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Abstract—Many text segmentation methods are elaborate and
thus are not suitable to real-time implementation on mobile
devices. Having an efficient and effective method, robust to
noise, blur, or uneven illumination, is interesting due to the
increasing number of mobile applications needing text extraction.
We propose a hierarchical image representation, based on the
morphological Laplace operator, which is used to give a robust
text segmentation. This representation relies on several very
sound theoretical tools; its computation eventually translates
to a simple labeling algorithm, and for text segmentation and
grouping, to an easy tree-based processing. We also show that
this method can also be applied to document binarization, with
the interesting feature of getting also reverse-video text.

Index Terms—Mathematical Morphology; Tree of Shapes;
Non-linear Laplace Operator; Text Segmentation; Document
Binarization.

I. INTRODUCTION

With the dramatic increase of images and video acquired
with mobile devices, content-based analysis techniques have
received a great deal of attention over the last few years; this is
in particular the case of text detection. In this paper, we focus
on text segmentation, that is, finding candidate components
for text characters in natural images.

Text localization methods are often classified into sliding-
windows-based and connected-components-based approaches.
For the former approaches, a classifier is used to determine if
a window contains text, which can be SVM [1], AdaBoost [2],
or Convolutional Neural Networks (CNN) [3]. Such methods
are relatively expensive due to the number of windows to take
into account. The latter approaches consider as text candidates
connected components extracted from the image thanks to,
e.g., keypoints [4], the Stroke Width Transform (SWT) [5], the
Toggle Mapping Morphological Segmentation (TMMS) [6], or
the Maximally Stable Extrema Region (MSER) [7]. Actually
many methods in ICDAR 2015 “Robust Reading” competition
are based on MSER or on Extremal Regions (ER) [8]. Let us
mention that a non-window-based text detection method, using
Fully Convolutional Networks (FCN) to make pixels-to-pixels
text prediction, has just been proposed in [9]. Last, we shall
notice that some very recent methods have put the emphasis
on getting good run-time performances [10], [4], [11]. For a
larger bibliography, the reader can refer to [12], [6], and [13].

We propose a hierarchical image representation based on
the morphological Laplace operator, also called morphological
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Laplacian, with an application that segments text characters
(so it is a component-based approach), and groups them into
text boxes / lines thanks to two kinds of spatial relations:
adjacency and inclusion. The contributions of this paper are
the following:

● a hierarchical (i.e., tree-based) representation of the image
contents, where adjacency between components is related
to inclusion;

● a character segmentation method which is a good trade-
off between efficiency (linear time complexity) and qual-
ity (with a competitive F-score);

● an efficient grouping of characters into text boxes, taking
fully advantage of the tree structure;

● an illustration on another application (document bina-
rization) of the capabilities of the proposed tree-based
representation.

As compared to many methods of the literature, the method
that we propose features many properties: it is invariant
to contrast inversion (so we also extract reverse-video text
without any special processing); it is invariant to contrast
change; it is invariant to scale and rotation; and it handles
a large variety of scripts (Latin, Hebrew, Chinese, etc.). Note
that we only use the hierarchical representation to extract text
candidates; although we filter out some irrelevant components,
we do not include a false positive elimination step (whereas
many methods do). This paper does not contain an evaluation
at text-line level of a complete text detection pipeline. Yet
we give some quantitative results of text segmentation, which
reveals that our method outperforms some widely used text
component extraction methods.

In Sec. II we recall the theoretical background in math-
ematical morphology and digital topology that is used in
our approach. In Sec. III we detail the different aspects of
our approach: the hierarchical Laplacian-based representation
and how we rely on it to segment text. In Sec. IV we
proceed to experiments and show that we compete with
classical component-based text segmentation methods. Last we
conclude and give perspectives in Sec. V.

II. THEORETICAL BACKGROUND

This section gives a brief introduction to the theoretical tools
involved in the proposed method. The impact of these tools is
to obtain strong properties without making the method more
complicated, and actually, they allow for simplification.



