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Abstract. Over the last decade, parallel SATisfiability solving has been
widely studied from both theoretical and practical aspects. There are
two main approaches. First, divide-and-conquer (D&C) splits the search
space, each solver being in charge of a particular subspace. The second
one, portfolio launches multiple solvers in parallel, and the first to find a
solution ends the computation. However although D&C based approaches
seem to be the natural way to work in parallel, portfolio ones experimen-
tally provide better performances.
An explanation resides on the difficulties to use the native formulation
of the SAT problem (i.e., the CNF form) to compute an a priori good
search space partitioning (i.e., all parallel solvers process their subspaces
in comparable computational time). To avoid this, dynamic load balanc-
ing of the search subspaces is implemented. Unfortunately, this is difficult
to compare load balancing strategies since state-of-the-art SAT solvers
appropriately dealing with these aspects are hardly adaptable to various
strategies than the ones they have been designed for.
This paper aims at providing a way to overcome this problem by propos-
ing an implementation and evaluation of different types of divide-and-
conquer inspired from the literature. These are relying on the Painless
framework, which provides concurrent facilities to elaborate such parallel
SAT solvers. Comparison of the various strategies are then discussed.
Keyword. Divide-and-conquer, parallel satisfiability, tool

1 Introduction

Modern SAT solvers are now able to handle complex problems involving mil-
lions of variables and billions of clauses. These tools have been used successfully
to solve constraints’ systems issued from many contexts, such as planning deci-
sion [16], hardware and software verification [7], cryptology [23], and computa-
tional biology [20], etc.

State-of-the-art complete SAT solvers are based on the well-known Conflict-
Driven Clause Learning (CDCL) algorithm [21,28,30]. With the emergence of



many-core machines, multiple parallelisation strategies have been conducted on
these solvers. Mainly, two classes of parallelisation techniques have been stud-
ied: divide-and-conquer (D&C) and portfolio. Divide-and-conquer approaches, of-
ten based on the guiding path method, decompose recursively and dynamically,
the original search space in subspaces that are solved separately by sequential
solvers [29,12,14,1,2,26]. In the portfolio setting, many sequential SAT solvers
compete for the solving of the whole problem [11,4,5]. The first to find a solu-
tion, or proving the problem to be unsatisfiable ends the computation. Although
divide-and-conquer approaches seem to be the natural way to parallelise SAT
solving, the outcomes of the parallel track in the annual SAT Competition show
that the best state-of-the-art parallel SAT solvers are portfolio ones.

The main problem of divide-and-conquer based approaches is the search space
division so that load is balanced over solvers, which is a theoretical hard problem.
Since no optimal heuristics has been found, solvers compensate non optimal
space division by enabling dynamic load balancing. However, state-of-the-art
SAT solvers appropriately dealing with these aspects are hardly adaptable to
various strategies than the ones they have been designed for [1,6,2]. Hence, it
turns out to be very difficult to make fair comparisons between techniques (i.e.,
using the same basic implementation). Thus, we believe it is difficult to conclude
on the (non-) effectiveness of a technique with respect to another one and this
may lead to premature abortion of potential good ideas.

This paper tries to solve these problems by proposing a simple, generic, and
efficient divide-and-conquer component on top of the Painless [18] framework.
This component eases the implementation and evaluation of various strategies,
without any compromise on efficiency. Main contributions of this paper are the
followings:

– an overview of state-of-the-art divide-and-conquer methods;
– a complete divide-and-conquer component that has been integrated to the

Painless framework;
– a fair experimental evaluation of different types of divide-and-conquer in-

spired from the literature, and implemented using this component.

These implementations have often similar and sometimes better performances
compared with state-of-the-art divide-and-conquer SAT solvers.

Let us outline several results of this work. First, our Painless framework
is able to support implementation of multiple D&C strategies in parallel solvers.
Moreover, we have identified “axes” for customization and adaptation of heuris-
tics. Thus, we foresee it will be much easier to explore next D&C strategies.
Second, our best implementation at this stage is comparable in terms of perfor-
mance, with the best state-of-the-art D&C solvers, which shows our framework’s
efficiency.

