
Parallel Satisfiability Solver Based on Hybrid Partitioning Method

Abstract—This paper presents a hybrid partitioning method
used to improve the performance of solving a Satisfiability
(SAT) problems. The principle of our approach consist firstly
to apply a static partitioning to decompose the search tree
in finite set of disjoint sub-trees, than assign each sub-tree
to one computing core. However it is not easy to choose the
relevant branching variables to partition the search tree. We
propose in this context to partition the search tree according
to the variables that occur more frequently then others. The
advantage of this method is that it gives a good disjoint sub-
trees. However, the drawback is the imbalance load between
all computing cores of the system. To overcome this drawback,
we propose as novelty to extend the static partitioning by
combining with a new dynamic partitioning that assure a good
load balancing between cores. Each time a new waiting core is
detected, the dynamic partitioning selects automatically using
an estimation function the computing core which has the most
work to do in order to partition dynamically its sub-tree in
two parts. It keeps one part and gives the second part to the
waiting core. Preliminary result show that a good speedup is
achieved using our hybrid method.

Keywords-Parallelism; Satisfiability; Load balancing;
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I. INTRODUCTION

The past few years have seen enormous progress in
SAT solving. Among others, this is due to evolution of
hardware architectures as multi-core and Many Integrated
Cores (MIC) machines. In this context, several parallel SAT
solvers [4], [1], [9], [16] have been proposed. They are
mainly based on two approaches:

• Search tree partitioning called Divide and conquer
partitioning: the principle consists in decomposing the
unique search tree generated by one search algorithm
in a set of sub-trees, then schedule sub-trees between
the different computing cores of the system. The par-
titioning of the search tree can be done using two
methods: static or dynamic. We refers as example
studies presented in [23], [5], [19].

• Portfolio parallelization: the principle consists in exe-
cuting at the same time several search algorithm, then
the first algorithm that finds a solution stops all the
others. We refer as examples studies presented in [10],
[20], [11], [3]

The contribution of this paper concerns the search tree
partitioning approach. We aim at proposing a new hybrid
method that combines static and dynamic partitioning to
enjoy the benefits of each partitioning method. The static
partitioning consist to partition the search tree in finite

set of disjoints sub-trees, then affect each sub-tree to one
computing core to be explored. This method has two major
challenges: (1) Choosing the partition variables: for a given
large SAT instance with hundreds of thousands of variables it
is difficult to find the most relevant set of variables to divide
the search space, and (2) load balancing: for some sub-
problems it is easier to prove (un)satisfiability that others.
Since the time needed to prove (un)satisfiability of sub-
problems cannot be predicated, the work cannot be balanced
prior to search. It is possible that some processors might be
quickly idle while others take a long time to solve their
sub-problems.

In our approach, we propose to choose for the static
partitioning the variables that occur more frequently then
others. The benefit of this method is that it selects variables
which are a good candidates to partition the search tree in
disjoint sub-trees. Then, to overcome the drawback of the
load balancing problem, we propose as novelty to combine
the static method with a new dynamic partitioning method.
The advantage of our dynamic partitioning is to have a
total control on the parallel search and the load balancing.
The particularity is that each time a new waiting core
is detected, the dynamic partitioning selects automatically
using an estimation function the best working core which has
a big amount of work to do in order to generate a new work
(sub-tree). When the working core is selected, it partitions
its sub-tree in two parts: it keeps one part and sharing the
second part with the waiting core.

Our solution is proposed by doing an external paralleliza-
tion of Glucose SAT solver [2]. That means the paralleliza-
tion is not done inside the search algorithm. It is realised
with the contribution of several sequential Glucose solvers.
Glucose is an open source solver which has recently won
the SAT competition 2015 [18].

The rest of this paper is structured as follows. Section II
gives some preliminaries about solving SAT problems. Sec-
tion III presents some research work related to our contri-
bution. Section IV presents our hybrid partitioning method.
Section V presents experimental results that shows the
improvements of our partitioning method. Finally, section VI
contains the concluding remarks and provides directions for
future work.

II. PRELIMINAIRES

SAT problems are commonly represented in Conjunctive
Normal Form (CNF). A CNF formula F [7] is represented



by a set of boolean variables V (V = v1, v2, v3, ..., vn) and a
set of clauses C (C = c1, c2, c3, ..., ck). For each variable v

i

it exists two literals: v
i

and ¬v
i

called positive and negative
literals. Each clause c

i

2 C is represented by a set of literals
that is a disjunction ( v1 _ v2 _ v3, ...,_vi). We say that
the formula F is satisfied, if it exists an assignment ⇡ that
satisfies all clauses C. ⇡ satisfies a clause c

i

if it contains
at last one positive literal. If ⇡ doesn’t satisfy one clause c

i

(c
i

2 C) the formula F is said unsatisfiable. If each clause
contains up to k literals, the problem is called k-SAT.

In the literature, many academic and industrial prob-
lems [6] [13] are encoded as SAT problems then solved by
a SAT-solver. Generally encoding SAT problem is easy then
writing a particular algorithm for a specific problem.