(a) Input u. (b) ∆4(u) = 0. (c) LoG17(u) = 0.

(d) ∆◻17(u). (e) ∆◻17(u) = 0. (f) ∆◻51(u) = 0.

Fig. 1: Zero-crossing contours of different Laplace operators:
(b) and (c) come from classical linear operators; (e) and (f)
come from the morphological operators. On (d), the scalar
morphological Laplacian is depicted with positive and negative
values tinted resp. in green and red.

A. Morphological Laplace Operator

In order to detect text in images, many methods first look for
candidate regions for characters. A seminal method, based on
contour detection, is to consider the 0-crossings of a discrete
Laplace operator (denoted by ∆): given a gray-level image
u, the contours of interest are given by ∆u = uxx + uyy = 0.
This method is interesting for several reasons: 1) it is a very
simple approach; 2) it provides closed contours; 3) labeling the
components of the image having the same sign, resp. positive
and negative, gives a segmentation; 4) it is self-dual, i.e., it
processes dark objects and bright ones in the same way.

The simplest discretization of this linear operator relies on a
cross-shaped convolution kernel. Yet this elementary operator
is very sensitive to noise, so many 0-crossings arise as it can
be seen in Figure 1(b). To get rid of this problem, one can rely
on a larger kernel, e.g., by considering the approximate given
by the Laplacian of Gaussian (LoG) operator. Unfortunately,
its smoothing effect alter the localization of contours, as
illustrated by Figure 1(c).

An elementary morphological Laplace operator has been
defined in [14] by ∆N = (δN − id) − (id − εN ), relying
on the elementary dilation (δ) and erosion (ε) morphological
operators. A natural extension of the elementary operator uses
a structuring element B to replace the neighborhood N ; it
is depicted in Figure 1(d) with B being a centered square
(denoted by ◻) of size 17 × 17. Although it has the same
“simplification strength” as the linear LoG version, one can see
when comparing the resulting 0-crossings (LoG in Figure 1(c)
vs. morphological in Figure 1(e)) that the morphological non-
linear version features a much higher fidelity to actual object
contours than the linear version. Furthermore, when increasing
the size of the structuring element, 0-crossing contours keep
a strong fidelity to data, as illustrated in Figure 1(f) with B
now being a 51 × 51 square.

One can also observe that the salient object contours are
curiously very stable—they are not altered—when the size of
the structuring element (the “morphological kernel”) increases.
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(b) Its tree of shapes.

Fig. 2: Representation of an image by its tree of shapes.
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(a) An image.
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(b) A well-composed interpolation.

Fig. 3: Having a well-composed interpolation (right) of an
image (left) ensures that level sets contours (depicted in black)
are Jordan curves.

From Figure 1(e) to Figure 1(f), the contours of the “Yes” word
remain the same, whereas spurious non-interesting contours
disappear. Furthermore, the size of the structuring element B,
a 51×51 square, is much larger than the character thickness
(note that the input image u has 130×100 pixels). It means that
obtaining salient contours thanks to the morphological Laplace
operator hardly depends on the size of B. Despite of this great
advantage, the morphological Laplacian has been almost never
used in the literature [15], [16].

B. Tree of Shapes

The tree of shapes is a morphological self-dual represen-
tation of an image; see [17] for history, implementation, and
references. This tree encodes the inclusion of the level sets,
i.e., the connected components obtained by thresholding. An
illustration is given on a very simple image by Figure 2.

Given an image u ∶X → Z and any scalar λ ∈ Z, the lower
level sets are defined as [u < λ ] = {x ∈ X ∣ u(x) < λ},
and the upper level sets as [u ≥ λ ] = {x ∈ X ∣ u(x) ≥

λ}, with X = Z2 for a 2D image. Considering the connected
components of these sets (obtained by the CC operator), and
using the cavity-fill-in operator (denoted by Sat), the tree of
shapes of an image u is defined by: S(u) = {Sat(Γ) ∣ Γ ∈

CC([u < λ]) ∪ CC([u ≥ λ]) }λ. Such a tree is called self-
dual since many self-dual operators can be derived from this
tree [18].

