined as:

image f

ZMorph(f, w, p)(x)
_ dvew (FO) +wx — y))PH!
- dvew (FO) +wlx —y)P

(13)

Defined as such, we can identify -ZMorph( f, w, p) with the
CHM defined by Eq. (6): All weights w; (resp. entries x;) of
Eq. (6) correspond to 1 (resp. f(y) +w(x — y)) in Eq. (13).
Therefore, from the following the asymptotic behavior of the
CHM explicit by Egs. (7) and (8), we can deduce that:

sup {f(y) +w(x —y)}

lim ZMorph(f, w, p)(x) =
p—>+00 yeEW(x)

=(f ®w)(x) (14)
lim ZMorph(f, w, p)(x) = inf {f(y)+w(x —y)}
p—>—00 yeW(x)

= (fe-w(). 15)

As it was the case for the PConv, one can achieve either
pseudo-dilation (if p > 0) or pseudo-erosion (if p < 0) with
the ZMorph operation, depending on the sign of its control
parameter p. In addition, when p — o0, the £Morph
layer asymptotically converges toward the dilation of image
f with structuring function w. Note, however, that when
p — —oo, the ZMorph operation converges toward the
erosion of f with structuring function —w. However, this
is not a problem in a learning scenario since we can easily
retrieve w from —w by checking whether the sign of p is neg-
ative. Figure 2 displays examples of applying the .#Morph
function with a given non-flat structuring element for differ-

filter w

2.00 1.00

1.00 0.00

LMorph(f,w,p)

LMorph(f,—w,p)

193

0.93

-0.14

-0.98

target foOw

197 1.99 2.00

0.97 0.98 1.00

target fow

70.31 70.35 . How
-1.00

-1.00 -1.00

Fig. 2 Top row: input image from the MNIST database and non-flat structuring element w. Middle row: .ZMorph pseudo-dilation for p €
{0, 10, 20, 30}, and target dilation f & w. Bottom row: -#Morph pseudo-erosion for p € {0, —10, —20, —30} and target erosion f & w. Note that
for the erosion, —w is used in .#’Morph instead of w to approximate the target f © w
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ent values of p. As it can be seen, |p| > 20 is sufficient in
practice to reproduce non-flat grayscale dilation or non-flat
grayscale erosion.

Relying on the CHM like the PConv layer brings over
some shared limitations for the proposed .ZMorph layer:
The input image f must be positive and rescaled following
Eq. (12), and the structuring function w must be positive or
null.

4.2 The .”Morph Layer

Both the PConv and .ZMorph layers rely on the asymp-
totic behavior of the CHM to approximate min and max
operations. The major drawback is that the input must be
rescaled within the range [1, 2]. In order to circumvent this
issue, we leverage the «-softmax function [12]. Given some

X = (x1,...,%,) € R"and @ € R, the a-softmax .7, (X) is
defined as:

D iy Xie™
Fu(x) = = (16)

er'l:l euXi

For @ = 0, .%)(x) coincides with the arithmetic mean of
X = (x1,...,Xy). In addition, limy—, o0 -4 (X) = sup; x;
and limg s _ oo % (X) = inf; x;. This function is less restric-
tive than the CHM since it does not require the entries of x
to be strictly positive. A major benefit is that it is no longer
necessary to rescale its input.

Exploiting this property, we define the .#’Morph (standing
for smooth morphological) operation of an input image f

image f

with structuring function w : W — R as:

SMorph(f, w, a)(x)

_ Xyewm(fO) + wlx — y))est/ e
- > ew e (f (M +wx—y)

a7

The .’Morph operation simply follows from the definition
of the «-softmax function, replacing entries x; in Eq. (16)
by f(y) + w(x — y). Thus, the asymptotic behavior of
Morph(f, w, ) is the same as this of the «-softmax:

sup {f(y) +wx —y)}

lim Morph(f, w, a)(x) =
o—>~400 yeW (x)

=(fOw(x) (18)
lim_.%’Morph(f, w, a)(x) = i%}/f( ){f(y) +w(x — )}
o—>—00 yE X

= (fe-w). (19)
Like the P Conv and .ZMorph layers, the proposed .#’Morph
operation can perform a pseudo-dilation (o > 0) or a pseudo-
erosion (¢ < 0), depending on the sign of its parameter
a. Moreover, the .”Morph layer asymptotically converges
toward the dilation f @ w of image f with structuring func-
tion w when ¢ — 4+00. When o — —o0, the behavior of
“Morph is the same as .ZMorph, namely that it converges
toward the erosion f & —w of f with structuring function
—w.

Figure 3 shows examples of applying the .’Morph func-
tion with a given non-flat structuring element for different
values of «. The operation better approximates the target

filter w

. 2.00 ﬂ &100
E100 0.00

ﬁ ilw
0.91
a=—10

|

-0.13

-0.99

target fOw

n izoo 2.00
0.99
a=—30

. iozs
-1.00

n izm
0.99
a= —20

. &0 |
-1.00

1.00

target fow

. &0 |
-1.00

Fig. 3 Top row: input image from the MNIST database and non-flat structuring element w. Middle row: .’Morph pseudo-dilation for o €
{0, 5, 20, 30}, and target dilation f & w. Bottom row: ./ Morph pseudo-erosion for & € {0, —5, —20, —30} and target erosion f & w. Note that for
the erosion, —w is used in .#’Morph instead of w to approximate the target f © w
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cross3 cross7 disk2

4 ] R

disk3 diamond3 complex

Fig.4 7 x 7 target grayscale structuring elements. All values range between 0 (deep blue) and 1 (yellow) (Color figure online)

dilation or erosion when |«/| increases. Note that the input
image has also been rescaled in the range [1, 2] to allow for a
fair visual comparison with the results obtained for #Morph
and is displayed in Fig. 2 (although the rescaling is not nec-
essary for the .’Morph layer).

