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Abstract. An ω-regular language is stutter-invariant if it is closed by the opera-
tion that duplicates some letter in a word or that removes some duplicate letter.
Model checkers can use powerful reduction techniques when the specification is
stutter-invariant.
We propose several automata-based constructions that check whether a specifi-
cation is stutter-invariant. These constructions assume that a specification and its
negation can be translated into Büchi automata, but aside from that, they are inde-
pendent of the specification formalism. These transformations were inspired by a
construction due to Holzmann and Kupferman, but that we broke down into two
operations that can have different realizations, and that can be combined in dif-
ferent ways. As it turns out, implementing only one of these operations is needed
to obtain a functional stutter-invariant check.
Finally we have implemented these techniques in a tool so that users can easily
check whether an LTL or PSL formula is stutter-invariant.

1 Introduction

The notion of stutter-invariance (to be defined formally later) stems from model check-
ers implementing partial-order reduction techniques (e.g., [6, Ch. 10] or [4, Ch. 8]).
If a model checker knows that the property to verify is stutter-invariant, it is sufficient
to check that property only on a selected subset of the executions of the model, often
achieving a great speedup. Such partial-order reductions are implemented by explicit
model checkers such as Spin [18, Ch. 9], LTSmin [21], or DiVinE [5], to cite a few.
Detecting stutter-invariant properties has also usages beyond partial-order reductions;
for instance it is used to optimize the determinization construction implemented in the
tool ltl2dstar [20].

To activate these optimizations, tools must decide if a property is stutter-invariant.
The range of available options for this check depends on how the property is specified.

Linear-time Temporal Logic (LTL) is a common specification formalism for verifi-
cation tools. It is widely known that any LTL formula that does not use the next-step
operator X (a.k.a. an LTL\X formula) is stutter-invariant; this check is trivial to imple-
ment. Unfortunately there exist formulas using X that are stutter-invariant (for instance
‘F(a ∧ X(¬a ∧ b))’) and whose usage is desirable [23].

Dallien and MacCaull [8] built a tool that recognizes a stuttering LTL formula if
(and only if) it matches one of the patterns of Păun and Chechik [23]. This syntactical



approach is efficient, but incomplete, as not all stutter-invariant formulas follow the
recognized patterns.

A more definite procedure was given by Peled and Wilke [24] as a construction
that inputs an LTL formula ϕ with |ϕ| symbols and n atomic propositions, and outputs
an LTL\X formula ϕ′ with O(4n|ϕ|) symbols, such that ϕ and ϕ′ are equivalent iff they
represent a stutter-invariant property. This construction, which proves that any stutter-
invariant formula can be expressed without X, was later improved to nO(k)|ϕ| symbols,
where k is the X-depth of ϕ, by Etessami [13]. If a disjunctive normal form is desired,
Tian and Duan [29] give a variant with size O(n2n|ϕ|). To decide if an LTL formula ϕ is
stutter-invariant, we build ϕ′ using one of these constructions, and then check the equiv-
alence of ϕ and ϕ′. This equivalence check can be achieved by translating these formu-
las into automata. This approach, based on Etessami’s procedure, was implemented in
our library Spot [10], but some practical performance issues prompted us to look into
alternative directions.

Extending this principle to a more expressive logic is not necessarily easy. For in-
stance, a generalization of the above procedure to the linear fragment of PSL (the Prop-
erty Specification Language [1]) was proposed by Dax et al. [9], but we realized it was
incorrect1 when we recently implemented it in Spot. Still, Dax et al. [9] provide a syn-
tactic characterization of a stutter-invariant subset of PSL (which is to PSL what LTL\X
is to LTL) that can be used to quickly classify some PSL formulas as stutter-invariant.

