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ABSTRACT

Classical hierarchical image representations and connected filters work on sets of connected com-
ponents (CC). These approaches can be defective to describe the relations between disjoint objects
or partitions of images. In practice, objects can be made of several connected components in im-
ages (due to occlusions for example), therefore it can be interesting to be able to take into account
the relationship between these components to be able to detect the whole object. In Mathematical
Morphology, second-generation connectivity (SGC) and tree-based shape-spaces study this relation
between the connected components of an image. However, they have limitations. For this reason, we
propose in this paper an extension of the usual shape-space paradigm into what we call a Generalized
Shape-Space (GSS). This new paradigm allows us to analyze any graph of connected components hi-
erarchically and to filter them thanks to connected operators.
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1. Introduction

The notions of connectivity and of connected components
(CCs) are essential in mathematical morphology for image pro-
cessing and image analysis (Serral (1988)). In the case of 2D
images, the classical 4- or 8-connectivities are usually used.

Using these notions, a family of morphological operators that
focuses on attributes of CC’s rather than individual elements
has been developed. These operators are known as attribute fil-
ters (Breen and Jones| (1996)); |Westenberg et al.[(2007)); Ouzou-
nis and Wilkinson| (2011))), connected filters (Jones| (1999))
or connected operators (Serra and Salembier|(1993); Salembier
and Serra (1995); [Salembier and Wilkinson| (2009)). They re-
move connected components of the image, so they cannot create
new extrema nor shift contours. Their edge-preserving property
is desirable in many applications.

Whereas the first connected operators in the literature relied
on classical morphological filtering followed by a reconstruc-
tion procedure, many connected operators now compute from
the input image a tree-based representation of this image. With
this new representation, connected operators can be defined by
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removing unwanted nodes in the tree, the filtered image being
reconstructed from the simplified tree.

Classical connectivities have a limitation. Because an image
is a partial representation of the real world, an object can be rep-
resented by several CCs in the image (due to occlusions for ex-
ample). Thus, a set of CCs can mistakenly be treated as distinct
objects, instead of parts of the same object. To handle this prob-
lem, a well-established approach known as second-generation
connectivity (Serra (1996); Braga-Neto and Goutsias| (2002))
(called SGC for short) uses morphological operators to define a
second connectivity class. The first SGC approaches use struc-
turing elements (SE), which limit how the image domain can be
connected. The mask-based SGC, introduced in |Ouzounis and
Wilkinson| (2007), cancels this dependency by using a mask.
In these two approaches, it is sometimes difficult to define a
sequence of morphological operators or a specific mask that al-
lows us to extract all object clusters. Furthermore, we cannot
represent the fact that there exist different levels of hierarchies
in images: we can have different letters, each made of several
connected components when words are made of several letters
(different levels of abstraction).

For this reason, we introduce in this paper a new approach
which is able to group in a hierarchical way CC’s that are dis-
tant from each other. This approach is inspired by the tree-based
shape-space (Xu et al.| (2016)). The main contributions of our
approach are: (1) an extension of the shape-space paradigm,
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Fig. 1. Generalized shape-space filtering scheme.

namely the Generalized Shape-Space (GSS), that encodes the
relationship between nodes of a tree-based image representa-
tion (this GSS will be analyzed hierarchically thanks to a sec-
ond tree-based representation), (2) a new procedure capable of
reconstructing the GSS, and consequently, reconstructing the
image from the filtered second tree (this reconstruction proce-
dure is more flexible than the one proposed in Xu et al.[(2016)
because we can apply any tree-filtering strategies available to
the framework of tree-based connected operators), (3) some
results showing that the GSS can be used to retrieve sets of
CC’s that represent (broken) objects in images; note that our
approach can easily be used for object extraction or image sim-
plification (see Fig. [I)).