This paper is organized as follows: Section 2 introduces useful background to
deal with the SAT problem. Section 3 is dedicated to divide-and-conquer based
parallel SAT solving. Section 4 explains the mechanism of divide-and-conquer we
have implemented in Painless. Section 5 analyses the results of our experiments,
and Section 6 concludes and gives some perspectives.



2 Background

A propositional variable can have two possible values > (True), or ⊥ (False). A
literal l is a propositional variable (x) or its negation (¬x). A clause ω is a finite
disjunction of literals (noted ω =

∨k
i=1 `i). A clause with a single literal is called

unit clause. A conjunctive normal form (CNF) formula ϕ is a finite conjunction
of clauses (noted ϕ =

∧k
i=1 ωi). For a given formula ϕ, the set of its variables is

noted: Vϕ. An assignment A of variables of ϕ, is a function A : Vϕ → {>,⊥}.
A is total (complete) when all elements of Vϕ have an image by A, otherwise it
is partial. For a given formula ϕ, and an assignment A, a clause of ϕ is satisfied
when it contains at least one literal evaluating to true, regarding A. The formula
ϕ is satisfied by A iff ∀ω ∈ ϕ, ω is satisfied. ϕ is said to be sat if there is at least
one assignment that makes it satisfiable. It is defined as unsat otherwise.

Algorithm 1: CDCL algorithm
1 function CDCL()
2 dl← 0 // Current decision level
3 while not all variables are assigned do
4 conflict← unitPropagation()
5 if conflict then
6 if dl = 0 then
7 return ⊥ // ϕ is unsat
8 end
9 ω ← conflictAnalysis()

10 addLearntClause(ω)
11 dl← backjump(ω)
12 end
13 else
14 assignDecisionLiteral()
15 dl← dl + 1

16 end
17 end
18 return > // ϕ is sat

Conflict Driven Clause Leaning. The majority of the complete state-of-
the-art sequential SAT solvers are based on the Conflict Driven Clause Learn-
ing (CDCL) algorithm [21,28,30], that is an enhancement of the DPLL algo-
rithm [10,9]. The main components of a CDCL are presented in Algorithm 1.

At each step of the main loop, unitPropagation5 (line 4) is applied on the
formula. In case of conflict (line 5), two situations can be observed: the conflict
5 The unitPropagation function implements the Boolean Constraint Propagation
(BCP) procedure that forces (in cascade) the values of the variables in unit
clauses [9].



is detected at decision level 0 (dl == 0), thus the formula is declared unsat
(lines 6-7); otherwise, a new asserting clause is derived by the conflict analysis
and the algorithm backjumps to the assertion level [21] (lines 8-10). If there is
no conflict (lines 11-13), a new decision literal is chosen (heuristically) and the
algorithm continues its progression (adding a new decision level: dl ← dl + 1).
When all variables are assigned (line 3), the formula is said to be sat.

The Learning Mechanism. The effectiveness of the CDCL lies in the learn-
ing mechanism (line 10). Each time a conflict is encountered, it is analyzed
(conflictAnalysis function in Algorithm 1) in order to compute its reasons
and derive a learnt clause. While present in the system, this clause will avoid
the same mistake to be made another time, and therefore allows faster deductions
(conflicts/unit propagations).

Since the number of conflicts is very huge (in avg. 5000/s [3]), controlling the
size of the database storing learnt clauses is a challenge. It can dramatically affect
performance of the unitPropagation function. Many strategies and heuristics
have been proposed to manage the cleaning of the stored clauses (e.g., the Literal
Block Distance (LBD) [3] measure).

3 Divide-and-Conquer based Parallel SAT Solvers

The divide-and-conquer strategy in parallel SAT solving is based on splitting
the search space into subspaces that are submitted to different workers. If a
subspace is proven sat then the initial formula is sat. The formula is unsat if
all the subspaces are unsat. The challenging points of the divide-and-conquer
mechanism are: dividing the search space, balancing jobs between workers, and
exchanging learnt clauses.