For most practical uses these linear-time temporal formulas are eventually converted
into ω-automata like Büchi automata, so one way to avoid the intricacies of the logic is
to establish the stutter-invariance directly at the automaton level. This is the approach
used for instance in ltl2dstar [20]. The property ϕ and its negation are both trans-
lated into Büchi automata Aϕ and A¬ϕ; then the automaton Aϕ is transformed (using
a procedure inspired from Holzmann and Kupferman [19]) into an automaton A′ϕ that
accepts the smallest stutter-invariant language over-approximating the language of ϕ.
The property ϕ is stutter-invariant iff Aϕ and A′ϕ have the same language, which can be
checked by ensuring that the product A′ϕ ⊗ A¬ϕ has an empty language. This procedure
has the advantage of being independent of the specification formalism used (e.g., it can
work with LTL or PSL, and will continue to work even if these logics are augmented
with new operators).

In this paper, we present and compare several automata-based decision procedures
for stutter-invariance, inspired from the one described above. We show that the trans-
formation of Aϕ to A′ϕ is better seen as two operations: one that allows letters to be
duplicated, and another that allows duplicate letters to be skipped. These two opera-
tions can then be recombined in many ways, giving seven decision procedures. Rather
surprisingly, some of the proposed checks require only one of these two operations: as
a consequence, they are easier to implement than the original technique.

1 While testing our implementation we found Lemma 2 of [9] to be incorrect w.r.t. the∩ operator.
A counterexample is the SERE r = a∩ (a; a) since L](r) = ∅ but L](κ(r)) = {a}. Also Lemma 4
is incorrect w.r.t. the� operator; a counterexample is the PSL formula a � b which gets
rewritten as a+ � b: two stutter-invariant formulas with different languages. We are in contact
with the authors. (Note that these lemmas are numbered 4 and 9 in the authors’ copy.)

http://www.daxc.de/eth/paper/09atva.pdf


We first define stutter-invariant languages, and some operations on those languages
in Section 2. The main result of Section 2, Theorem 1, gives several characterizations
of stutter-invariant languages. In Section 3, we introduce automata to realize the lan-
guage transformations described in Section 2. This gives us seven decision procedures,
as captured by Theorem 2. In Section 4 we describe in more details the similarities be-
tween one of the proposed checks and the aforementioned construction by Holzmann
and Kupferman, and we also point to some other related constructions. Finally in Sec-
tion 5 we benchmark our implementation of these procedures.

2 The Language View

We use the following notations. Let Σ be an alphabet, and let Σω denote the set of
infinite words over this alphabet. Since we only consider infinite words, we will simply
write word from now on. Given a word w ∈ Σω, we denote its individual letters by
w0,w1,w2, . . . and write w = w0w1w2 . . . using implicit concatenation. Given some letter
` ∈ Σ and a positive integer n, we use `n as a shorthand for the concatenation `` . . . `
of n copies of `, and `ω for the concatenation of an infinite number of instances of `. A
language L over Σ is a set of words, i.e., L ⊆ Σω. Its complement language is L = Σω\L.

Definition 1 (Stutter-invariant language). A language L is stutter-invariant iff it sat-
isfies the following property:

∀n0 ≥ 1,∀n1 ≥ 1,∀n2 ≥ 1, . . . ,
(
w0w1w2 . . . ∈ L ⇐⇒ wn0

0 wn1
1 wn2

2 . . . ∈ L
)

In other words, in a stutter-invariant language L, duplicating any letter or removing
any duplicate letter from a word of L will produce another word of L. When L is not
stutter-invariant, we say that L is stutter-sensitive.

The following lemma restates the above definition for stutter-sensitive languages.

Lemma 1. A language L is stutter-sensitive iff there exists n0 ≥ 1, n1 ≥ 1, n2 ≥ 1, . . .
such that either
1. there exists a word w0w1w2 . . . ∈ L such that wn0

0 wn1
1 wn2

2 . . . < L
2. or there exists a word wn0

0 wn1
1 wn2

2 . . . ∈ L such that w0w1w2 . . . < L.