For solving any SAT problem, first, all variables are
unassigned. For each step, a variable v

i

is chosen and it
will be assigned with boolean value in turn. Each branch of
a search tree computed by this search defines an assignment.
Next, the propagation mechanism checks the consistency of
the partial assignment of variables with a set of clauses in
order to generate a new node in the search tree. If all clauses
are satisfied the node represents a solution, otherwise the
node represent a failure and a back track is applied.

For example, for solving the problem � which is modelled
using two variables (v1 and v2) and two clauses (v1 _ ¬v2
and ¬v2), several algorithms or heuristic exists. The main
difference between them is the choice of the branching
variables and the choice of the first value assigned to each
branching variable. Figure 1 shows an example of tree search
generated to solve the � problem by using an heuristic that
selects the first unassigned variable and assigns it in first by
true value. This search tree is generated as follows:

• The first selected variable is v1 and it is assigned with
the true value. In this step, only the first clause is
satisfied (v1 _ ¬v2)

• In the second step, the variable v2 is selected and as-
signed with true value. In this case the node represents a
failure because the second clause (¬v2) is not satisfied,

• In the third step a back track is applied and the variable
v2 is assigned with false value. In this step a solution
is found that satisfies all clauses.

Figure 1. Search tree generated to solve a SAT problem

III. RELATED WORK

During the last few decades, there has been considerable
evolution in the innovations of hardware architectures as
multi-core parallel machines and parallel techniques used
to solve combinatorial problems using SAT solvers. In this
context, different studies are presented, including but not
limited to works presented in [22], [17], [5], [12], [10], [21],
[16], [14]. The majority of these studies can be classified
according to the parallelization approaches: search tree par-
titioning, Portfolio or combining search tree partitioning and
Portfolio parallelization.

As example of search tree partitioning approaches we
mention the following studies:

Plaza et al. [17] propose an approach based on a static
partitioning. The principle consists in partitioning the search-
tree in finite set of sub-trees. Then explore each sub-tree
using one core. To choose the branching variables, the
authors propose to use the VSIDS [15] heuristic. Addition-
ally, it implements a parallel processing based on recursive
learning.

Böhm et al. [5] proposes to partition the search tree using
a dynamic partitioning to decompose the input formula into
disjoint sub-formulas. Then, each sub-formula is solved by
a sequential SAT solver. To modify the boolean formulas,
the authors propose to use an optimized data structures.
It’s proposed also to use an efficient workload algorithm
to assure a good load balancing between cores.

Jurkowiak et al. [12] proposes to apply the work stealing
technique to assure a good load balancing between all com-
puting core. The approach proposed in this study is based
on the master/slaves communication model. The master is
responsible for distributing the sub-trees among the slaves.
Then, each slave executes one sub-tree.

As example of Portfolio approaches we mention the
following studies:

Xu et al. [21] proposes the Satzilla solver which is a
Portfolio-based algorithm selection. Satzilla is a portfolio-
based solvers which have been proposed in the sequential
context. It consists in running several solvers, then the first
one which finds a solution stops others.

Hamadi et al. [10] proposes the ManySAT solver which
is a Portfolio of complementary sequential algorithm. The
novelty of this solver in the context of Portfolio paralleliza-
tion is the sharing of clauses between the solvers to improve
the global performance of the system.

As example of studies which combines search partitioning
and Portfolio we mention the following works:

Ohmura et al. [16] proposes to use for the search par-
titioning approach a master-slave architecture. The master
handles clauses sharing, deletion of redundant clauses and
the dynamic partitioning of the search trees, while the
slaves perform search in each sub-tree using different search
algorithms heuristics.



Martins et al. [14] proposes to use at first the static
partitioning to decompose the search tree in a set of sub-
tree. This method is based on the VSIDS heuristic to select
the branching variables. Then, switch to a portfolio approach
when load balancing becomes an issue or when a cutoff is
reached.

All of the previous research studies proposed in the
context of search tree partitioning use only one method
(static or dynamic) to decompose the initial search tree and
schedule sub-trees between the different cores. In contrast to
these related studies, our work propose a hybrid algorithm
that combines static and dynamic partitioning. This hybrid
method is presented in the next section.