5 Learning Grayscale Morphological
Operators

In this section, we evaluate the ability of the #’Morph and
-¥Morph layers to properly learn a target grayscale struc-
turing element and a morphological operation, and compare
with the results obtained by the PConv layer (which serves
as a baseline due to its structural and conceptual similarities
with the two proposed morphological layers).

In any case, the overall idea is the following: We apply
one morphological operation among erosion ©, dilation &,
opening o and closing e with one of the grayscale structuring
elements displayed in Fig. 4 to all 60,000 digit images of
the MNIST database [14], and we challenge the competing
morphological layers to retrieve the correct target structuring
element and morphological operation when fed with couples
composed of original images and their transformed image.
Hereafter, a scenario will denote a combination morpho-
logical operation/structuring element/morphological layer,

—{o/0 —{ Elauldl 1L 308

hence resulting in a total of 4 x 6 x 3 = 72 different inves-
tigated scenarios.

5.1 Learning Grayscale Erosions and Dilations
5.1.1 Experimental Protocol

In this first experiment, we focus on morphological erosions
© and dilations @, thus reducing to 36 different scenarios.
As a matter of fact, all three morphological layers PConv,
ZMorph and .’Morph should natively be able to approxi-
mate both operations, depending on the value of their inner
parameter p (for both PConv and -’ Morph layers) or « (for
the .’Morph layer). Thus, the implemented network archi-
tecture for this first set of scenarios is straightforward, as it is
composed of a single morphological layer. Nevertheless, both
PConv and .ZMorph require the input images to be rescale
in the range [1, 2] as discussed in Sects. 3.4 and 4.1. This
constraint enforces the addition of a classical rescaling block
before the morphological layer, and a trainable scale/biais
Conv 1 x 1 x 1 after the layer, in order to rescale the net-
work output into the range of the target images. Although the
-¥Morph layer does not suffer from this rescaling drawback,
we use the same architecture to allow for a fair comparison
between all three morphological layers. Figure 5 displays
such architecture. It is also worth mentioning that, due to the
shared limitation of PConv and .ZMorph layers to oper-

—| rescalef g

PConv(-,w, p)
LMorph(-,w,p)

SMorph(-,w,a)

— Conv 1 x1x1

output

Layer 1

Fig.5 Network architecture used for the erosion/dilation scenarios. Blue blocks are trainable units. A scenario is defined as the choice of @ or ©
and one of the six target structuring elements in the upper path, and the choice of one layer among P Conv, ZMorph and .#’Morph in the lower

path (Color figure online)
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ate on filters with non-negatives weights only, the values of
all six grayscale structuring elements displayed in Fig. 4 are
comprised between 0 and 1.

All networks are trained with a batch size of 32, optimiz-
ing for the mean squared error (MSE) loss with the Adam
optimizer (with starting learning rate n = 0.01). The learn-
ing rate of the optimizer is scheduled to decrease by a factor
of 10 when the loss plateaus for five consecutive epochs.
Convergence is reached when the loss plateaus for 10 con-
secutive epochs. The maximal number of training epochs is
set to 1000. For the P Conv layer, the filter is initialized with
Is and p = 0. For .ZMorph, the filter is initialized with a
folded normal distribution with standard deviation o = 0.01,
and p = 0. For the .¥’Morph layer, the filter is initialized
with a centered normal distribution with standard deviation
o = 0.0l and @ = 0. In all instances, the training is done
simultaneously on the weights and the parameter p or «.

In comparison with the results presented by Kirszenberg
et al. [11] where only one run per scenario was conducted,
we now perform five training runs per scenario in order to
investigate the performances of the morphological networks
in terms of stability and repeatability. More specifically, we
report the average and standard deviation over the five runs
of the value of parameter p/« at convergence, the root mean
square error (RMSE) between the filter learned by the mor-
phological layer at convergence and the target filter, the

training loss as well as the number of training epochs. It
is worth mentioning that because of the initial rescaling of
the input images in the range [1, 2] combined with the final
scale/bias Conv 1 x 1 x 1 in the network, there is no guaran-
tee that the range of the learned filter is [0, 1] as it is the case
for the target structuring elements. Thus, the reported RMSE
values are computed between the target structuring element
and the learned filter scaled in the range [0, 1].

5.1.2 Obtained Results

Figure 6 presents the filter learned by the P Conv, -ZMorph
and .“Morph layers along with the quantitative metrics
defined at the end of Sect. 5.1.1 for the erosion & scenar-
ios. Its analysis leads to several comments: First, looking
at the sign of parameters p/«, all three morphological lay-
ers succeed at finding the correct morphological operation
(namely, an erosion). Besides, the magnitude of the param-
eter at convergence also confirms that the operation applied
by all layers can be well considered as an erosion (and not
simply a pseudo-erosion).