The paper is organized as follows: in Section [2} we recall
the definitions of connected operators and second generation
connectivities. We will also expose some drawbacks and lim-
itations of SGC and tree-based shape-spaces. Then, Section 3]
introduces our generalized shape-space (GSS) and shows how
we can use connected filters on it. In Sectiond] we present how
to apply GSS to represent hierarchically object clusters in im-
ages, and in Section[5] we show some applications of our new
paradigm. Finally, we conclude in Section [6]

2. Background

In this section, we briefly recall related concepts, notably the
tree-based shape-space and second generation connectivity, and
discuss their limitations. For more detail, we recommend Xu
et al.[|(2016) and Salembier and Wilkinson|(2009).

A graph (V, E) is a pair defined as a set of vertices V (defined
in some space) and a set of edges E € V x V. Two vertices vy, v,
such that (v, v, ) belongs to E are said to be neighbors. A graph
G = (V,E) is said to be connected if Vx,y € V, there exists a
path n(x,y) = (p1 = X,...,pi»..., py = y) which verifies that
every p; belongs to V and any pair (p;, pi+1) belongs to E. A set
of vertices X € V is said to be connected (in G) if the induced
subgraph Gx = (X, Ex) with Ex = X x X n E is connected. A
connected component of X is a connected subset of V which is
maximal in the inclusion sense.

An image [ is a triplet (V, Ey, f7) corresponding to a graph
(V, E;) supplied with a color function f; : V — V. In practice,
V is equal to Z", (V, E;) is connected as a graph and the value
space V is equal to RV with N € {1,3} depending on whether
we work with grayscale or color images.

2.1. Connected operators

Connected operators were first defined for binary images
with the introduction of opening by reconstruction (Klein
(1976)) of the foreground. Their extension to grayscale images
is based on flat zones (Serra and Salembier| (1993))). Connected
operators work with CC’s: they remove these components and
change their associated value in such a way that they do not cre-
ate extrema nor shift the contours. Consequently, they do not
create new structures in the image. From a higher level stand-
point, such operators could be implemented by constructing and
filtering a tree-based image representation.

2.1.1. Tree-based image representations

A tree-based image representation T = (R,<) of an image
I = (V,E;, f1) is a connected poset of non-empty disjoint or
nestesd CC’s of V supplied with the inclusion relationship C.

The first family of tree-based image representation is made
of hierarchies of segmentations (see the Binary Partition Tree
in [Salembier and Garrido| (2000)), and of hierarchies of
quasi-flat zones (see [Meyer and Maragos| (2000)) or a-trees
(see |Ouzounis and Soille| (2011} 2012)). These representations
are usually computed in a bottom-up fashion: starting from a
partition of the image, some neighbors are iteratively connected
until we have only one CC covering the whole domain of the
image.

The second family of tree-based representation are threshold
decompositions. When the value space X of the image is sup-
plied with a total order <, the lower and upper level sets at level
A are defined respectively by: [fi <] = {ve V| fi(v) <2}
and [ fi > ] = {ve V| fi(v) > 4}. The min-tree (resp. max-
tree) (Hanusse and Guillataud| (1992)); Jones| (1997); |Salembier
et al.| (1998); |Carlinet and Géraud| (2014)) codes the inclusion
relationship between the connected components of all possible
lower (resp. upper) threshold sets: R. = U, CC([ fi < 1]) and
R* = U, CC([ fi 2 A]). The tree of shapes (ToS) (Caselles
and Monasse, (2010); |Géraud et al.| (2013))) is a fusion of the
min-tree and the max-tree. It is the hierarchy induced by the
saturated connected components of the lower and upper thresh-
oldsets R = {Sat(T'); I ¢ R. U R* }.

A tree-based image representation 7 is usually supplied with
a function F : R — V so that T is an equivalent representation
of I; that is, I can be reconstructed from the triplet (7,C, F).