Proposition 1. A language L is stutter-invariant iff L is stutter-invariant.

Proof. Assume by way of contradiction that L is stutter-invariant but L is not. Applying
Lemma 1 to L, there exists n0 ≥ 1, n1 ≥ 1, . . . such that either
1. there exists a word w0w1 . . . ∈ L such that wn0

0 wn1
1 . . . < L; but this means wn0

0 wn1
1 . . . ∈

L and because L is stutter-invariant we must have w0w1 . . . ∈ L which contradicts
the fact that this word should be in L;

2. or there exists a word wn0
0 wn1

1 . . . ∈ L such that w0w1 . . . < L, but then w0w1 . . . ∈ L
implies that wn0

0 wn1
1 . . . should belong to L as well, which is also a contradiction.

The same argument can be done with L and L reversed. ut



Proposition 2. If L1 and L2 are stutter-invariant then L1 ∪ L2 and L1 ∩ L2 are stutter-
invariant.

Proof. Immediate from Definition 1. ut

We now introduce new operations that we will combine to decide stutter-invariance.

Definition 2. For a word w = w0w1w2 . . ., Instut(w) = {wn0
0 wn1

1 wn2
2 . . . | ∀i, ni ≥ 1}

denotes the set of words built from w by allowing any letter of w to be duplicated (i.e.,
the stuttering of w can be increased).

Conversely, Destut(w) = {u0u1u2 . . . ∈ Σ
ω | there exists n0 ≥ 1, n1 ≥ 1, n2 ≥ 1, . . .

such that w = un0
0 un1

1 un2
2 . . .} denotes the set of words built from w by allowing any du-

plicate letter to be removed (i.e., the stuttering of w can be decreased).
We extend these two definitions to languages straightforwardly using Instut(L) =⋃

w∈L Instut(w) and Destut(L) =
⋃

w∈L Destut(w).

The following lemmas are immediate from the definition:

Lemma 2. For any two words u and v, u ∈ Instut(v) ⇐⇒ v ∈ Destut(u).
Lemma 3. For any language L, we have L ⊆ Destut(L) ⊆ Instut(Destut(L)), L ⊆
Instut(L) ⊆ Destut(Instut(L)), and Instut(Destut(L)) = Destut(Instut(L)).
Lemma 4. For any language L, we have L ⊆ Instut(L) ∩ Destut(L).

To illustrate that Lemma 4 cannot be strengthened to L = Instut(L) ∩ Destut(L),
consider the language L = {a2bω, a4bω}. Then Instut(L) = {aibω | i ≥ 2}, Destut(L) =

{aibω | 1 ≤ i ≤ 4}, and Instut(L) ∩ Destut(L) = {aibω | 2 ≤ i ≤ 4} , L.
We now show that L , Instut(L)∩Destut(L) is only possible if L is stutter-sensitive.

Proposition 3. L is a stutter-invariant language iff Instut(L) = L = Destut(L).

Proof. (=⇒) If L is stutter-invariant, the words added to L by Instut(L) or Destut(L) are
already in L by definition. (⇐=) If L = Instut(L) and L = Destut(L) there is no way to
find a counterexample word for Lemma 1. ut

Note that Instut(L) = Destut(L) is not a sufficient condition for L to be stutter-
invariant. For instance consider the stutter-sensitive language L = {aibω | i is odd} for
which Instut(L) = Destut(L) = {aibω | i > 0}.

Proposition 4. If a language L is stutter-sensitive, then either Instut(L) ∩ L , ∅ or
Destut(L) ∩ L , ∅.

Proof. Applying Lemma 1 to L, there exists n0 ≥ 1, n1 ≥ 1, . . . such that either
1. there exists a word w0w1 . . . ∈ L such that wn0

0 wn1
1 . . . < L, which implies that

Instut(L) ∩ L , ∅;
2. or there exists a word wn0

0 wn1
1 . . . ∈ L such that w0w1 . . . < L, which implies that

Destut(L) ∩ L , ∅.
So one of Instut(L) or Destut(L) has to intersect L. ut



Proposition 5. If a language L is stutter-sensitive, then Instut(L) ∩ Instut(L) , ∅.