(i La M

cross3 cross7 disk2 disk3 diamond3 complex
PConv P —20.86+0.45 —20.35+0.20 —10.52+0.004 —15.64+0.06 —13.2140.02 —16.45+0.07
RMSE 0.82+7x107% 1.55+1x1073 282411074 3.77+6x1074 3.64+1x1074 3.1946x1073
LOSS  24x107°£1x107%  6.2x107°+£1x1077 13x1074£1x107%  2.6x107°£5x107%  5.2x107°+£2x107® 1.2x107° £4x1078
EPOCHS 209 +45 169422 49+3 9247 66+8 130+ 18
|
SMorph p —77.09+0.15 —59.58+0.20 —67.78+£0.30 —59.46+0.18 —66.25+0.17 —79.36+0.93
RMSE 0.44+3x1074 0.60+1x1072 0.37 +4x1072 0.30+7x1073 0.38+4x1072 0.04+1x1073
LOSS  1.1x107%+5x107°  3.6x1077 £4x107° 13x10704+6x107%  37x1077£4x107  5.8x1077 £3x107° 1.1x1070+5x1078
EPOCHS 158 +4 164420 14616 25643 23149 876+ 139
SMorph o —33.95+0.03 —28.52+0.013 —30.61+£0.016 —28.100.006 —34.38+£0.003 —23.79+0.011
RMSE 0.78£2x1072 0.18+3x1072 0.10+2x1073 0.04+2x1072 0.13+4x1072 0.08+2x1072
LOSS  21x107°£5x107  4.0x1077£8x107°  4.6x1077£8x107° 421077 +6x107°  43x1077£3x1070  9.5x1077 £7x10°
EPOCHS 40+4 45+4 38+8 38+7 42+5 55+9

Fig. 6 Learned filter w, corresponding parameter p/o, RMSE between the learned filter and the target structuring element, MSE training loss at
convergence and number of training epochs for PConv, ZMorph and .’Morph layers on an erosion © task. Reported values correspond to the

average + standard deviation over the five runs. Best (lowest) results are in bold
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cross3 cross7 disk2 disk3 diamond3 complex
PConv p 19.8740.23 22.58+0.44 8.27+0.002 9.43+0.002 9.3940.001 12.57 40.005
RMSE 0.41+2x1073 1.424+6x1074 2.22+3x107% 3.054+3x1074 279431074 2.814+7x107°
LOSS  4.8x107°£1x107°  9.0x107+4x107%  5.1x10744£5x107%  6.3x1074£6x10™  6.8x107*£5x10™°  3.3x107*+1x107%
EPOCHS 194417 46+8 4143 3844 7047
SMorph p 94.92:+0.18 95.890.29 94.16£0.17 94.25+0.96 94.67+0.31 91.27+0.64
RMSE 0.024+9x1073 0.003+£8x107° 0.01+£8x107° 0.05+1x107* 0.01+£2x107* 0.04+£3x107*
LOSS  8.4x107°+4x1078 111075 £9x107%  7.6x107°+£4x1078 1.2x107° £3x1077 L1x107°£1x1077  2.1x1075£2x1077
EPOCHS 119412 159422 206411 193427 206+9 295+35
S Morph o 41.974+0.016 52.0140.027 40.7540.014 50.06 4 0.044 49.4740.04 32.7940.021
RMSE 0.1+3x1073 0.14£2x1073 0.09+4x107* 0.08+£1x1073 0.09+£2x1073 0.05+1x1072
LOSS  85x107743x107%  1.5x107°+£2x107%  12x107%+1x107%  1.8x10®+4x107°  1.5x107°+£9x107°  1.6x1076+£2x1078
EPOCHS 3948 3949 4449 45+4 4444 4947

Fig. 7 Learned filter w, corresponding parameter p/o, RMSE between the learned filter and the target structuring element, MSE training loss at
convergence and number of training epochs for PConv, ZMorph and .#’Morph layers on a dilation @ task. Reported values correspond to the
average =+ standard deviation over the five runs. Best (lowest) results are in bold

However, except for cross3, the RMSE values for all other
target structuring elements are notably higher for the PConv
than for both .ZMorph and .¥’Morph. This is indeed con-
firmed when looking at the shape of the learned filters for all
layers: It is clear that the P Conv layer suffers from the hol-
low effect mentioned in Sect. 3.4, while both .ZMorph and
.#’Morph layers accurately retrieve the target structuring ele-
ment. Nevertheless, the small standard deviations for both the
parameter and the RMSE values clearly indicate that all five
training runs have converged toward the same solution for all
three layers and all six target structuring elements. In terms of
MSE training loss, both .ZMorph and .¥’Morph layers out-
perform the P Conv for all scenarios. Regarding the required
number of epochs to reach convergence, the .’Morph layer
converges faster and with more consistency than P Conv and
ZMorph.

Figure 7 presents similar results for the dilation @ sce-
narios and allows to draw comparable conclusions. The sign
and magnitude of the learned parameters p/o confirm that
all three layers correctly identified the dilation operation and
replicated it. In terms of learned filters, P Conv again suffers
from the hollow effect while both .Z’Morph and .¥’Morph
perfectly recover the shape of the target structuring element,
with the former performing slightly better than the latter
according to the corresponding RMSE values. In any case,
the standard deviation of the reported metrics again confirm
the convergence of all three networks toward the same solu-

tion. The MSE training loss at convergence is consistently
lower for the .#’Morph layer (by an order of magnitude of
10 with respect to .Z’Morph and up to 10> with respect to
P Conv). Moreover, .Morph again requires a lower num-
ber of epochs to reach convergence.