2.1.2. Tree-based implementation of connected operators

When implementing connected operators using trees, the im-
age contents are first mapped into a tree-based representation.
The choice of the tree is often driven by the application and
the input image contents (for instance, when dealing with a text
document image with dark text over a bright background, the
min-tree contains the components of the characters). The nodes
of the tree T = (R, <) will then be weighted using an attribute
function A : R — R. The attribute A(R) of a region R can be
the value of the pixels corresponding to R in the initial image,
or the area of R, or more complex measures such as the com-
pactness (Montero and Bribiescal(2009)), the elongation (West-
enberg et al.[(2007)) of R, and so on.



Image filtering is a process of selected tree node removal
depending on the associated A. In the case of trees encoding
the image decomposition with connectivity criteria as in |Serra
(1988), tree filtering can be divided into two classes: pruning
and non-pruning (Urbach et al.| (2007)). We call a method a
“tree pruning” strategy if it removes the whole sub-trees asso-
ciated to some nodes in the tree, and we call it a “non-pruning”
strategy otherwise. In the latter case, some descendants of a
filtered node can be preserved. Please note that the differenti-
ation between “pruning” and “non-pruning” does not apply to
a-trees; it only makes sense for threshold-based trees (min-tree,
max-tree, and tree of shapes).

When the attribute function A is increasing (which means
that VC;,C; e R, C; € C; = A(C;) < A(C))), the tree fil-
tering is easy to implement: when a node is removed, it means
that its attribute fails to satisfy some criteria, and all its descen-
dants fail in the same manner. It always leads to a pruning strat-
egy. When A is not increasing, several tree-filtering strategies
exist. Three tree pruning strategies (Min, Max, and Viterbi)
and a non-pruning (direct rule) one were proposed in|Salembier
et al.| (1998). Some other non-pruning strategies were intro-
duced in|Urbach et al.| (2007) (subtractive rule), and in|Ouzou-
nis and Wilkinson| (2011} (k-subtractive and absorption rules).

2.1.3. Connected filtering on tree-based shape-space
When using tree-based connected operators, three main ap-
proaches are possible:

1. The local non-pruning approaches (see Salembier et al.
(1998)) (by “locality” we mean that the decision to pre-
serve or not a node depends only on the attribute of this
node).

2. The pruning approaches, which are by definition based on
a non-local criterion: the decision whether to filter a node
or not depends on whether its ancestors and descendants
satisfy some criterion. This way, we cannot preserve two
nodes in the same branch when we remove all the nodes
between them (the merge of monotonic branches usual in
tree simplification is then incompatible with this scheme).

3. The non-local non-pruning approaches (see the shapings
detailed in Xu et al.|(2016)): from some tree T = (R, C)
computed on a given image / seen as a graph, we compute
anew graph G = (R, Eg) with the same structure/topology
as T, that is, the directed edges of T (representing the par-
enthood relationship) become undirected edges (represent-
ing then a neighborhood relationship). From G, a sec-
ond tree 7 = (R,<) is computed. In practice, this tree
is a max- or min-tree. Then, 7 is weighted by some at-
tributes, and then filtered by a pruning approach. From
the remaining tree 7' = (R’, <), we construct the graph
G’ = (R',Eg/) that T’ represents, from which we deduce
the tree 7" = (R, <) (thanks to the inclusion relationship
of the elements of R"), and then we finally obtain I’, the fil-
tered version of I. The set of regions R’ is obtained thanks
to the following equation (Xu et al.|(2016)):

R,:R\CGL‘RJ\‘JK’C' (1)
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Notice that in the last approach, we compute a tree-based rep-
resentation on (the graph induced by) another tree-based rep-
resentation, which corresponds to an abstraction of order two.
However, imagine now that we select a node in the filtered tree
T’; the region in the image corresponding to this node will be
connected, which is a strong limitation. Moreover, Eq. E] im-
plies that a pruning strategy has been used on 7. To over-
come these limitations, we will see next how we can extend
the paradigm of tree-based shape-spaces to graph-based shape-
spaces (GSS) by changing the connections between nodes in G,
how we can proceed to non-pruning strategies in the new shape-
space 7 computed from the modified G, and this way how we
can extract (sets of) disconnected objects from images.