C. Well-Composed Sets and Maps

A sub-class of sets defined on the cubical grid, called well-
composed, has been proposed in [19], where all connectivities
are equivalent, thus avoiding many topological problems. This
notion of well-composedness has been extended in [20] from
sets to functions: a gray-level image u is well-composed if any
set [u ≥ λ] is well-composed. A straightforward characteriza-
tion of well-composed gray-level images is that every 2 × 2
block of pixels values (a, d)(c, b) should verify: intvl(a, b)∩
intvl(c, d) ≠ ∅, where intvl(v,w) = Jmin(v,w),max(v,w)K.
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Fig. 4: Overview of the proposed method: hierarchical repre-
sentation (Steps 1 to 4) and application (Step 5).

Well-composed gray-level images are interesting because ev-
ery contour of any level set component is a Jordan curve.

To get a well-composed image from a primary image, one
can compute an interpolation of the primary image that is well-
composed. Figure 3 gives an example of an image which is
not well-composed, but whose interpolation is well-composed.
In [21], the authors have proposed a very simple method to get
a self-dual interpolation, that makes sense when considering
the tree of shapes of an image.

III. DESCRIPTION OF THE PROPOSED METHOD

In this section, we focus both on the proposed morpho-
logical hierarchical representation and how it can be used to
segment text in images.

A. Method Overview
The method that we propose to segment text in natural

images is very simple; put very shortly, text components are
selected among the 0-crossing lines of the Laplace operator of
the gray-level input image. Yet, the very “classical” scheme
of considering the 0-crossings obtained with the linear oper-
ator as object contours does not work well in practice (see
Figures 1(b) and 1(c)). So let us explain what the different
steps of our method are, and let us give the reasons why their
combination (depicted in Figure 4) is effective.

The four first steps aim at computing a hierarchical repre-
sentation of the input image, and the final step is an example
of how this hierarchical representation can serve to segment
text and extract text lines.

Step 1. We first start by taking the luminance of the input
color image. With the resulting gray-level image, we have lost
color information but we observed in our experiments that it
almost never negatively affects text retrieval.

Step 2. With a 11 × 11 square structuring element, we com-
pute its morphological dilation δ◻ and erosion ε◻ to directly
deduce two images. First we get the morphological gradient
∇◻ = δ◻ − ε◻, which is a scalar thick gradient, used later to
discard contours that are not enough contrasted. Second we
get the morphological Laplace operator ∆◻ = δ◻ + ε◻ − 2 id.

(a) ∆wc
◻
(u).
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(b) Tree S(v) with v = sign(∆wc
◻
(u)).

Fig. 5: The inclusion tree is the tree of shapes of the Laplacian
sign image: positive and negative regions are respectively
green and red nodes of the ToS, and 0-crossing regions are
white nodes.

The text character boundaries are expected to belong to the
0-crossing contours of this non-linear operator; actually they
are, and their localization is precise (as shown later in Table I).

Step 3. We compute a particular interpolated image, ∆wc
◻ ,

of the Laplacian image ∆◻, having 4 times more pixels than
the original. (We will see in Sec. III-D that this step can
be emulated, so it is cost-free.) This resulting image is well-
composed, meaning that the boundaries of every components
of any threshold set are Jordan curves. Thus the 0-crossings
(precisely the external 1D contours of the 0-crossings) are
simple closed curved, so they cannot have the shape of a ‘8’.
As a consequence, they are disjoint, and this set of curves
can be organized in an inclusion tree. That contrasts with the
0-crossings depicted in Figure 1, where the Laplacian images
are not well-composed; it is especially visible within the blue
circles in Figures 1(c) and 1(e), where we cannot say what are
the inclusion relationships between (white) regions.