IV. HYBRID PARTITIONING METHOD

The contribution of this paper is based on proposing a
new hybrid partitioning method which performs a parallel
search on multi-core machine to improve the performance
of solving SAT problems. The goal of this method consists
in overcoming the problem of the load balancing obtained
by using a static partitioning. The principle consists to start
the search by using static partitioning in order to partition
the search tree in a good set of disjoint sub-trees. Then in a
second step, apply a dynamic partitioning to obtain a good
load balancing between different cores of the computing
system. In what follows we present in detail the principle of
the static and the dynamic partitioning.

A. Static Partitioning
This method aims at decomposing the initial search tree in

finite set of sub-trees, than explore each sub-tree using one
computing core. All sub-trees are generated such as they are
disjoints and each sub-tree contains a specific guiding path
which is different form other. The guiding path is generated
by assigning all the branching variables with a particular
boolean value. However, the problem is how we choose
the branching variables to construct the initial guiding path.
Plaza et al. [17] proposes to sequentially run a master thread
for a short time to allow the VSIDS [15] heuristic to generate
a new information which can be used to select variables. In
this paper we use an other method which is also used by
Gil et al. [8]. It consists in choosing the variables that occur
more frequently then others.

In our context, the number of partitioning variables is
fixed according to the number of computing cores used
in the parallel search. For example using p computing
cores, we select n partitioning variables which occur more
often than other variables and which are unassigned (n =

floor(log2 (p))). Then, this selected variables are used to
generate n

2 sub-problems with a different guiding path.
For each sub-problem a new static node is generated that
represents a structure which contains the original problem
with all variables, all clauses and the new guiding path.
Then, this new static nodes are inserted in a Global Priority

Figure 2. Static Partitioning

Queue (GPQ) which is a global pool of nodes shared
between all computing cores. Then, each core takes one node
and starts the search.

Figure 2 shows an example of using static partition-
ing with 4 computing cores. We start by selecting 2
(floor(log2 (4))) partitioning variables, in our case the
variables which occur more often than other are variables
3 and 4. In reality, variable 1 is the most occur variable,
but it is not selected as a branching variable because in the
initial problem the variable 1 is assigned with true value.
After fixing the branching variables, we generate new sub-
problems with a unique guiding path for each one. Each
node is encapsulated in a static node and inserted in the
GPQ. Finally, each core start the exploration of the search
with one static node.

The advantage of static partitioning is that partitions the
search tree in a good disjoint sub-trees. But the drawback
is the load balancing between computing cores. For some
problems it is easier to prove unsatisfiability than others.
When a core finish its work and there is no new sub-tree to
explore, it waits until a solution is found or all working cores
finish their work. This waiting time has a negative effect on
the global performance of the system. To solve this problem
we propose to extend the static partitioning with a dynamic
partitioning in order to generate, dynamically, new works
(sub-trees) each time a waiting core is detected.

B. Dynamic Partitioning
The goal of the dynamic partitioning is to give a good

load balancing between all computing cores. This principle
is presented in algorithm 1. Each time a new waiting core is



Algorithm 1 Dynamic Partitioning
GPQ, a Global Priority Queue shared between all cores
C

x

, working core which have the most work to do
compared to the others cores
if 9 at last one waiting core and the current working core
is C

x

then
Stop the search
Create a new dynamic node
Insert the dynamic node in the GPQ

Restart the search
else

Continue the exploration of the sub-tree
end if

detected, the algorithm selects using an estimation function
the working core which has the most work to do compared
to the other working cores to generate a new sub-tree. We
propose to select the core which has the most work to do
because it is the best candidate to share his work. Then, the
selected working core fixes his next branching variable to
true value and generate a new dynamic node. The dynamic
node contains all the variables assigned with the working
core and the next branching variable assigned to false value.
The new dynamic node is inserted in the GPQ to be shared
with the waiting core that takes effects by the insertion of a
new dynamic node in the GPQ. However, if no waiting core
exists, all the working cores perform a sequential exploration
of the sub-tree search.

To have a good performance and improve the cooperation
between all workers, each time a computing core finishes it
works it saves all the learned clauses in a data base, then
when a new core restarts the search with a new dynamic
node, it picks up the clauses saved in the data base and
starts the search. The exchange of learned clauses between
computing cores is very efficient to reduce the search space
and to improve the global performance of the system.

The estimation function used in this dynamic partitioning
is based on the number of assigned variables after the
propagation mechanism. Each time we need to select a core
to generate a new work, we select the core which has the
smallest estimation. That means we select the core that has
the big number of unsigned variables and which probably
has more work to do in the future than others cores.