5.2 Learning Grayscale Openings and Closing
5.2.1 Experimental Protocol

We now investigate the capacity of the proposed layers to
learn more advanced morphological operations such as the
opening o (composition of an erosion followed by a dila-
tion with the same structuring element) or the closing e
(composition of a dilation followed by an erosion, again
with the same structuring element). The network archi-
tecture is thus adapted as displayed in Fig. 8. It is now
composed of two chained morphological layers: The out-
put of the first layer is fed as input to the second layer.
Note that we do not consider hybrid networks here where
the two morphological layers are not defined by the same
operation PConv/.ZMorph/.Morph. Besides, it is worth
mentioning that the two filters evolve independently from
each other.
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PConv(-,w1,p1)

L

PConv(-,w2,p2)

[ rescaley| )

[[ﬁMorph(-7 Wi, Pl )]

M

rescaley [CMorph(-7 wa, p2)

SMorph(-,wi,0n)

Layer 1

SMorph(-, w2, 02)

Layer 2

Fig. 8 Network architecture used for the opening/closing scenarios. Blue blocks are trainable units. A scenario is defined as the choice of o or e
and one of the six target structuring elements in the upper path, and the choice of PConv, ¥Morph or .#’Morph for both consecutive layers in the

lower path (Color figure online)

Nevertheless, the two morphological layers are expected
to learn filters having exactly the same shape, with parameter
p or « of opposite signs, once training has converged. For
the same reasons as the erosion/dilation scenarios described
in Sect. 5.1.1, rescaling blocks are again added before
both morphological layers, and the final scale/bias Conv
1 x 1 x 1 is placed at the output of the network. All other
parameters (batch size, loss, optimizer and learning rate, con-
vergence criterion and filters initialization) remain the same
as described in Sect. 5.1.1. We again perform five runs per
scenario and report the average (and standard deviation) of
the parameter p/« as well as the RMSE at convergence for
both layers, along with the MSE training loss at convergence
and the number of training epochs.

5.2.2 Obtained Results

Figure 9 presents the qualitative and quantitative results
obtained for the two layers of PConv, ZMorph and
-¥Morph morphological networks in opening o scenarios.
The PConv network always succeeds at learning the right
morphological operation since the first (resp. second) layer
always converges to p; < 0 (resp. p2 > 0). However, except
for cross3 and cross7, |p| < 10, indicating that the layer is
applying pseudo-dilation or pseudo-erosion only. In addition,
the learned structuring element suffers again from the hollow
effect. A pathological issue arises for #Morph and .’ Morph
with the cross3 structuring element: .#’Morph actually per-
forms a closing operation instead of an opening (since the first
layer converges toward p; > 0 and the second one toward
p2 < 0), while .¥’Morph achieves two consecutive pseudo-
erosions in the network (¢; < 0 and ap < 0). ZMorph
also struggles with disk2 since the second layer also con-
verges toward an erosion instead of a dilation. Apart from
those obvious failure cases, a visual analysis of the learned
filters yields another observation: While the second network
layer converges toward a filter whose shape is very close to
the target structuring element, it might not be the case for
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the first layer that appears slightly flawed (this is noticeably
the case for cross7, diamond3 and complex for -ZMorph).
These convergence issues are further detailed and analyzed
in Sect. 5.2.3. Apart from those edge cases, all networks again
appear very stable in terms of convergence results, judging by
the low standard deviation values for all reported quantitative
metrics, with .¥’Morph almost consistently outperforming
PConv and .ZMorph in terms of RMSE for both layers,
MSE loss at convergence and number of training epochs.
Similar results for closing e scenarios are presented in
Fig. 10. Several convergence issues arise for all three investi-
gated layers for the scenarios whose reported metrics appear
in red. .’Morph again converges toward two consecutive
erosions on cross3 and disk2, with the shape of the learned
filters being nowhere near the expected target structuring
elements. For PConv/cross7 and -ZMorph/cross3, the high
standard deviations for the parameters values come from a
divergent behavior: In both cases, the network converged
three times out of the five runs toward a solution and the
two remaining times toward another solution. These diver-
gent solutions, displayed in Fig. 11, are the only two cases
among all investigated scenarios where the networks do not
repeatedly converge toward a stable solution. ZMorph/disk2
and -ZMorph/complex scenarios also appear to have some
relatively high standard deviation values for the layer param-
eters, but the associated RMSE for the learned filters (coupled
with a visual examination of those learned filters) confirms
that the network still converged toward a stable solution. For
those precise cases, the observed variations in terms of final
parameters values have a negligible effect on the output of the
ZMorph layers since the parameters absolute magnitudes
ensure that the applied operations are very good approxi-
mations of erosions or dilations. Thus, those variations have
little effect on the networks learning behaviors and the shapes
of the learned filters. The .ZMorph/complex scenario also
features some important variations in terms of number of
epochs to reach convergence, although all five runs did con-
verge to a solution in less than the maximal number of epochs
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cross3 cross7 disk2 disk3 diamond3 complex
]
| |
P1 —18.65+0.29 —14.174+0.32 —8.13+£0.04 —8.59+£0.06 —8.05+0.01 —9.26+0.15
PConv 12 22.11+0.35 21.21+£0.47 17.7240.15 7.03+£0.10 7.49+0.01 8.87+0.10
RMSE| 0.91+£4x107* 1.45+£1x1073 2.69+7x1073 3.13+3x1072 3.17+5%1073 2.5343x1072
RMSE) 0.32+1x1073 0.87 +£2x1073 2494251073 2.51+1x1072 2434451073 2.49+1x1072
LOSS  89x1075£3x107°  7.5x1070£1x107°  4.9x1074£2x107°  3.9x107*£2x107°  44x1074£4x107°  2.2x107*+£6x107°
EPOCHS 167443 114+8 61+8 47+13 5045 27412
]
I I | |
D 7.39+£0.14 —22.6840.57 —10.7440.14 —10.8840.11 —12.8240.08 —9.54+0.03
SMorph 7 ~12.89+£0.06 66.71+0.91 ~1.07+0.003 8.18+0.08 12.5540.07 9.79+0.10
RMSE; 3.1742x1073 1.02+6x1072 1.99+7x107% 0.17+8x1073 1.92+5%1072 1.15+8x1072
RMSE) 4724+8x1073 0.02+3x107% 1.61+8x1073 1.80+4x1072 0.70+4x1073 0.85+8x1073
LOSS  87x1072£9x107°  43x1075+£2x10°°  2.0x10 3 +£1x107>  3.8x107*+1x107>  32x107*+4x107%  2.3x107*+£2x107°
EPOCHS 5146 111+8 165+42 2145 46+6 44+4
| |
W1/W2 |
o —0.36+0.0009 —24.7140.16 —34.7140.01 —29.1540.07 —38.36+0.08 —18.6940.02
SMorph o ~3.7240.05 40.6240.01 41.38+0.008 45.4140.02 47.1340.02 16.08 +0.02
RMSE| 330+ 1x1072 0.22+1x1072 0.06+8x107° 0.04+8x1073 0.06+5%1072 0.11+3x1072
RMSE; 1.63+5x107° 0.06+3x1072 0.03+1x1072 0.05+1x1072 0.06+2x10"2 0.11+3x1072
LOSS  4.8x10724+4x107°  4.6x1077£9x107% 551077 +£4x10"°  62x1077+8x10°  55x1077+£4x107%  1.8x1076+4x1078
EPOCHS 2243 4145 3543 4244 42+6 4244

