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Abstract—Mathematical morphology, when used in the field
of document image analysis and processing, is often limited to
some classical yet basic tools. The domain however features a
lesser-known class of powerful operators, called connected filters.
These operators present an important property: they do not
shift nor create contours. Most connected filters are linked to
a tree-based representation of an image’s contents, where nodes
represent connected components while edges express an inclusion
relation. By computing attributes for each node of the tree from
the corresponding connected component, then selecting nodes
according to an attribute-based criterion, one can either filter
or recognize objects in an image. This strategy is very intuitive,
efficient, easy to implement, and actually well-suited to processing
images of magazines. Examples of applications include image
simplification, smart binarization, and object identification.

Keywords—Document Image Processing, Mathematical Mor-
phology, Tree of Shapes, Image Simplification, Binarization, Object
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I. INTRODUCTION

Mathematical morphology [1], [2], [3], [4] has been part of
classical image processing techniques for more than 40 years.
Morphological operators are regularly used in the field of docu-
ment image processing and analysis [5], [6]. Indeed documents
contain objects that may be identified thanks to prominent
features of their shapes. Mathematical morphology comes with
a panel of non-linear operators to transform the morphology
of those objects, thus allowing their extraction. The following
enumeration presents a simplistic and incomplete classification
of morphological operators.

a) Operators on sets based on structuring elements:
A binary image 1F ∶ D → B is the indicator function of
a set of points F . A structuring element is a set, say B,
usually centered and with a limited definition domain; it acts
like a filtering parameter for any transformation to be applied
to F . Roughly put, the size of B influences the strength
of the transformation, whereas the shape of B affects how
the transformation modifies the shape of X . For instance,
in the case of the dilation, defined by δB(F ) = F ⊕ B =
{p + b ∣ p ∈ F, b ∈ B }, when B is a centered horizontal
line segment, the set X is enlarged horizontally of half the
length of B. Many morphological operators have been defined,
some of them being dual by set-complementation (∁): for
instance, the erosion operator εB is the dilation dual operator
(εB = ∁ δB ∁).

b) Elementary operators on sets: Replacing the struc-
turing element B by the notion of neighborhood, say N , pro-
duces morphological operators whose behavior is elementary

(the slightest transform effect). For instance δN (F ) = {p′ ∈
N (p) ∪ {p} ∣ p ∈ F } is the elementary dilation.

c) Extension of the first two categories from sets to func-
tions: Thanks to the threshold decomposition principle, any
morphological operator on sets can be extended to functions,
i.e., gray-level images: f ∶ D → N. Given a gray-level t, let us
denote by [f ≥ t] = {p ∈ D ∣ f(p) ≥ t} the subset of D obtained
by thresholding f by t. Any morphological set operator ϕset can
be extended to define a morphological operator on gray-level
functions ϕ thanks to ϕ(f)(p) = max{ t ∣ p ∈ ϕset([f ≥ t]) }.

d) Connected operators: Connected operators [7], [8]
are morphological operators that do not split flat zones, i.e.,
that verify ∀p, ∀p′ ∈ N (p), f(p′) = f(p) ⇒ ϕ(f)(p′) =
ϕ(f)(p). As a consequence, they do not shift contours; they
may just remove some of them while preserving the others.
Two classes of connected operators are commonly used: filters
by reconstruction, and algebraic openings and closings [9].
These operators are interesting in many ways, but we want to
emphasize here one of their key features: their effect is com-
puted by considering all the connected components obtained by
thresholding the input image at different levels t. For instance,
any algebraic closing works on the connected components (CC)
of the family of sets {Γ ∣ Γ ∈ CC([f < t]) }t∈N.

In the light of this short classification, two remarks crop up.
First, an overview of the literature shows that the community
of document image processing mainly uses mathematical mor-
phology for its structuring-element-based operators on binary
images, i.e., operators from category a. Some very few authors
rely on their gray-level extension, i.e. operators from category
c. The two other categories are nearly ignored from the
community (apart from recent exceptions [10], [11]). A second
remark comes when considering the very classical scheme used
in document image processing shown in Figure 1. The colored
part depicts the pre-processing steps performed just before
some high-level analysis leading to a page segmentation. This
part, which can be justified by the need to rely on a small
collection of binary objects to extract text lines and other
entities, can be summarized by “thresholding first to get some
components to start with”. Such an approach highly contrasts
with the way morphological connected operators work: those
operators rely on all the components of gray-level images to
take some decision (to filter), whereas the binarization step of
Figure 1 drastically reduces the number of components to be
taken into account for document analysis. This binarization
step is already a first decision process, which purposely
simplifies the data. By its very nature, this operation most
probably creates an a priori loss of information and therefore
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Fig. 1: A typical processing workflow starting from a document
image and leading to a page segmentation.

places limits on the efficiency of subsequent steps. Let us note
that it is admittedly better to make decisions at the end of an
entire process, where one can leverage information from many
indicators, than at its beginning.