Lastly, note that all these more or less sophisticated filtering
strategies are essentially relevant for non-increasing criteria.

2.2. Second-generation connectivities (SGC’s)

Let us now recall what the clustering-based and mask-based
second generation connectivities are. In brief, they permit the
retrieval of groups of related CC’s in images when their relative
distance is small, which is a good approach when objects are
made of several connected components due, for example, to
occlusions.

An important drawback of the usual 4- and 8-connectivities
is that when we try to segment objects in images supplied with
these connectivities, we often get a large component made of
several objects, when we would like to obtain several connected
components corresponding to the same object instead.

The paradigm known as second-generation connectivity
(SGCO) (Serral (1996); Ronse| (1997)) is an interesting solution
to this problem. In particular, the mask-based SGC (Ouzounis
and Wilkinson|(2007)), coming from a fusion of the clustering-
based and the contraction-based SGC, has fewer limitations
compared to both these approaches when considered individ-
ually, and better serves our goal. More details about these con-
nectivities can be found in Wilkinson and Ouzounis|(2010).

The clustering-based SGC (Ouzounis and Wilkinson|(2006))
defines a child connectivity class based on a structural operator
¢ aset of CC’s in the image [ is seen as a single cluster if they
are included in a same connected component of (/) and the
size of some chosen structuring elements controls the maximum
distance separating two CC’s which belong to the same cluster.
However, ¢ must satisfy many constraints like those detailed in
Ouzounis and Wilkinson| (2007).

Mask-based SGC allows us to get rid of this dependency on
a structural operator ¥: it encodes the (hyper-)connectivity de-
fined in the image thanks to a mask M, computed from [ like
in |Ouzounis and Wilkinson| (2007). This computation can be
based on alternating-sequential filters (ASF) (Heijmans|(1997))
or on Minkowski additions. Furthermore, in |Ouzounis and
Wilkinson| (2007)) and in |Salembier and Wilkinson| (2009), the
authors suggest that the mask could also be an image of the
same scene, obtained at different wavelengths or with different
modalities.

In both clustering-based and mask-based SGC’s, an opera-
tor or a mask only corresponds to a class of cluster. However,
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Fig. 2. An example of segmentation based on our method: here, the first tree is a ToS and the second tree is an a-tree.

sometimes object clusters should be considered hierarchically,
e.g., some CC’s that represent parts of objects form a “broken”
object, some related “broken” objects form an object cluster. In
such a case, a new mask must be defined for each level of ab-
straction. Our approach is devoted to tackling this problem and
to capturing this hierarchical structure of sets of objects, each
one being a set of connected components in the image.

3. Generalized shape-space (GSS)

The initial tree-based shape-space approach of Xu et al. (Xu
et al.| (2016)) only permits the retrieval of connected regions
in the image. To overcome this limitation, we propose to
adding/removing connections between the nodes of the graph
induced by T = (R,S) (cf. the procedure described before)
which satisfy some particular constraints (like alignment or
neighborhood relationship between shapes) to obtain a new
graph G = (R, Eg) (see Figure 2). We call this new represen-
tation the Generalized Shape-Space (GSS); note that the tree-
based shape-space (Xu et al.|(2016)) can be seen as a particular
case of our GSS.

When G is complete, its number of edges reaches the value
|R| (JR] = 1) /2, which is hard to manage in practice. For this
reason, we connect only nodes which satisfy some meaningful
relationship among the following ones:

Neighborhood relationship: We can assume that elements
of a cluster are relatively close to each other. In this case, we
connect the nodes of G corresponding to components in the im-
age which are close to each others. Note that the maximum
distance parameter can be fixed relatively to the size of the com-
ponents.