Fig.9 Learned filters w;, corresponding parameter p; /o; and RMSE; between the learned filter and the target structuring element for both layers
(i € {1,2}), MSE training loss at convergence and number of training epochs for P Conv, £Morph and .#’Morph layers on an opening o task. Best
(lowest) results are in bold. Abnormal results are in red (Color figure online)

allowed during training (set to 1000). Except for failure cases
on cross3 and disk2 previously discussed, .”Morph again
consistently outperforms PConv and -ZMorph in terms of
shape and RMSE of learned filters, MSE loss at convergence
and number of epochs to reach convergence.

5.2.3 Convergence Issues

The analysis in Sect. 5.2.2 of the obtained results for open-
ing and closing scenarios raised several issues in terms of
convergence behavior for . Morph and .¥’Morph layers, par-
ticularly for cross3 and disk2 target structuring elements.
In Kirszenberg et al. [11], we conjectured that this edge
case may be a consequence of the final scale/biais Conv
1 x 1 x 1 layer, over-compensating for the gain or loss of
average pixel intensities and impeding a correct error flow
while back-propagating the error during the learning phase.
This explanation has, however, two weaknesses: These con-
vergence/learning issues only affect Z’Morph and .¥’Morph
and seemingly not the P Conv layer, although -#Morph and
P Conv both rely on the CHM asymptotic behavior, and they
only concern cross3 and disk2 target structuring elements,

although cross7 and disk3 have the same shape (despite
not the same size within the 7 x 7 spatial support). This
latter observation led us to conduct a more in-depth anal-
ysis of the gradual convergence of the layer filters along
the epochs during the training phase. Some representative
results of this analysis are shown in Fig. 12, which dis-
plays the filter weights of two consecutive .¥’Morph layers
at initialization, 1%, 2%, 3%, 5%, 7%, 10%, 20%, 50% and
100% of total number of training epochs in a closing e sce-
nario, with the target structuring elements being diamond3,
cross7 and disk2. For the first two target structuring ele-
ments, the convergence succeeded (as shown in Fig. 10 for
those particular scenarios, as well as the corresponding val-
ues of o and a, during convergence displayed in Fig. 12,
but it failed for the latter one (the .””Morph network con-
verging toward two successive pseudo-erosions with oy =
—0.282 and ap = —6.481). The way the filter weights
update throughout the learning process for diamond3 and
cross7 share several similarities: The convergence toward
the correct shape is faster for the second layer than the
first one (since its weights are updated before those of the
first layer during back-propagation), so is the convergence
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cross3 cross7 disk3 diamond3 complex
P1 16.36£0.12 5.99+0.5 5.78£0.004 7.85+£0.21 3.43+0.002 5.84+0.003
PConv 12 —20.9540.14 —8.07+1.65 —8.54+0.002 —10.2240.36 —9.73+0.04 7.64+0.002
RMSE| 0.82+£6x107* 3.82+1x107" 2.8242x107* 4.47+3x1073 43445%107° 4.16+3x107°
RMSE) 0.81+1x1073 3.87+£9x1072 3.07+£3x107* 4.63+2x107" 451+6x107° 4.13+4x107°
LOSS  89x1075+£1x107°  6.5x1073£7x107* 171073 £6x1078 1.0x1073£6x107  5.4x1073£5x1077  5.0x1073£1x1077
EPOCHS 194 +21 5648 50+4 60+7 3548 49+6
14 46.554+29.7 93.67+£0.43 73.33+£2.49 89.50+0.55 12.1940.009 72.29+1.84
SMorph 7 —41.334+222 —92.07740.38 —82.37+1.84 —86.2940.26 —12.24+0.02 —84.01+1.32
RMSE 3.1742x107" 0.01+7x107° 0.14+3x1073 0.07 +3x107* 0.75+7x107% 0.05+1x1073
RMSE) 3.2949x107! 0.63+2x1073 1.16£2x1072 0.40+1x1073 0.95+7x1074 0.75+5%1072
LOSS  3.7x1073+£6x107* 1.3x107°+2x1077  2.0x107*+£1x107° 171077 £2x1077  6.2x107*£1x1077 1.5x107° +8x1077
EPOCHS 7243 300422 157412 123417 61+8 329494
o —0.25+0.0003 42.4740.02 —0.28+0.002 41.4240.26 43.0240.04 23.8240.04
SMorph o —3.44+40.01 —41.6040.02 —6.48+0.02 —39.96 4+ 0.06 —42.9440.03 —29.73+0.04
RMSE| 1.99+1x1073 0.16+1x1072 2.7742x1073 0.09+1x1073 0.09+3x1073 0.15+4x1072
RMSE; 3.7743x1073 0.09+8x1073 3.814£9x1073 0.01+3x1073 0.10+5x1073 0.11+6x1072
LOSS  1.9x10734+6x1077  8.0x1077£3x107%  45x1073+£4x107°  1.1x107®+3x107%  87x1077+£3x107%  1.2x1076+5%1078
EPOCHS 1842 3946 1541 4444 3944 4743