This paper is more a methodological article than a presen-
tation of a specific research result. It focuses on the benefits
of a little-known branch of mathematical morphology for the
document image analysis community. Thus it does not contain
any detail about how to precisely obtain some particular
result (and a fortiori does not evaluate and compare them to
those of the literature). This paper is structured as follows.
First, Section II presents the tree-based image representations
underpinning connected filters. Section III explains how to
implement connected filters by pruning these trees. We then
show applications of these morphological operators to docu-
ment images in Section IV to illustrate their benefits. Section V
concludes and opens up perspectives regarding the use of
mathematical morphology in document image processing.

II. MORPHOLOGICAL TREE-BASED IMAGE
REPRESENTATIONS

Since connected filters have been formalized [8], they have
not received a great deal of attention beyond the mathematical
morphology community, although a recent effort [12] has tried
to popularize them to a broader audience.

Connected filters are related to the decomposition principle.
We will thereafter consider a gray-level valued image f ,
viewed as a function D → V , where D is the domain of f ,
and V , its value set. We will fix V = N in the remainder of
this paper to represent the gray-level values of f ; however the
properties and strategies explained hereinafter are valid for any
totally ordered value set. As for the domain, D is usually set
to a subset of Z2 in the case of classical 2D images (based on
a rectangular grid).

A. Morphological Trees

Three types of morphological trees are used to represent
images and implement connected operators.

1) A Couple of Dual Trees: The Max- and Min-Trees: For
any t ∈ N, the upper cuts (or upper thresholds) of f are defined
by [f ≥ t] = {x ∈ D ∣ f(x) ≥ t}; we have t2 > t1 ⇒ [f ≥
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Fig. 2: Three morphological trees of the same image. Light
(resp. dark) gray values represent high (resp. low) integer
values.

t2] ⊆ [f ≥ t1]. The set of all connected components of every
cut of f is T≥(f) = {Γ ∈ CC([f ≥ t]) }t∈N and verifies that
∀(Γ,Γ′) ∈ (T≥(f))2 such as Γ ≠ Γ′, we either have Γ ⊂ Γ′

or Γ′ ⊂ Γ or Γ ∩ Γ′ = ∅. Therefore the elements of T≥(f)
(the connected components of upper cuts) can be arranged
into a tree, called the max-tree of f . Figure 2b is an example
of max-tree, computed from the input image shown in Figure
2a. When the lower cuts [f < t] = {x ∈ D ∣ f(x) < t} are
considered, the elements of T<(f) = {Γ ∈ CC([f < t]) }t∈N
form the min-tree of f (see Figure 2c). Both trees are dual by
complementation: the max-tree of f is the min-tree of ∁f .

2) One Self-Dual Tree: The Tree of Shapes: Two other
sets, S<(f) and S≥(f), respectively the sets of lower and
upper shapes, can be defined respectively as the sets of
components of T<(f) and T≥(f) after filling the holes of
these components. If we refer to the hole-filling (or saturation)
operator as Sat, we have: S<(f) = {Sat(Γ); Γ ∈ T<(f) }
and S≥(f) = {Sat(Γ); Γ ∈ T≥(f) }. The set of all shapes
S(f) = S<(f) ∪ S≥(f) forms a tree, called the tree of shapes
of f [13]. Indeed, for any couple of shapes (Γ, Γ′) ∈ (S(f))2
such as Γ ≠ Γ′ we either have Γ ⊂ Γ′ or Γ′ ⊂ Γ or Γ ∩ Γ′ = ∅.
Actually the shapes of f are the holes of the elements of T<(f)
and T≥(f). For instance, if we consider a lower component
Γ ∈ [f < t] and a hole H of Γ, this hole is an upper shape,
i.e., H ∈ S≥(f) (more precisely ∃Γ′ ∈ CC([f ≥ t]) such as
H = Sat(Γ′)). Figure 2d shows the tree of shapes computed
from the image from Figure 2a. This tree is self-dual: the tree
of shapes of f is also the tree of shapes of ∁f .