Alignment relationship: We can also assume that the parts
of an object, or that the objects of the same cluster, are aligned
together (as in text detection, when we seek the windows in a
building, or in crosswalk marking).

No-parenthood relationship: When two nodes in T are par-
ents, either they belong to the same object at different scales, or
they do not belong to the same object and they correspond to
structures in the image which are not related. In other words,

we possibly want to compute the complement of G in R x R so
that only the nodes which are not parents in 7" will be connected
in G. To limit the complexity of this new graph, we will gener-
ally restrict the connections to aligned or nearby components in
the image like described before.

3.1. GSS segmentation

We could proceed to the segmentation of G: we initialize
the nodes of G to 1 when they correspond to the parts of the
broken object (or the cluster of objects) we are looking for;
otherwise we initialize them to 0. Two approaches are then
possible. Either we use node-weighted graphs and nodes are
weighted by some attribute, or we use edge-weighted graphs
and we use some dissimilarity function (based on color, size,
or dimensions). In particular, we could use graph cuts (Boykov
and Funka-Leal (2006))) or graph convolutional networks (Kipf
and Welling (2017))). However, this approach has limitations
because it is not progressive. For this reason, it can be more
flexible and efficient to propose a hierarchical segmentation of
G. In order to achieve that, we will compute some tree on G
(like a min-tree, a max-tree, or a ToS), following the idea pre-
sented in [Xu et al. (2016).

3.2. GSS methodology

Our method is the following: first, from an image [ =
(V,Er, f1), we compute some tree T = (R,<, F, A) (where A
is the attribute function defined on the nodes of T), which we
transform into the graph G = (R, Eg, F, A) by adding/removing
some connections in the graph induced by 7. Second, we com-
pute a new hierarchical representation 7 = (R, <, &, AA, ) from
G. Third, we filter 7 in some way depending on the application
to obtain a simplified tree 7' = (R’,S,&). Then, the filtered
graph G’ = (R',Eg:, F') is constructed from 7" using the fol-
lowing formulas:

Rl

Un

neR’
Eg = Eg (\R' xR @)
VreR, F'(r) =& ((M{neR'|ren}).

Then, T’ = (R',c, F’) is easily deduced from G': since we
have R’ € R, two components of R’ are either disjoint or nested.



Finally, I’ = (V', Ep, f1) is computed from 7" using the formu-
las:

vi=Ur
reR’
Ey=E (V' xV 3)

VpeV', fu(p) = F'(({reR'|per}).

Assuming that an object in / is made of several nodes of T,
and that we succeeded in connecting/disconnecting these nodes
in G so that this same object will be represented by a CC (resp.
an a-CC) of G (see Fig.[2), we will be able to extract this object
by constructing I’ from to the filtered ToS (resp. a-tree) 7.

Note that Equations[2|and[3]are new and allow us to construct
the filtered image from 7. It complements the strategy of Xu
et al. where the condition to use Eq. [T] was to use only pruning

on7T’.

4. Object retrieval based on GSS

We propose now the following methodology to extract dis-
connected/broken objects from a grayscale or color image I:

e Depending on the value space V of the input image, we
compute either a ToS (Géraud et al.[(2013)) or a color ToS
(Carlinet and Géraud! (2015)) of 1.

o We extract the more salient level lines by minimizing the
Mumford-Shah functional by methods described in Xu
et al.| (2013) and in |Carlinet and Géraud| (2015) (in prac-
tice we choose A = 1000 for color images and A = 300 for
grayscale ones).

e We apply a grain filter to remove nodes whose area is
under some given threshold (in practice we choose the
threshold value a = 3).

e We compute the graph G using the relationships described
before.

o We use some dissimilarity function to valuate the edges of
G (based for example on the difference of intensity values).

e We compute the a-tree of G (see Najman et al.[(2013) for
its implementation).

At the end, packs of (joint or disjoint) nearby homogeneous
areas in G will be represented by a node in 7, and then we will
be able to reconstruct separately broken objects in the image.
Let us detail this procedure.