Fig. 10 Learned filters w;, corresponding parameter p; /o; and RMSE; between the learned filter and the target structuring element for both layers
(i € {1,2}), MSE training loss at convergence and number of training epochs for PConv, #Morph and .’Morph layers on a closing e task. Best

(lowest) results are in bold. Abnormal results are in red (Color figure online)

of the parameter o toward a range of values ensuring that
the operation applied by the layer well approximates a dila-
tion or an erosion (and no longer a pseudo-dilation/erosion),
and the weights updating scheme seem to start on the filter
edges and then spread toward the center. This last obser-
vation may be the reason why the convergence failed for
disk2 since the extent of this structuring element is smaller
than its spatial support, thus not providing any anchor point
on the edges for the weights to update toward the cen-
ter of the filter, also explaining the same failure cases for
cross3.

In order to evaluate the soundness of this previous hypoth-
esis, we reduced the size of the spatial support of cross3
and disk2 from 7 x 7 to 3 x 3 and 5 x 5, respectively
(for the extent and the spatial support of both structuring
elements to be the same), and increase this of disk3 from
7x71t09x9,11 x 11 and 13 x 13 (to make the extent
of disk3 smaller than its spatial support). Figure 13 displays
the filters that have been learned by .Z’Morph and .’Morph
for those updated target structuring elements on opening o
and closing e scenarios. For 3 x 3 cross3 and 5 x 5 disk2,
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Fig. 11 Examples of network divergent behavior for PConv/cross7/e
and .ZMorph/cross3/e scenarios, with average parameter values at con-
vergence

#Morph performs well on closing e and .’ Morph on open-
ing o, but both morphological layers fail on the opposite
operation. For disk3 in an increased spatial support, .’ Morph
achieves much better results on the opening o than -’ Morph.
Both layers, however, struggle with the closing e opera-
tion.
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Init 1% 3% 5% 7% 10% 20% 50% 100%
‘
0318 0786  0.944  1.113  1.251 1531 6409 37.176  43.002
(053 —~1910 —1.956 —1.724 —1.599 —1.674 —2.083 —8.904 —39.250 —42.870
Layer 1
o 0 0433  0.723  0.895  1.184  1.365  1.823 5384  31.120 42454
Layer 2
(07) 0 —-1.721 —-1.608 —1.584 —1.531 —1.650 —2.448 —7.813 —35.646 —41.604
o —-0.185 -0.363 —-0.306 —-0.279 -0.272 -0.261 —-0.256 —0.277 —0.282
—0.941 —1.392 —1.804 —2.221 -2.541 -3.015 —4.416 —6.500 —6.481

Fig. 12 Convergence of two consecutive .’Morph layers in a closing e scenario, with corresponding values of «; and «;. Target structuring
elements are diamond3 (top row), cross7 (middle row) and disk2 (bottom row). Layers are shown at initialization, 1%, 2%, 3%, 5%, 7%, 10%,

20%, 50% and 100% of total number of training epochs

As a conclusion, the extent of a structuring element rela-
tively to the size of its spatial support seems to be connected
to the ability of -ZMorph and .¥’Morph morphological lay-
ers to properly learn this structuring element for opening
o and closing e scenarios, but it is insufficient on its own
to explain all presented failure cases. Convergence to local
minima might also be a plausible explanation since the iden-
tification of a structuring element based on original and
transformed images only is an under-determined task as
several solutions might exist. In particular, symmetrically
shifted filters as .’Morph/13 x 13 disk3/o compensate each
other out and are as valid as a solution as two centered
filters (which were expected on this case). Integrating any
prior information (symmetry, sparsity, spatial extent) on the
sought structuring element within the optimized training loss
function could be a potential solution, but this prior infor-
mation might be hard to have access to on practical use
cases.