Proof. By proposition 4, since L is stutter-sensitive we have either Instut(L)∩ L , ∅ or
Destut(L) ∩ L , ∅.

– If Instut(L) ∩ L , ∅, then there exists a word u ∈ L, and a word v ∈ L such
that u ∈ Instut(v). Since u ∈ L we have u ∈ Instut(L); however we also have
u ∈ Instut(v) ⊆ Instut(L). So u ∈ Instut(L) ∩ Instut(L).

– If Destut(L) ∩ L , ∅, then there exists a word u ∈ L and a word v in L such
that u ∈ Destut(v). By lemma 2, we have v ∈ Instut(u). Therefore we have v ∈
Instut(u) ⊆ Instut(L) and v ∈ L ⊆ Instut(L), so v ∈ Instut(L) ∩ Instut(L).

In both cases Instut(L) ∩ Instut(L) is non-empty. ut

Proposition 6. If a language L is stutter-sensitive, then Destut(L) ∩ Destut(L) , ∅.

Proof. Similar to that of proposition 5. ut

Theorem 1. For any language L, the following statements are equivalent.
(1) L is stutter-invariant
(2) L = Instut(L) = Destut(L)
(3) Destut(Instut(L)) ∩ L = ∅

(4) Instut(Destut(L)) ∩ L = ∅

(5) Instut(L) ∩ Instut(L) = ∅

(6) Destut(L) ∩ Destut(L) = ∅

Proof. (1) ⇐⇒ (2) is Prop. 3; (2) =⇒ (3) ∧ (4) is immediate; (2) =⇒ (5) ∧ (6)
follows from Prop. 1 which means that the hypothesis (2) can be applied to L as well;
(3) =⇒ (1) and (4) =⇒ (1) both follow from the contraposition of Prop. 4 and from
Lemma 3; (5) =⇒ (1) and (6) =⇒ (1) are Prop. 5 and 6. ut

The most interesting part of this theorem is the last two statements: it is possible to
check the stutter-invariance of a language using only Instut or only Destut. In the next
section we show different implementations of these operations on automata.

3 The Automaton View

Specifications written in linear-time temporal logics like LTL or (the linear fragment
of) PSL are typically converted into Büchi automata by model checkers (or special-
ized translators). Below we define the variant of Büchi automata we use in our tool:
Transition-based Generalized Büchi Automata or TGBA for short.

The TGBA acronym was coined by Giannakopoulou and Lerda [16], although sim-
ilar automata have been used with different names before [e.g., 22, 7, 14]. As their
name implies, these TGBAs have a generalized Büchi acceptance condition expressed
in terms of transitions (instead of states). While these automata have the same expres-
siveness as Büchi automata (i.e., they can represent all ω-regular languages), they can
be more compact; furthermore they are the natural product of many LTL-to-automata
translation algorithms [7, 14, 16, 2, 11].

The transformations we define on these automata should however not be difficult to
adapt to other kinds of ω-automata.



Definition 3 (TGBA [16]). A Transition-based Generalized Büchi Automaton (TGBA)
is a tuple A = 〈Σ,Q, q0,F , δ〉 where:

– Σ is a finite alphabet,
– Q is a finite set of states,
– q0 ∈ Q is the initial state,
– δ ⊆ Q × Σ × Q is a transition relation labeling each transition by a letter,
– F = {F1, F2, . . . , Fn} is a set of acceptance sets of transitions: Fi ⊆ δ.

A sequence of transitions ρ = (s0,w0, d0)(s1,w1, d1) . . . ∈ δω is a run of A if s0 = q0
and for all i ≥ 0 we have di = si+1. We say that ρ recognizes the word w = w0w1 . . . ∈
Σω.