B. Building and Using Morphological Trees

Any of the previous trees is an exact representation of the
image it is computed from. Hence the following fundamental
concept: these trees are actually a way to represent an image
through its contents. Put differently, an image can be encoded
as a tree through the components obtained by successive
thresholding operations. As a consequence, reconstructing an
image from any morphological tree is straightforward. Another
important idea is that those representations are “rich”, for
they are structured and fine. Indeed node parenthood maps



FIND-ROOT(x)
1 if zpar(x) = x then return x
2 else { zpar(x)← FIND-ROOT(zpar(x)) ; return zpar(x) }

COMPUTE-TREE(f)
1 for each p, zpar(p)← undef
2 R ← REVERSE-SORT(f) // maps R into an array
3 for each p ∈ R in direct order
4 parent(p)← p ; zpar(p)← p
5 for each n ∈ N (p) such as zpar(n) ≠ undef
6 r ← FIND-ROOT(n)
7 if r ≠ p then { parent(r)← p ; zpar(r)← p }
8 DEALLOCATE(zpar)
9 return pair(R,parent) // a ‘‘parent’’ function

CANONIZE-TREE(parent, f)
1 for each p ∈ R in reverse order
2 q ← parent(p)
3 if f(parent(q)) = f(q) then parent(p)← parent(q)
4 return parent // a ‘‘canonized’’ parent function

Fig. 3: Union-find-based max-tree computation algorithm [14].

components inclusion and there are about as many tree nodes
as there are image pixels.

The min- and max-trees are easy to compute and can be
efficiently implemented with only a few lines of code using
various algorithms [14], [15]. Figure 3 is an example of such an
algorithm, computing an image’s max-tree thanks to a union-
find strategy [16]. This algorithm relies on a total ordering
relation R between the pixels of the input image f , based on
decreasing gray levels, and for pixels having the same level,
on the classical video scan order (see an example in Figure 4).
The routine COMPUTE-TREE produces a max-tree (see the
left-hand side of Figure 5). This is a rooted tree: every node
points to its parent, except the root node (J), pointing to itself.
The routine CANONIZE-TREE is an optimization applied to the
tree produced by COMPUTE-TREE, generating a canonized and
faster tree (see the right-hand side of Figure 5). Figure 6 shows
the encoding of these trees as “parent” images.

The tree of shapes can also be obtained fairly easily thanks
to a recently proposed algorithm [17]. All those trees are
computable with a quasi-linear time complexity, when (gray-
levels) pixels values have a low quantization (typically when
represented by 12-bit values or less). Finally, let us note that
encoding an image by a tree is very compact in memory: the
“parenthood” relation between pixels can be represented as an
image having the same size as the input image (see Figure 6).

III. CONNECTED OPERATORS AS TREE FILTERING

Let us consider an attribute function A, defined on
connected components and which is increasing (that is,
∀(Γ,Γ′),Γ ⊂ Γ′ ⇒ A(Γ) < A(Γ′)). Given any morphological
tree T, an operator filters out a component Γ ∈ T if it verifies
the criterion A(Γ)<λ, where λ is the “strength” of the filter,
acting as a threshold. Since the attribute function is increasing,
this filtering operation is a pruning of the (leaves of the) tree.
Figure 7 sums up the workflow of this tree-based filtering
approach. As a consequence, it just removes some connected
components of the input image and the other components are
preserved. The output image thus contains some of the original
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(bottom). Right: level sets for different values of λ; canonical
points (representative of connected components) are circled.
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contours of the input—such connected operators do not shift
nor create contours. It is important to note that that it is not the
behavior of most of the classical “well-known” morphological
operators, which intentionally modify the shapes of the objects.

Depending on the considered tree, filters have different
behaviors. Using a min-tree, the suppressed components are
those that are darker than their surrounding areas in the image;
such an operator is an algebraic closing. With a max-tree, we
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Fig. 7: Workflow of a tree-based strategy to implementing
connected filters (with parameter λ set to 5).



Fig. 8: Comparison of an opening based on a structuring
element and an algebraic opening: initial image (left); opening
using a disc with a radius of 15 pixels as structural element
(center); algebraic opening using an area of approximately
π152 pixels (right), removing any component smaller than
this area (especially noise). Although both filters alter the
same “surface”, the latter does not move nor create contours,
whereas the former does.

have the dual behavior with light components being filtered out
and we obtain an algebraic opening. Finally, filtering a tree of
shapes exhibits both behaviors at the same time, realizing a
grain filter.