6 Learning Binary Morphological Operators
6.1 Experimental Protocol

In this section, we evaluate the capacity of the proposed
morphological layers to operate with binary morphological
operations and binary structuring elements. For that purpose,
we slightly depart from the framework exposed in Sect. 5:
While the overall idea remains the same (identifying a mor-
phological operation and its associated structuring element
based on couples of original and transformed images), the
input MNIST images and the target structuring elements are
now binary. The former correspond to the original 60,000
MNIST images, used in the previous section, thresholded to
%, while the latter are depicted in Fig. 14. The output target
images are thus also binary, obtained using Eq. (1) for the
erosion &, Eq. (2) for the dilation @, and their composition
for the opening o and closing e.
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an i

C O B

3 x 3 cross3 5 x5 disk2 9 %9 disk3 11 x 11 disk3 13 x 13 disk3
3725 —8.506 —44.25 60.04 —10.52 9.408 —9.948 9.094 —1.971 1.055
ZLMorph
86.62 —83.89 84.46 —81.52 12.58 —19.47 12.26 —7.721 14.29 —8.800
—37.33 38.35 —36.70 43.56 —27.56 43.44 —25.49 41.65 —24.39 39.95
S Morph
_—
—0.167 —1.697 —0.181 —4.581 38.76 —37.14 0.820 —1.176 45.06 —29.77

Fig. 13 Learned filters for opening o and closing e operations for ZMorph and .#’Morph for cross3 in a 3 x 3 spatial support, disk2 ina 5 x 5
spatial support, as well as disk3in 9 x 9, 11 x 11 and 13 x 13 spatial supports

1 =

cross7 bsquare bdiamond bcomplex

Fig. 14 7 x 7 target binary structuring elements. Yellow (resp. blue)
corresponds to Boolean TRUE (resp. FALSE) (Color figure online)

However, both PConv and .ZMorph are not compatible
with the processing of binary images since they require their
input to be rescaled in the range [1, 2]. Therefore, working
in this binary framework restricts to the use of the .¥’Morph
morphological layer only. Nevertheless, the use of the rescal-
ing block is no longer mandatory: It is thus removed from the
network architecture. The scale/biais Convl x 1 x 1 is also
discarded for the same reason. This results in very simple net-
work architectures, merely composed of a single .’Morph
layer for erosion and dilation scenarios, and comprising two
consecutive .#’Morph layers for opening and closing scenar-
ios. The other network parameters (batch size, learning loss,
optimizer and learning rate, convergence criterion and fil-
ter initialization) are the same as those described in Sect. 5.
As the results presented in Sect. 5 for .”Morph showed to
be very stable in terms of repeatability among several runs,
we this time conduct a single run per investigated scenario.
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Therefore, the presented results should only be considered as
a proof of concept that the .’Morph layer is able to operate
on a binary morphological framework.

6.2 Expected Learned Filters

Even though the target structuring elements are binary (made
of Boolean TRUE/FALSE pixel values), the grayscale formal-
ism for non-flat structuring element described in Sect. 3.1
encompasses the use of binary structuring elements. If B
stands for the spatial position of TRUE pixels in the binary
structuring element, then this latter is equivalent to the
grayscale structuring function described by Eq. (5), recalled
as follows:

0 if B
b:x— fre o (5)
—oo otherwise

Thus, the filter learned by the .#’Morph layer should have a
similar structure, namely weights close to O at the position
of target TRUE pixels, and large negative weights for binary
FALSE pixels. However, the input image values are in practice
bounded ( f (x) € {0, 1} since the input images f are binary).



Journal of Mathematical Imaging and Vision

Therefore, the structuring function (5) is equivalent to

b:x|—>{

Moreover, because .#Morph(f, w,a < 0)(x) =~ (f &
—w)(x) (see Eq. (19)), we finally expect the .’Morph filter
to learn

0

< -1

ifxeB

o (20)
otherwise

=0 ifxeB o

w(x) = ] for a dilation 21
< —1 otherwise
=0 ifxeB

w(x) = n ] for an erosion. (22)
> 1 otherwise

As a consequence, the Boolean TRUE/FALSE values of the
target binary structuring element displayed in Fig. 14 are
converted to 0/ — 1 for the dilation (resp. 0/1 for the erosion)
and the learned filter weights are clipped to — 1 if @ > 0 (resp.
+1if o < 0) before computation of the RMSE between the
learned filter and the target structuring element.

6.3 Obtained Results

Figure 15 shows the obtained results by a single .’Morph
layer on binary erosion and dilation scenarios. In any case,
it can be seen from the sign and magnitude of « that the
layer converged toward the correct operation and performs
an accurate approximation of it. Furthermore, it took approx-
imately 30 epochs for the layer to reach convergence, which

is even faster than the reported learning performances in the
grayscale framework. Last but not least, it was perfectly able
to recover the shape of all target binary structuring elements,
as expected by Egs. (21) and (22): All TRUE pixels corre-
spond to weights close to 0 in the learned filters, while all
FALSE pixels indeed appear to be greater than 1 for the erosion
and lower than —1 for the dilation. This can be qualitatively
appraised with the clipped versions of the learned filters, and
it is quantitatively confirmed by the low RMSE values.
Figure 16 presents the qualitative and quantitative results
obtained by a network composed of two consecutive .’Morph
layers for binary opening o and binary closing e scenarios.
For the opening case, the network failed on bsquare as it
converged toward a closing operation (¢; > 0 and oy < 0)
and the shape and values of the learned filters are consid-
erably different from the expected ones. For the three other
target structuring elements, however, the obtained results are
excellent, as both layers perfectly recover the shape of the
target (the second layer performing even better than the first,
replicating the behavior discussed in Sects. 5.2.2 and 5.2.3).
Results, however, degrade for the closing: Although the net-
work converged toward a pseudo-closing for all four target
structuring elements (the first layer only achieves pseudo-
dilation and the second layer performs pseudo-erosion), the
learned filters are only satisfactory for bsquare. While those
results are rather intriguing (in particular, why bsquare is the
only failure case for the opening but the only success case for
the closing), an in-depth analysis of the convergence behav-
ior of the layers, similar to what is conducted in Sect. 5.2.3,
would be necessary to further investigate those failure cases.