3.1 Dividing the Search Space

This section describes how to create multiple search subspaces for the studied
problem, and the heuristics to balance their estimated computational costs.

Techniques to Divide the Search Space. To divide the search space, the
most often used technique is the guiding path [29]. It is a conjunction of literals
(called cube) that are assumed by the invoked solver (worker). Let ϕ be a for-
mula, and x ∈ Vϕ a variable. Thanks to Shannon decomposition, we can rewrite
ϕ as ϕ = (ϕ∧ x)∨ (ϕ∧¬x). The two guiding paths here are reduced to a single
literal: (x) and (¬x). This principle can be applied recursively on each subspaces
to create multiple guiding paths.

Figure 1 illustrates such an approach where six subspaces have been created
from the original formula. They are issued from the following guiding paths:
(d∧ b), (d∧¬b), (¬d∧ a∧ b), (¬d∧ a∧¬b), (¬d∧¬a∧ x), (¬d∧¬a∧¬x). The
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Fig. 1: Using guiding path to divide the search space

subspaces that have been proven unsat, are highlighted with red crosses. The
rest of the subspaces are submitted to workers (noted wi).

It is worth noting that other partitioning techniques exist that were initially
developed for distributed systems rather than many-cores machines. We can cite
the scattering [13], and the xor partitioning [27] approaches.

Choosing Division Variables. Choosing the best division variable is a hard
problem, requiring the use of heuristics. A good division heuristic should decrease
the overall total solving time6. Besides, it should create balanced subspaces w.r.t.
their solving time: if some subspaces are too easy to solve this will lead to
repeatedly asking for new jobs and redividing the search space (phenomenon
known as ping pong effect [15]).

Division heuristics can be classified in two categories: look ahead and look
back . Look ahead heuristics rely on the possible future behaviour of the solver.
Contrariwise, look back heuristics rely on statistics gathered during the past
behaviour of the solver. Let us present the most important ones.

Look ahead. In stochastic SAT solving (chapters 5 and 6 in [8]), look ahead
heuristics are used to choose the variable implying the biggest number of unit
propagations as a decision variable. When using this heuristic for the division,
one tries to create the smallest possible subspaces (i.e., with the least unassigned
variables). The main difficulty of this technique is the generated cost of applying
the unit propagation for the different variables. The so-called “cube-and-conquer”
solver presented in [12] relies on such an heuristic.

Look back. Since sequential solvers are based on heuristics to select their decision
variables, these can naturally be used to operate the search space division. The
idea is to use the variables’ VSIDS-based [25] order7 to decompose the search
in subspaces. Actually, when a variable is highly ranked w.r.t. to this order,
then it is commonly admitted that it is a good starting point for a separate
exploration [13,22,2].

6 Compared to the solving time using a sequential solver
7 The number of their implications in propagation conflicts.



Another explored track is the number of flips of the variables [1]. A flip is
when a variable is propagated to the reverse of its last propagated value. Hence,
ranking the variables according to the number of their flips, and choosing the
highest one as a division point helps to generate search subspaces with com-
parable computational time. This can be used to limit the number of variables
on which the look ahead propagation is applied by preselecting a predefined
percentage of variables with the highest number of flips.

Another look back approach, called propagation rate (PR), tends to produce
the same effect as the look ahead heuristics [26]. The PR of a variable v is the
ratio between the numbers of propagations due to the branching of v divided
by the number of time v has been chosen as a decision. The variable with the
highest PR is chosen as division point.

3.2 Load Balancing

Despite all the effort to produce balanced subspaces, it is practically impossible
to ensure the same difficulty for each of them. Hence, some workers often become
quickly idle, thus requiring a dynamic load balancing mechanism.

A first solution to achieve dynamic load balancing is to rely on work stealing :
each time a solver proves its subspace to be unsat8, it asks for a new job. A
target worker is chosen to divide its search space (e.g., extends its guiding path).
Hence, the target is assigned to one of the new generated subspaces, while the
idle solver works on the other. The most common architecture to implement this
strategy is based on a master/slave organization, where slaves are solvers.