4.1. Advantages of the ToS

We choose the tree of shapes for our first tree due to its in-
teresting properties: it is self-dual (it describes the dark and
bright parts of the image in the same fashion) and it is invariant
relatively to the contrast variations. Furthermore, the inclusion
of the level-lines (encoded by this tree) can help us to deduce
the background/object relationship between image regions. De-
pending on the given image (grayscale or color), we will use the
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Fig. 3. Top row (from |Ouzounis and Wilkinson| (2007)): (a) The original
image /, Results of (b) clustering-based SGC using / e Os,s, (c) Mask-based
SGC using ((/ @ Os,s) 0 Osys) @ Op1,11 as the mask, where e and o denote
respectively the closing and opening operators and the square O s of size
S is the structuring element. An elongated filter with threshold value equal
to 3 has been applied to (b) and (c). Bottom row: results of our GSS (d)
labeling of the nodes of the grayscale ToS, (e) the largest 0.4-CC in the
neighborhood shape-space that does not contain the root followed by a fil-
ter that removes CC’s whose area is smaller than 5% of the largest one in
this cluster. (f) extraction of the protein chain.

ToS (Géraud et al.| (2013)) or the cToS (Carlinet and Géraud
(2015)).

Possibly, we can apply a simplification procedure on 7T us-
ing the methodology described in [Xu et al.| (2013)) or |Carlinet
and Géraud, (20135): this simplification aims to reduce the graph
complexity by removing the leaves that are considered as be-
ing noise, removing nodes that represent less important level-
lines thanks to the minimization of the Mumford-Shah func-
tional (i.e., we keep only salient level-lines). Note that we take
care not to oversimplify 7, so that we preserve the structures
of the “broken” objects in the image: when we consider them
independently, they can be misclassified as noise.

4.2. The a-tree

When G is built, the next step is to hierarchically segment it
thanks to the second tree 7. Since the goal is to group related
CC’s as deeply as possible into 7, we compute an a-tree.



Fig. 4. Top row (from [Ouzounis and Wilkinson| (2007)): (a) the original
image, (b) the filtered image using an area criterion relying on the 4-
neighborhood relationship and (c) clustering-based SGC. Bottom row: re-
sults of our GSS (d) the labeling map of the grayscale ToS obtained by
reconstructing the image from 7’ using random colors, (e) the 0.25-CC’s
of G’, (f) the simplified image / whose values are set at the mean of the
remaining region.

Concerning the dissimilarity function, we use absolute differ-
ence for grayscale images and the CIELAB AE™ operator (Al-
(1993)) for color images in the L*a*b* space (but we can

also imagine to use height similarities (Huynh et al| (2016)), a
“learned” dissimilarity, or to apply some penalty based on the

distance between CC’s)

5. Experiments and discussion

In this section, we present some comparisons between our
GSS approach and clustering/mask-based SGC ones.

5.1. Segmenting filamentous objects in images

Now, let us show the efficiency of our approach to extract fila-
mentous objects (in the first case, a protein chain, and in the sec-
ond case, some Anabaena complexes). They are disconnected
components over a noisy background. The input images and a
part of the results are extracted from |Ouzounis and Wilkinson|
(we detail in the caption which part of the figure is new).

According to Ouzounis ef al. (see Ouzounis and Wilkinson|
(2007)), clustering-based SGC is not adapted to protein chain
segmentation while mask-based SGC gives good results (see
first row of Fig.[3). To test our method, we propose to compute
a (grayscale) ToS T simplified by a grain filter with a parameter
a = 3 and using a minimization of a Mumford-Shah functional
to keep only the most salient level-lines (we choose 4 = 300).
The neighborhood relationship is then used to compute G: if
two components are closer than 1.4 times their bounding box
size, they are considered as neighbors. To weight the edges of
G (for the computation of 7)), we use a dissimilarity function
based on the colors of the CC’s, and we apply a penalization
based on the distance between their bounding boxes’ center. We
see in Fig. 3(f) that the protein chain is correctly segmented.