Step 4. Due to the fact that ∆wc
◻ is well-composed, the

regions delimited by the 0-crossings can be labeled very
efficiently (by the classical blob labeling algorithm), and
their inclusion tree is built. In addition, many 0-crossings are
discarded on the fly during the labeling, because they are
not contrasted enough (we use ∇◻), or because they do no
satisfy some geometrical criteria (when they are too small for
instance). The resulting “tree + label image” are depicted on
the bottom-right part of Figure 4.

This 4th step can be seen as the computation of the tree of
shapes of the “sign of the Laplacian” image, as depicted by
Figure 5. This image, v = sign(∆wc

◻ (u)), is a ternary-valued
image (with pixels set to -1, 0, or 1). To compute its tree
of shapes, we run the classical queue-based “blob labeling”
algorithm, which is very efficient. (Note that actually we do
not want regions representing null values in the final tree, so
we group nodes corresponding to 0-crossings with their parent;
it is displayed by the light colored backgrounds in Fig. 5(b).)

Step 5 (application). Last we group components together
to form text boxes. For that, we only consider the bottom
of this tree (the leaves and sometimes their parent): for each
component, we search spatially in the label image what are
their left and right components to be grouped into a text box.
In this step, we highly take advantage of the tree structure: it
allows very easily to discard many regions as non-text, and



1 LABELING(∆wc
◻ , ∇◻)

2 for all p do label(p)← 0, isContour(p)← false
3 `← 0
4 for all p do
5 if label(p) ≠ 0 then continue;
6 (parent , `′, `)← CONTOURIZE(`, p,∇◻, isContour );
7 label(p)← `′, Q .push(p);
8 while not Q.is empty() do
9 q ← Q .pop();

10 for all n ∈ N (q) do
11 if label(n) = 0 and ∆wc

◻ (p) ×∆wc
◻ (n) ≥ 0 then

12 label(n)← `′, Q .push(n);
13 else isContour(n)← true;
14 return (parent , label)

Algorithm 1: Blob labeling and tree computation.

to determine if a leaf region is a character hole or a plain
character.

The key features of this method are the following: 1. It runs
very fast since the processing chain is very simple and since
all operations have a linear time complexity (see Sec. III-E); 2.
The proposed method, based on the morphological Laplace op-
erator, outperforms more “classical” component-based meth-
ods that select candidate regions for characters (see Sec. IV); 3.
The fact that regions form an inclusion tree, thanks to the well-
composedness property, allows for powerful decision taking
when grouping regions into text boxes.

B. Computing the Hierarchical Representation (Step 4)
The algorithm of the labeling process and tree creation,

Step 4 in Fig. 4, is depicted in Algo. 1. ‘label’ is the
label image to compute, ‘parent’ is an array encoding the
parenthood relationship of the inclusion tree (e.g., having
parent(l1) = l2 means the region with label l1 is included
in the region with label l2), Q is a queue of pixels, isContour
is an auxiliary binary image, and ` is the current label.

We browse the pixels in raster scan order (main loop, line 4).
When we reach an unlabeled pixel p, we follow the contour of
the unlabeled region, which is a hole in the label image, thanks
to the isContour image. This is performed in the CONTOURIZE
routine, line 6. The routine CONTOURIZE computes on the fly
the bounding box of the hole and the average of gradient’s
magnitude of its contour. If the bounding box is too tiny or
if the gradient magnitude is very low (meaning respectively
that a 0-crossing contour is due to noise or occurs in a flat
region), we will not create a new node / a new label for this
hole region. With p−1 being the pixel just before p in the
raster scan order (p−1 is thus guaranteed to be labeled), the
routine CONTOURIZE performs: `′ ← ` + 1 and parent(`′) ←
label(p−1) if the hole region is a new region, otherwise `′ ←
label(p−1) and this spurious region will be ignored (because
merged with its parent). Eventually `′ is the label value to
label the considered (yet unlabeled) hole region. For that, we
initialize a queue-based propagation, line 7, and we proceed
to the classical “blob labeling” algorithm, lines 8 to 13. The
blob/region to be labeled is characterized by the connected set
of pixels having the same Laplacian sign as p or being null
(Cf. Fig. 5). During this propagation, we update the auxiliary
isContour image (line 13) to memorize the contours of the
holes included in this region.