For a run ρ, let Inf(ρ) ⊆ δ denote the set of transitions occurring infinitely often in
this run. The run is accepting iff Fi ∩ Inf(ρ) , ∅ for all i, i.e., if ρ visits all acceptance
sets infinitely often.

Finally the language of A, denoted L (A), is the set of words recognized by the
accepting runs of A.

Figure 1 shows some examples of TGBAs that illustrate the upcoming definitions.
The membership of transitions to some acceptance sets is represented by numbered and
colored circles. For instance, automaton A1 in Figure 1(a) has two acceptance sets F1
and F2 that respectively contain the transitions marked with 1 and 2 . This automaton
accepts the word (abba)ω but rejects (aba)ω, so its language is stutter-sensitive.

We now propose some automata-based implementations of the operations from Def-
inition 2. The next three constructions we define in the rest of this section, cl (Def. 4),
sl (Def. 5), and sl2 (Def. 6), implement respectively Destut, Instut, and again Instut.

Definition 4 (Closure). Given a TGBA A = 〈Σ,Q, q0, {F1, F2, . . . , Fn}, δ〉, let cl(A) =

〈Σ,Q, q0, {F′1, F
′
2, . . . , F

′
n}, δ

′〉 be the closure of A defined as follows:
– δ′ is the smallest subset of Q × Σ × Q such that
• δ ⊆ δ′,
• if (x, `, y) ∈ δ′ and (y, `, z) ∈ δ′, then (x, `, z) ∈ δ′.

– each F′i is the smallest subset of δ′ such that
• Fi ⊆ F′i ,
• if (x, `, y) ∈ δ′, (y, `, z) ∈ δ′, and either (x, `, y) ∈ Fi or (y, `, z) ∈ Fi then

(x, `, z) ∈ F′i .

Figure 1(d) illustrates this construction which can be implemented by modifying the
automaton in place: for every pair of transitions of the form x y z`

1
`

2 , add a
shortcut transition x z`

1 2
that allows to skip one of the duplicated letters on a

run without affecting the acceptance of this run. When the transition x z` already
exists, we just need to update its membership to acceptance sets. So in effect, these
changes let the automaton accept all shorter words that can be constructed from an
accepted words by removing a duplicate letter.

In the worst case (e.g., the states of A form a ring with transitions of the form
(x, `, x + 1 mod n) for all letters `), cl(A) ends up with |Q2| × |Σ | transitions.
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Fig. 1: An example TGBA A1, with its closure, self-loopization, complement, closed
complement, and the product between the two closures. L (A1) is stutter-sensitive.



Table 1: Characteristics of automata constructed from A = 〈Σ,Q, q0,F , δ〉.
reachable states transitions language

cl(A) |Q| O(|Q|2 × |Σ |) Destut(L (A))
sl(A) O(|Q| × |Σ |) O(|δ| × |Σ |) Instut(L (A))
sl2(A) O(|Q| + min(|Q| × |Σ |, |δ|)) Θ(|δ|) Instut(L (A))

Definition 5 (Self-loopization). Given a TGBA A = 〈Σ,Q, q0, {F1, F2, . . . , Fn}, δ〉, let
sl(A) = 〈Σ,Q′, q0, {F′1, F

′
2, . . . , F

′
n}, δ

′〉 be the “self-loopization” of A defined by:
– Q′ = (Q × Σ) ∪ {q0},
– δ′ = {((x, `1), `2, (y, `2)) | `1 ∈ Σ, (x, `2, y) ∈ δ} ∪ {((y, `), `, (y, `)) | (x, `, y) ∈ δ}

∪ {(q0, `, (y, `)) | (x, `, y) ∈ δ, x = q0},
– F′i = {((x, `1), `2, (y, `2)) ∈ δ′ | (x, `2, y) ∈ Fi}.