Connected operators are interesting for many reasons:

1) In contrast with many classical filters, they preserve
contours so they are able to simplify images without
being “destructive” for non-filtered data (Figure 8
illustrates this fact).

2) Their mathematical properties are sound and strong
[3], [4].

3) They take into account all connected components of
the input image, which is the opposite attitude of
the classical scheme of document image processing
(given in Figure 1) where an early binarization step
gets rid of most image components.

4) They are really intuitive to use.
5) Lastly, since connected operators are able to select

some components while filtering out others, they are
very close to segmentation and object recognition
tools.

IV. CONNECTED FILTERS APPLIED

Figure 9 depicts some results of connected operators
filtering1. In order to take into account all possible input
information, we have run these operators on color images. For
this purpose, we have used a simple marginal approach— even
if there are more elaborated methods to apply mathematical
morphology methods to color images [4, Chapter 11]. We
have applied a “gray-level” filter φ to every channel (red,
green, blue) of the input image independently of each other and
recomposed the output color image from the filtered channel
images: φcolor(f) = (φgray(fr), φgray(fg), φgray(fb)). Changing
the attribute function A, computed from connected compo-
nents, enables the design of filters that target different kinds
of objects in document images.

On the first example, shown in Figure 9a, a compo-
nent Γ is removed when its bounding box is too small.

1Full-size versions of images shown in this section are available online,
together with additional material [18].

(a) Filtering out everything but boxes.

(b) Showing filtered lines.

(c) An image featuring almost only text.

Fig. 9: Sample uses of connected operators. Left: input images;
right: filtered images (results).

Specifically, we have filtered the input using the attribute
A(Γ) = (width(Γ),height(Γ)) so that components Γ for
which A(Γ) <or (λ,λ) are filtered out, where the <or relation
is defined by (a, b) <or (c, d) ⇔ a < c or b < d. The
only remaining components are those whose bounding box
is larger than λ width- and height-wise. It is now admittedly
simpler, from the resulting image, to search for pictures and
boxes contained in the document. Moreover, the shape of
these objects has been preserved, thanks to the very nature



of connected filters.

The second example, from Figure 9b, uses a technique
almost similar to the first one. However, instead of showing
the filtered image, we show the difference between the result
of the filter and the input image. This operation is called
a morphological top-hat. What appears on the output image
is therefore what has been removed by the connected filter;
that is, separator lines. We can observe that even very thin
and poorly contrasted objects are retrieved by such a filter.
This feature is a consequence of the fact that morphological
operators are invariant by contrast change, meaning that the
ordering of values matters more than the values themselves.

The third example, illustrated by Figure 9c, is also a top-
hat. Here, A(Γ) = area(Γ), that is, the chosen attribute is the
component area, which amounts to the very simple operation of
counting the number of pixels belonging to a component. The
resulting image thus contains very small components of noise
from the input image, some components belonging to pictures,
and textual contents of the document. Yet text components are
more contrasted than other components. Should a binarization
be applied to retrieve text (following the classical approach
shown in Figure 1), we argue that using this image as input,
in lieu of the original input image, would produce better
binarization results. Note that an interesting property of an
algebraic connected filter where A(Γ) = area(Γ) and where λ
is the (area) threshold used in the filter’s criterion, is that this
filter is equivalent to merging the results of all filters based on
a structuring element B with area(B) < λ.

V. CONCLUSION

This paper presents connected filters, their implementa-
tion using morphological trees and some examples of their
use in the domain of document image analysis. We have
highlighted the benefits of morphological connected operators
and presented their underlying tree-based representations. We
have advocated a strategy preserving the whole components
of a document image, arranged in a tree structure, instead of
restricting subsequent processing steps to a only handful of
components produced by an early binarization. We provide
full-size results of our experiments online to demonstrate
the effectiveness and the robustness of the connected filters
approach [18].

Our future work includes a morphological tree-based object
recognition strategy to extract text from natural images. Indeed
having a simplified representation allows us to limit the number
of text false positives, while self-dual filters based on the tree
of shapes are able to deal with text in reverse video.

We advocate the idea of reproducible research [19], [20].
Therefore, the tools presented in this paper will be available
in the next release of the Scribo module [21], as part of the
Olena image processing platform [22], [23], along with an
online demonstrator.
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[21] G. Lazzara, R. Levillain, T. Géraud, Y. Jacquelet, J. Marquegnies, and
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