When a new division is needed, choosing the best target is a challenging
problem. For example, the Dolius solver [1] uses a FIFO order to select targets:
the next one is the worker that is working for the longest time on its search
space. This strategy guarantees fairness between workers. Moreover the target
has a better knowledge of its search space, resulting in a better division when
using a look back heuristic.
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Fig. 2: Load balancing through work stealing

8 If the result is sat the global resolution ends.



Let us suppose in the example of Figure 1 that worker w3 proves its subspace
to be unsat, and asks for a new one. Worker w2 is chosen to divide and share
its subspace. In Figure 2, m is chosen as division variable and two new guiding
paths are created, one for w2 and one for w3. Worker w3 now works on a new
subspace and its new guiding path is (d∧ b∧¬m), while the guiding path of w2

is (d ∧ b ∧m).
Another solution to perform dynamic load balancing is to create more search

subspaces (jobs) than available parallel workers (cube-and-conquer [12]). These
jobs are then managed via a work queue where workers pick new jobs. To increase
the number of available jobs at runtime, a target job is selected to be divided.
The strategy implemented in Treengeling [6] is to choose the job with the
smallest number of variables; this favours sat instances.

3.3 Exchanging Learnt Clauses

Dividing the search space can be subsumed to the definition of constraints on
the values of some variables. Technically, there exist two manners to implement
such constraints: (i) constrain the original formula; (ii) constrain the decision
process initialisation of the used solver.

When the search space division is performed using (i), some learnt clauses
cannot be shared between workers. This is typically the case of learnt clauses
deduced from at least one clause added for space division, otherwise, correctness
is not preserved. The simplest solution to preserve correctness is then to disable
clause sharing [6]. Another (more complex) approach is to mark the clauses that
must not be shared [17]. Clauses added for the division are initially marked.
Then, the tag is propagated to each learnt clause that is deduced from at least
one already marked clause.

When the search space division is performed using (ii), some decisions are
forced. With this technique there is no sharing restrictions for any learnt clauses.
This solution is often implemented using the assumption mechanisms [1,2].

4 Implementation of a Divide-and-Conquer

This section presents the divide-and-conquer component we have built on top
of the Painless framework. First, we recall the general architecture and opera-
tions of Painless. Then we describe the generic divide-and-conquer component’s
mechanisms. Finally we detail the different heuristics we have instantiated using
this component.

4.1 About the Painless Framework

Painless [18] is a framework that aims at simplifying the implementation and
evaluation of parallel SAT solvers for many-core environments. Thanks to its
genericity and modularity, the components of Painless can be instantiated in-
dependently to produce new complete solvers.
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The main idea of the framework is to separate the technical components
(e.g., those dedicated to the management of concurrent programming aspects)
from those implementing heuristics and optimizations embedded in a parallel
SAT solver. Hence, the developer of a (new) parallel solver concentrates his
efforts on the functional aspects, namely parallelisation and sharing strategies,
thus delegating implementation issues (e.g., data concurrent access protection
mechanisms) to the framework.

Three main components arise when treating parallel SAT solvers: sequen-
tial engines, parallelisation, and sharing. These form the global architecture of
Painless depicted in Figure 3.

Sequential Engines. The core element considered in the framework is a se-
quential SAT solver. This can be any CDCL state-of-the art solver. Technically,
these engines are operated through a generic interface providing basics of se-
quential solvers: solve, interrupt, add clauses, etc.

Thus, to instantiate Painless with a particular solver, one needs to imple-
ment the interface according to this engine.

Parallelisation. To build a parallel solver using the aforementioned engines,
one needs to define and implement a parallelisation strategy. Portfolio and divide-
and-conquer are the basic known ones. Also, they can be arbitrarily composed
to form new strategies.