In Figf] we have several Anabaena complexes. The largest
complex is made of two segments separated by a heterocyst. A

Fig. S. First column: the input image, Second column: the segmentation
using a c¢ToS, Third column: the extraction resulting from the a-tree com-
putation on G.

connected component approach using 4-connectivity can only
detect the larger segment, while the clustering-based SGC is
able to segment the whole complex. However, in order to re-
trieve the two other complexes in the image, we have to perform
the whole operation again and with different criteria. With our
method, all Anabaena complexes are represented in the a-tree,
and each one can be extracted easily thanks to our hierarchi-
cal representation. Please note that in this result we only use
Fig. [3(b)| and Fig. to demonstrate the difference between
regular versus clustering-based connectivities.

5.2. Text detection in natural images

In Figure[5] we show the efficiency of our GSS to detect text
in natural color images. For the computation of the cToS 7T
and its simplification, we use the same procedure as before.
Since we can assume that characters are horizontally aligned,
the alignment relationship is used to compute G. We also use
a neighborhood criterion: we assume that the maximal distance
between two CC'’s is equal to the height of the CC’s multiplied
by a factor of 2. In the first column of Fig[5] we expose the
input images. In the second column, we can see that due to
the homogeneity of its background, the first image can be eas-
ily segmented using a cToS, when the second image is a much
more complicated case due to the heterogeneity of the texture
of its background; furthermore, the letters are broken in several
components. In the third column, we observe that our approach
succeeds in segmenting the characters correctly thanks to the
computation of the a-tree of G (we used the not-parenthood re-
lationship in addition of the neighborhood and the alignment
relationships).

Thanks to our new representation 7, we can segment a pic-
ture at different hierarchical levels: in Fig.[6] we first label the
different parts of the letters (o = 0), then we can group them
into letters (@ = 0.06), and then we can group these letters into
words (@ = 0.12). This shows the powerfulness of our new
paradigm.

6. Conclusion

Connected operators are morphological filters which pre-
serve contours in images. The tree-based shape-space filtering
is an interesting framework to synthethize such filters. How-
ever, connected operators usually rely on direct connectivities,
which are often too much rigid to extract object clusters. In
this paper, we present an extension of the framework of tree
shape-spaces; we called it generalized shape-space (GSS) and
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Fig. 6. (a) the input image, (b), (c), (d) are the reconstructions of the filtered
tree 7 for respectively a = 0, @ = 0.06, and « = 0.12 (§’ maps one different
color for each node of 7).

this approach removes strong limitations induced by the tree-
based framework. Indeed, the GSS is able to build any de-
sired relationship between components in images. Moreover,
the usual filters used in the tree-based shape-space can also be
applied to the generalized one.

The other approaches based on second generation connectiv-
ity (relating regions which are far away from each others) like
the cluster-based SGC or the mask-based SGC have strong lim-
itations due to their dependency to operators. On the contrary,
our approach is able to consider the hierarchical nature of object
clusters in images thanks to its abstraction order of two: we can
segment sets of nested connected components corresponding to
objects and also sets/clusters of objects. As depicted in the last
figures, our methodology is efficient in matter of filamentous
objects in natural images. Furthermore, the closer we are to the
leaves in the second-order hierarchical representation, the more
the nodes correspond to strongly related objects in the image,
which gives a progressive and flexible tool for image processing
and filtering.

As future work, we will study how much groups of objects of
interest can be extracted from the second hierarchical represen-
tation using markers (Salembier and Garrido| (2000)), we will
consider how we can use learned attributes to weight the GSS
G, we will test the superpixels frameworks instead of trees to
compute G, and we will try graph-segmentation algorithms like

graph cuts or graph convolutional networks (Duvenaud et al.
(2015)).
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