(a) Original image. (b) Morphological Laplacian.

(c) Result of labeling. (d) Node selection and text boxes.

Fig. 6: Illustration of the proposed method: mathematical mor-
phology tools are contrast-invariant so we successfully deal
with low-contrasted data (note that the Laplacian image (b)
has been lightened to be readable).

C. Application: Grouping Components into Text Lines (Step5)

The leaves (and sometimes their parents) of the resulting
tree are then grouped together to form text line candidates
(Step 5 in Figure 4). We only consider roughly horizontal
words, containing at least two characters. Thanks to the
Laplacian 0-crossings inclusion, the characters of a same word
belong to the same background; this implies that they have
the same parent in the tree structure. As a consequence,
the grouping process can be performed efficiently: the only
candidate regions for characters to be grouped into text lines
are siblings in the tree structure. Starting from each tree leaf,
we thus use a classical search in the image space to group
siblings (some additional geometric information such as region
height and maximal inter-distance between regions are also
used to control the grouping process). Note that we know
when a leaf is a character hole, because both left and right
neighbor regions are its grand-parent in the inclusion tree
(the background region being the parent); we then consider
its parent node (its background being the character). An
illustration is given in Figure 6.

D. Space Optimization

A drawback of this method seems to be the need of
multiplying by 4 the number of pixels (when computing the
well-composed interpolation of the Laplacian image, and then
proceeding to the labeling, and the final grouping). Actually
we do not need to duplicate the number of pixels: we just can
do as if there were an interpolation. Indeed we can emulate
that the Laplacian image is well-composed, during the labeling
and the contour browsing. Considering Fig. 4, it means that
Step 3 is useless and that all the processing chain is performed
on images having the same size as the input image.

E. Complexity Analysis

The morphological gradient and Laplacian rely on a dilation
and erosion using a square structuring element, which can be
efficiently implemented thanks to a 2-pass (horizontal then
vertical) incremental (heap-based) process. In addition this



(a) Some results.

(b) A case of failure.

Fig. 7: Qualitative results using “ICDAR 2015 Robust Read-
ing” DB: input (left), labeling (middle), final boxes (right).

TABLE I: Text segmentation comparison.

Method Recall Precision F-score Consistency
SWT [22] 0.464192 0.8861 0.609232 0.505042
ER [11] 0.613059 0.892023 0.629221 0.726689

TMMS [6] 0.784568 0.7522 0.768043 0.791303
Our 0.636168 0.933058 0.756528 0.849754

local process is easily parallelizable, and eventually it has
a linear time complexity w.r.t. the number of pixels. The
blob labeling process (see Algo. 1) has also a linear time
complexity: every pixels are only visited once with the main
‘for’ loop and the queue-based propagation, and browsing the
0-crossings contours is also limited by the number of pixels.
Last the grouping process, dealing with very few nodes of the
tree and browsing a few pixels of the label image, is trivially
linear.

IV. EXPERIMENTAL RESULTS

A. Quantitative Results on Text Segmentation

We have evaluated the proposed method of text segmenta-
tion in the context of task 2 of Challenge 2 in ICDAR 2015
“Robust Reading” competition. The dataset contains 233 nat-
ural images with focused scene texts. The ground truth of
text segmentation results is available. Some qualitative results
are given by Figure 7; they include reverse-video, uneven
illumination, fancy fonts, blur, and different text sizes.