In Painless, a strategy is represented by a tree-structure of arbitrarily
depth. The internal nodes of the tree represent parallelisation strategies, and
leaves are core engines. Technically, the internal nodes are implemented using
WorkingStrategy component and the leaves are instances of SequentialWorker
component.

Hence, to develop its own parallelisation strategy, the user should create one
or more strategies, and build the required tree-structure.



Sharing. In parallel SAT solving, the exchange of learnt clauses warrants a
particular focus. Indeed, besides the theoretical aspects, a bad implementation
of a good sharing strategy may dramatically impact the solver’s efficiency.

In Painless, solvers can export (import) clauses to (from) the others during
the resolution process. Technically, this is done by using lockfree queues [24].
The sharing of these learnt clauses is dedicated to particular components called
Sharers. Each Sharer in charge of sets of producers and consumers and its
behaviour reduces to a loop of sleeping and exchange phases.

Hence, the only part requiring a particular implementation is the exchange
phase, that is user defined.

4.2 The Divide-and-Conquer Component in Painless

To implement divide-and-conquer solvers with Painless, we define a new com-
ponent. It is based on a master/slaves architecture.

Figure 4 shows the architecture of our tool. It contains several entities. The
master is a thread executing the only D&C instance of the WorkingStrategy class.
The workers are slave threads executing instances of the SequentialWorker
class. An instance of the Sharing class allows workers to share clauses.

The master and the workers interact asynchronously by means of events. In
the initialisation phase, the master may send asynchronous events to himself too.

Master. The master (1) initialises the D&C component; (2) selects targets to di-
vide their search spaces; (3) and operates the division along with the relaunch of
the associated solvers. These actions are triggered by the events INIT, NEED_JOB,
and READY_TO_DIV, respectively. In the remainder of this section we consider a
configuration with N workers.

The master can be in two states: either it is sleeping, or it is currently pro-
cessing an incoming event. Initially the master starts a first solver on the whole
formula by sending it the SOLVE event. It then generates N − 1 NEED_JOB events
to himself. This will provoke the division of the search space in N subspaces
according the to implemented policy. At the end of this initialisation phase,
it returns to its sleeping state. At this point, all workers are processing their
subspaces.

Each time a worker needs a job, it notifies the master with a NEED_JOB event.
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All over its execution, the master reacts to the NEED_JOB event as follows:

1. it selects a target using the current policy9, and requests this target to inter-
rupt by sending an INTERRUPT event. Since this is an asynchronous communi-
cation, the master may process other events until it receives a READY_TO_DIV
event;

2. once it receives a READY_TO_DIV event, the master proceeds to the effective
division of the subspace of the worker which emitted the event. Both the
worker which emitted the event and the one which requested a job are then
invited to solve their new subspaces through the send of a SOLVE event.

The master may receive a SAT event from its workers. It means a solution has
been computed and the whole execution must end. When a worker ends in an
unsat situation, it makes a request for a new job (NEED_JOB event). When the
master has no more division of the search space to perform, it states the SAT
problem is unsat.

Slaves. A slave may be in three different states: idle, work , and work_inter-
rupt_requested . Initially, it is idle until it receives a SOLVE request from the
master. Then, it moves to the work state and starts to process its assigned
subspace. It may:

– find a solution, then emit a SAT event to the master, and move back to idle;
– end processing of the subspace, with an unsat result, then it emits a NEED_JOB

event to the master, and move back to idle;
– receive an INTERRUPT event from the master, then, it moves to the work_inter-

rupt_requested state and continues its processing until it reaches a stable
state10 according to the underlying sequential engine implementation. Then,
it sends a READY_TO_DIV event to the master prior to move back to idle.

4.3 Implemented Heuristics

The divide-and-conquer component presented in the previous section should be
generic enough to allow the implementation of any of the state-of-the-art strate-
gies presented in Section 3. We selected some strategies to be implemented,
keeping in mind that at least one of each family should be retained:

1. Techniques to Divide the Search Space (Section 3.1):
we have implemented the guiding path method based on the use of assump-
tions. Since we want to be as generic as possible, we have not considered
techniques adding constraints to the formula (because they require tagging
mechanisms complex to implement to enable clause sharing).