1) Example of Progress of Dynamic Partitioning: Fig-
ures 3 and 4 show the progress of the dynamic partitioning.
In figure 3: cores 1, 3 and 4 explore a static sub-tees where
core 2 is idle. To give a new work to core 2, figure 4
shows the mechanism. As core 1 is the working core which
has the smallest estimation of work to do compared to the
others cores (estimation=20), it assigns the next branching
variable v selected by the local search algorithm to true value
(v=true). Then, core 1 creates and inserts in the GPQ a new
dynamic node that contains all necessary informations to

Figure 3. Dynamic partitioning: first step

Figure 4. Dynamic partitioning: second step

restart the search by an other core. The core 2 takes this
new dynamic node and starts the search. By following this
mechanism, we can say that the dynamic partitioning gives
a good load balancing between all cores by creating new
work each time a waiting core is detected.

V. EXPEREMENTATIONS

To validate the approach used in this study, we realised
a set of experiments on a linux system. The used parallel
machine was a bi-processor Intel Xeon X5650 (2.67 GHz)
with Hyper-Threading technology (6 physical cores for 12
threads) and 48 GB of RAM. The Glucose version used in
this experimentation is Glucose 4.0 [2]. All solved problems
were proposed in the SAT Competition 2015 [18] and
modelled using "DIMACS CNF" format, which is a simple
text format [7].
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Figure 5. Average speed-up for solving 27 SAT problems using hybrid
partitioning method
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Figure 6. Average speed-up for solving 17 UNSAT problems using hybrid
partitioning method
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Figure 7. Average speed-up for solving 27 SAT + 17 UNSAT problems
using hybrid partitioning method

Figures 5 (resp. figures 6) shows a comparison between
the average speedup obtained using a static and hybrid
partitioning methods for solving 27 SAT (resp. 17 UNSAT)
problems. All solved instances in this experimentation refers
to the instances which are solved in less then 10800 seconds
(3 hours) with different configurations (1,4, 8 and 12 cores).
It is clear that our hybrid partitioning method gives a good
performance compared to the static partitioning, a speedup
of 18.96 is reached for solving 27 SAT problems with
12 cores and a speedup of 2.73 is reached for solving
17 UNSAT problems with 12 cores. Figure 7 shows an
average speedup for solving a set of 27 SAT and 17 UNSAT
problems.

A. Comparison between the hybrid partitioning and other
externals solvers

To validate our approach, figures 8 (resp. 9) shows
a comparison between speedup obtained using Plingling
solver, Treengling solver, Glucose solver and our hybrid
partitioning method for solving 11 SAT (resp. 6 UNSAT)
problems. All solved instances in this experimentation refers
to the instances which are solved at the same time in less
then 10800 seconds (3 hours) with different configurations
(1,4, 8 and 12 cores) using Plingling solver, Treengling
solver, Glucose solver and our hybrid partitioning method.

According to the result of SAT competition 2015 [18] for
the parallel track, Glucose solver was ranked as the best
solver, Treengling solver was ranked in the second position
and Plingeling was ranked in the third position.

Figure 10 notes that in generally our hybrid method give
a good performance for solving SAT and UNSAT problems.
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Figure 8. Comparison of average speed-up obtained for solving 11
SAT problems with Plingling solver, Treengling solver, Glucose solver and
hybrid partitioning method
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Figure 9. Comparison of average speed-up obtained for solving 6 UNSAT
problems with Plingling solver, Treengling solver, Glucose solver and
hybrid partitioning method
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Figure 10. Comparison of average speed-up obtained for solving 11 SAT
+ 6 UNSAT problems with Plingling solver, Treengling solver, Glucose
solver and hybrid partitioning method



B. Load Balancing
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Figure 11. Load balancing for solving SAT problem
(50bits_10.dimacs.cnf) using 12 computing cores
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Figure 12. Load balancing for solving UNSAT problem (manthey_single-
ordered-initialized_w48_b9.cnf) using 12 computing cores

Figures 11 and 12 shows the behaviour of the computing
cores when we solve SAT and UNSAT problems using our
hybrid partitioning method. As result, all cores worked and
waited for an equivalent amount of time.

VI. CONCLUSION

This paper presents a parallel SAT solver based on hybrid
partitioning method that combine a static and dynamic
partitioning. Static partitioning is applied to generate a good
disjoint sub-trees, then dynamic partitioning is apply to
assure a good load balancing between computing cores. This
hybrid method is tested with shared memory architecture to
solve 44 problems, and a good speed-up is achieved. As a
first perspective, we propose to adapt the development of
our hybrid method for distributed memory architecture and
cloud computing to performs a test with industrial problems
using high computing power.

In this paper, our contribution is proposed only in the
parallelization of one search tree generate by one search
algorithm. However in the Portfolio parallelization, several
search algorithms are executed, then the first algorithm
that found a solution stop others. As a second perspective

we propose to apply our hybrid method for each search
algorithm in the Portfolio parallelization.

As a third perspective, it is interesting to mix the parallel
SAT and Constraint Programming (CP) solvers in the same
framework to extend the set of combinatorial problems that
can be solved by the same framework.
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