We have compared our method with three popular methods
for generating text candidate regions: Stroke Width Transform
(SWT) [22] with the implementation provided by https://
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Fig. 8: Evaluation based on coverage and accuracy [23].

sites.google.com/site/roboticssaurav/strokewidthnokia, text de-
tection based on Extremal Regions (ER) [7], [11] (imple-
mented in OpenCV), and Toggle Mapping Morphological
Segmentation (TMMS) [6]. The first two methods are widely
used as the first step of many state-of-the-art pipelines. For
fair comparison, we compare the performance of text can-
didate region generation of the four methods, that is text
segmentation, and we discard the rest of the pipeline (mainly
false positive removal). For that, we only consider generated
regions that touch the ground truth (GT) texts. We use the
evaluation scheme proposed by [24], [25], based on the recall
and precision scores in terms of pixels; we also compute
a consistency value measuring how much ground-truth text
components are split into several pieces. The results are given
by Table I; our method achieves a competitive recall with a
high precision. Figure 8 depicts in detail how each method
behaves w.r.t. all the ground-truth texts in the dataset: the plots
illustrate the distribution of the segmented text components
at different coverage level (left) and accuracy level (right).
The coverage (resp. accuracy) represents the percentage of the
matched surface between the GT and a detection object with
respect to the GT (resp. detection) surface; see [23] for details.
One can see that our method covers the ground-truth texts
at relatively high coverage levels (mostly distributed between
50% to 100%), which is not the case of the other methods.

B. Qualitative Interpretation of Results
Many methods extract objects thanks to what can be in-

terpreted as “local thresholding”. For instance, for Sauvola’s
binarization approach (see [26] for a multiscale version),
the thresholds computed at pixel-level do not vary a lot for
the same object (given than the window used to compute
thresholds has to be large). Another examples are the MSER
and ER approaches [7], where objects come from the image
level sets. As acknowledged in [4], there is only a partial match
between the boundaries of actual objects and the contours of
level sets (called level lines). Due to the presence of uneven
illumination, these classical approaches and many others just
fail to properly detect the object boundaries. Conversely, these
boundaries belong to the 0-crossings of the morphological

https://sites.google.com/site/roboticssaurav/strokewidthnokia
https://sites.google.com/site/roboticssaurav/strokewidthnokia


(a) Original image. (b) Self-dual binarization.

Fig. 9: Text segmentation with our method can be seen as a
binarization technique, providing also reverse-video text.

Laplace operator. Last, let us recall that we cannot have T-
junctions in 0-crossings. As a consequence, when an artifact
interferes with text characters, that can lead to the case of
failure of our method as depicted in Figure 7 (b).

C. Applying the Method to Document Binarization

The method proposed in this paper has been applied to
binarize documents in the challenge #2 (Smartphone OCR) of
“ICDAR 2015 Competition on Smartphone Document Capture
and OCR (SmartDoc)” [27]. We ranked 2nd in this competition
among 8 contestants, with a character accuracy of 95.85%
(note that the winner has taken advantage of the redundancy of
documents in the test set to correct each individual document).
Relying on the Laplace operator has turned out to be robust for
the binarization of both blurred text and low-contrasted text.
In addition, our method is self-dual since it naturally handles
the same way the case of dark objects over bright background
and the opposite case, as depicted in Figure 9.

V. CONCLUSION

In this paper we have presented a hierarchical representation
of the image contents based on the inclusion of the 0-crossings
of the morphological Laplace operator. Thanks to the well-
composedness property, we guarantee that this tree-based
representation exists, and we have given an algorithm with
linear time complexity to compute this representation (from
our first experiments with an ordinary computer, it runs in
about 0.2s on a 1M Pixel image). We have explained how
to rely on this representation to segment text lines in natural
images, and we have shown that it competes with classical
methods of text candidate extraction. We also have applied an
about similar scheme to document image binarization, which
has been used in the ICDAR 2015 SmartDoc competition. As
a perspective, we intend to integrate our text segmentation
approach in a text detection pipeline—thus including false
positives detection—to get an end-to-end evaluation. Another
perspective is to make the component grouping step be able to
handle multi-oriented text, such as in [6]. In addition we plan
to study quantitatively the robustness of the morphological
Laplace operator when involved in various applications.
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