9 This policy may change dynamically over the execution of the solver.
10 For example, in Minisat-based solvers, a stable state could correspond to the con-

figuration of the solver after a restart.



2. Choosing Division Variables (Section 3.1):
the different division heuristics we have implemented in the MapleCOMSPS
solver11, are: VSIDS, number of flips, and propagation rate.

3. Load Balancing (Section 3.2):
a work-stealing mechanism was implemented to operate dynamic load bal-
ancing. The master selects targets using a FIFO policy (as in Dolius) mod-
erated by a minimum computation time (2 seconds) for the workers in order
to let these acquire a sufficient knowledge of the subspace.

The exchange of learnt clauses (Section 3.3) on any of the strategies we
implemented is not restricted. This allows to reuse any of the already off-the-
shelf strategies provided by the Painless framework.

Another important issue deals with the way new subspaces are allocated to
workers. We provide two strategies:

– Reuse: the worker reuses the same object-solver all over its execution and
the master feeds it with guiding paths;

– Clone: each time a new subspace is assigned to a worker, the master clones
the object-solver from the target and provides the copy to the idle worker.
Thus, the idle worker will benefit form the knowledge (VSIDS, locally learned
clauses, etc.) of the target worker.

Hence, our Painless-based D&C component can thus be instantiated to pro-
duces solvers over six orthogonal axes: (1) technique to divide the search space;
(2) technique to choose the division variables; (3) load balancing strategy; (4)
the sharing strategy; (5) the subspace allocation technique; (6) and the used
underlying sequential solver.

By lack of time for experimentations, we select for this paper 6 solvers: all
based on MapleCOMSPS, and sharing all learnt clauses which LBD ≤ 4 (this value
has been experimentally deduced). Table 1 summarizes the implemented D&C
solvers we have used for our experiments in the next section.

VSIDS Number of flips Propagation Rate
Reuse P-REUSE-VSIDS P-REUSE-FLIPS P-REUSE-PR
Clone P-CLONE-VSIDS P-CLONE-FLIPS P-CLONE-PR

Table 1: The D&C solvers we use for experiments in this paper

5 Evaluation

This section presents the results of experiments done with the six D&C solvers we
presented in Section 4.3. We also did comparative experiments with state-of-art
D&C solvers (Treengeling [6] and MapleAmpharos [26]).
11 We used the version that won the main track of the SAT Competition in 2016 [19].



Treengeling is a cube-and-conquer solver based on the Lingeling sequen-
tial solver. MapleAmpharos is an adaptive divide-and-conquer based on the solver
Ampharos [2], and using MapleCOMSPS as sequential solver. Comparing our new
solvers with state-of-the-art ones (e.g., not implemented on Painless) is a way
to assess if our solution is competitive despite the genericity introduced by
Painless and ad-hoc optimizations implemented in other solvers.

All experiments were executed on a multi-core machine with 12 physical cores
(2 x Intel Xeon E5645 @ 2.40 GHz), and 64 GB of memory. Hyper-threading
has been activated porting the number of logical cores to 24. We used the 400
instances of the parallel track of the SAT Competition 201812. All experiments
have been conducted using the following settings:

– each solver has been run once on each instance with a time-out of 5000
seconds (as in the SAT Competition);

– the number of used cores is limited to 23 (the remaining core is booked to
the operating system);

– instances that were trivially solved by a solver (at the preprocessing phase)
were removed, indeed in this case the D&C component of solvers is not en-
abled, these instances are then irrelevant for our case study.

Results of these experiences are summarized in Table 2. The different columns
represent respectively: the total number of solved instances, the number of unsat
solved instances, the number of sat solved instances, and the PAR-2 score13.