cross7 bsquare bdiamond bcomplex
167 1 191 1 1.54 1 1.48 1
] 1 R .1
w H, N
-0.00 -0.00 -0.02 -0.02 -0.00 -0.00 ‘ -0.00 ‘ -0.00
o —10.12 —9.80 —10.59 —10.43
RMSE 1.75x1072 4.65x1072 1.72x1072 1.08x1072
LOSS 2.9x1077 3.1x1077 2.9x1077 2.9x1077
EPOCHS 31 31 26 32
-0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.01 -0.01
' 71 . I n Hl n i i H I E] I] E]
o 9.10 8.88 9.96 10.11
RMSE 3.96x1072 1.78x1072 6.57x1072 5.45x1072
LOSS 4.5x1077 4.0x1077 4.6x1077 4.9x1077
EPOCHS 34 38 48 31

Fig. 15 Learned filter w and its clipped version with associated color bars, and quantitative metrics for a .”’Morph layer for binary erosion & (first

row) and binary dilation @ (second row) scenarios
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cross7 bsquare bdiamond bcomplex
1.94 1 0.42 0.42 1.69 1 150 1
-0.02 -0.02 -6.40 -1 -0.02 -0.02 -0.01 L ‘ -0.01
o —8.07 272 —8.40 —8.61
RMSE| 9.12x1072 29.27 6.69x1072 4.77x1072
0.01 0.01 2,93 1 -0.00 -0.00 -0.00 -0.00
o 8.53 —8.32 9.74 9.33
RMSE) 3.75x1072 20.99 6.82x1073 4.11x1073
LOSS 7.7x1077 2.4x1072 7.2x1077 7.1x1077
EPOCHS 28 21 38 34
0.28 0.28 0.01 0.01 0.23 023 0.26 0.26
-5.22 -1 -2.55 -1 -4.62 -1 -4.58 -1
o 3.63 6.65 4.25 4.32
RMSE{ 3.80 2.49x1072 2.47 4.70
4.30 1 219 1 1 4.05 1 4.35 1
-0.19 -0.19 -0.02 -0.02 -0.20 -0.20 -0.30 -0.30
o —4.32 —8.39 —4.54 —4.30
RMSE) 3.87 6.43x1072 3.22 47
LOSS 1.4x1072 8.6x1077 11x1072 1.2x1072
EPOCHS 27 29 22 16

Fig. 16 Learned filter w;¢(1,2) and its clipped version, and quantitative metrics for two .#’Morph layers for binary opening o (first row) and binary
closing e (second row) scenarios. Abnormal results are in red (Color figure online)

7 Conclusion

In conclusion, this paper extends the preliminary results pre-
sented in Kirszenberg et al. [11] on -ZMorph and .¥’Morph
morphological layers. The rationale behind both layers is the
same, namely to provide smooth and differentiable approx-
imations of min and max operators to achieve trainable
grayscale erosions and dilations. However, .ZMorph relies
on the asymptotic properties of the CHM (similarly to the
PConv layer of Masci et al. [15]), while .¥’Morph lever-
ages the a-softmax function to reach the same goal, thus
sidestepping some of the limitations shared by the PConv
and .ZMorph layers. In Kirszenberg et al. [11], promising
results were reported in favor of .ZMorph and .¥’Morph
morphological layers regarding their capacity to learn mor-
phological operations with grayscale structuring elements.
However, a single run per scenario was conducted, and sev-
eral edge cases were raised but left unanswered.

In this present article, we remedy to the shallow prelimi-
nary results reported by Kirszenberg et al. [11]. More specifi-
cally, we now perform multiple runs per learning scenario and
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thoroughly evaluate the obtained results in terms of qualita-
tive and quantitative performances as well as robustness to
initialization. Those results confirm that morphological net-
works based on .ZMorph and .¥’Morph layers are indeed
able to learn morphological operations along with their
grayscale structuring element, almost all the time outper-
forming the PConv layer (that serves as a baseline in terms
of performances), with .’Morph also surpassing -’ Morph.
Besides, we show that the investigated morphological layers
are well stable since they always converge toward the same
solution (up to some isolated cases). We also further focus on
the convergence edge case reported by Kirszenbergetal. [11]
and conduct some additional experiments to settle it. While
we are up to now not able to definitively settle those conver-
gence issues, a plausible solution has been identified. Finally,
in contrast to PConv and .£Morph layers that are limited by
their requirement of a rescaled input within the range [1, 2],
the .’Morph layer is also compatible with a fully binary
morphological framework. Thus, we evaluate the capacity
of .’Morph to operate with binary morphology and to learn
binary structuring element. Even though the results reported
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for opening and closing scenarios would require much anal-
ysis, those obtained on erosion and dilation confirm that the
’Morph layer well accommodates to binary morphological
frameworks. Yet, some additional efforts are still needed to
fully resolve those convergence edge cases. Finally, while the
presented results are very encouraging, those should be only
taken as a proof of concept regarding the behavior sound-
ness and the performances of the proposed -ZMorph and
-¥Morph layers. As a matter of fact, recovering a morpho-
logical operation and its associated structuring element is a
situation that is seldom encountered in a practical image pro-
cessing application. Therefore, the integration of .Z’Morph
and .¥’Morph into more complex network architectures and
their evaluation on concrete image processing applications
are part of our future research avenues.
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