Table 2: Results of the different solvers
Solver ALL (360) UNSAT SAT PAR-2

P-CLONE-FLIPS 198 87 111 1732696.65
P-CLONE-PR 183 73 110 1871614.48
P-CLONE-VSIDS 183 77 106 1880281.54
P-REUSE-FLIPS 190 83 107 1796426.72
P-REUSE-PR 180 72 108 1938621.48
P-REUSE-VSIDS 184 75 109 1868619.43
MapleAmpharos 153 29 124 2190680.55
Treengeling 200 84 116 1810471.56

5.1 Comparing the Implemented Divide-and-Conquer Solvers

Figure 5 presents the cactus plot of the performances of the different D&C solvers.
These differ in two orthogonal axes: the used subspace allocation technique, and
the used division heuristic. We analyse here each axe separately.
12 http://sat2018.forsyte.tuwien.ac.at/benchmarks/Main.zip
13 The used measure in the annual SAT Competition.
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When considering the allocation technique (clone vs. reuse), we can observe
that the cloning based strategy is globally more efficient, even if it has a supple-
mentary cost (due to the cloning phase). The scatter plots of Figure 6 confirm
this observation (most plots are below the diagonal, showing evidence of a bet-
ter average performance). We believe this is due to the local knowledge that is
implicitly shared between the (cloned) workers.

When considering the division heuristics (VSIDS, number of flips, and prop-
agation rate), we observe that number of flips based approach is better than the
two others. Both, by the number of solved instances and the PAR-2 measure.
This is particularly true when considering the cloning based strategy. VSIDS
and propagation rate based solvers are almost identical.

5.2 Comparison with State-of-the-Art Divide-and-Conquer

Figure 7 shows a cactus plot comparing our best divide-and-conquer (i.e., P-CLO-
NE-FLIPS) against Treengeling and MapleAmpharos.

The MapleAmpharos solver seems to be less efficient than our tool, and solves
less instances. When considering only the 123 instances that both solvers were
able to solve, we can calculate the cumulative execution time of this intersection
(CTI) for MapleAmpharos and P-CLONE-FLIPS: it is, respectively, 24h33min and
14h34min.

Although our tool solves 2 less instances as Treengeling, it has better PAR-
2 measure. The CTI calculated on the 169 instances solved by both solvers, is
49h14min and 22h23min, respectively for Treengeling and P-CLONE-FLIPS. We
can say that even if both solve almost the same number of instances, our D&C
solver is faster. We clearly observe this phenomenon in Figure 7.

Thus, in addition to highlight the performance of our instantiation, this shows
the effectiveness of the flip-based approach with respect to the well-proven cube-
and-conquer strategies.
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Fig. 6: Scatter plots of divide-and-conquer reusing vs. cloning solvers

6 Conclusion

This paper proposed an optimal implementation of several parallel SAT solvers
using the divide-and-conquer (D&C) strategy that handle parallelisms by per-
forming successive divisions of the search space.

Such an implementation was performed on top of the Painless framework
that allows to easily deal with variants of strategies. Our Painless-based im-
plementation can be customized and adapted over six orthogonal axes: (1) tech-
nique to divide the search space; (2) technique to choose the division variables;
(3) load balancing strategy; (4) the sharing strategy; (5) the subspace allocation
technique; (6) and the used underlying sequential solver.

This work shows that we have now a modular and efficient framework to
explore new D&C strategies along these six axes. We were then able to make a
fair comparison between numerous strategies.
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Fig. 7: Cactus plot of the best instantiated divide-and-conquer and
state-of-the-art solvers

Among the numerous solvers we have available, we selected six of them for
performance evaluation. Charts are provided to show how they competed, but
also how they cope face to natively implemented D&C state-of-the-art solvers.

This study shows that the flip-based approach in association with the clone
policy outperforms the other strategies whatever the used standard metrics is.
Moreover, when compared with the state-of-the-art D&C-based solvers, our best
solver shows to be very efficient and allows us to conclude the effectiveness of
our modular platform based approach with respect to the well-competitive D&C
solvers.

In the near future, we want to conduct more massive experiments to measure
the impact of clauses sharing strategies in the D&C context, and evaluate the
scalability of the various D&C approaches.
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