Figure 1(f) illustrates this construction. For each transition, letters are “pushed” in the
identifier of the destination state, ensuring that all transitions entering this state have the
same letter, and then a self-loop with this letter is added if it was not already present
on the original state. Note that the only self-loop that belong to acceptance sets are
those that already existed in the original automaton: this ensures that the stuttering we
introduce can only duplicate letters a finite amount of times.

With this construction, a state is duplicated as many times as its number of different
incoming letters. In the worst case the automaton size is therefore multiplied by |Σ |.

The following definition gives another automata-transformation that implements
Instut, but in such a way that is it easy to modify the automaton in place.

Definition 6 (Second self-loopization). For a TGBA A = 〈Σ,Q, q0, {F1, F2, . . . , Fn}, δ〉,
let sl2(A) = 〈Σ,Q′, q0, {F′1, F

′
2, . . . , F

′
n}, δ

′〉 be another “self-loopization” of A with:
– Q′ = Q ∪ (Q × Σ),
– δ′ = δ ∪

⋃
(x,`,y)∈δ

(x,`,x)<δ∧(y,`,y)<δ

{(x, `, (y, `)), ((y, `), `, (y, `)), ((y, `), `, y)},

– F′i = Fi ∪ {(x, `, (y, `)) ∈ δ′ | (x, `, y) ∈ Fi}.

Figure 1(g) illustrates this construction. For each transition x y`
1 such that x and y

have no self-loop over `, we add x ỳ y`
1

`

`

, therefore allowing ` to appear twice

or more. Note again that the added self-loop does not belong to any accepting set, so
that ` can only be stuttered a finite amount of times.

The number of transitions of sl2(A) is at most 4 times the number of transitions
in A. The number of states of the form (y, `) that are added is obviously bounded by
|Q| × |Σ | but also by |δ| since we may add at most one state per original transition. This
implies sl2(A) has O(|Q| + min(|Q| × |Σ |, |δ|)) reachable states. In automata with a lot
of self-loops (which is frequent when they represent LTL formulas), it can happen that
very few additions are necessary: for instance automaton A1 from Figure 1(a) requires
no modification, while automaton A1 (Fig. 1(b) and (g)) requires only one extra state.



Table 1 summarizes the characteristics of these three constructions, that satisfy the
following proposition:

Proposition 7. For any TGBA A we have L (cl(A)) = Destut(L (A)) and L (sl(A)) =

L (sl2(A)) = Instut(L (A)).

To fully implement cases (3)–(6) of Theorem 1 we now just need to discuss the
product and emptiness check of TGBAs, which are well known operations.

The product of two TGBAs is a straightforward synchronized product in which
acceptance sets from both sides have to be preserved, therefore ensuring that a word in
the product is accepted if and only if it was accepted by each of the operands.

Definition 7 (Product of two TGBAs). Let A and B be two TGBAs on the same al-
phabet: A = 〈Σ,QA, qA

0 , {F1, F2, . . . , Fn}, δ
A〉 and B = 〈Σ,QB, qB

0 , {G1,G2, . . . ,Gm}, δ
B〉.

The product of A and B, denoted A ⊗ B, is the TGBA 〈Σ,Q,F , q0, δ〉 where:
– Q = QA × QB,
– q0 = (qA

0 , q
B
0 ),

– δ = {((x1, x2), `1, (y1, y2)) | (x1, `1, y1) ∈ δA, (x2, `2, y2) ∈ δB, `1 = `2},
– F = {F′1, F

′
2, . . . , F

′
n,G

′
1,G

′
2, . . . ,G

′
m}where F′i = {(x1, x2), `, (y1, y2) ∈ δ′ | (x1, `, y1) ∈

Fi} and G′i = {(x1, x2), `, (y1, y2) ∈ δ′ | (x2, `, y2) ∈ Gi}.

Proposition 8. If A and B are two TGBAs, then L (A ⊗ B) = L (A) ∩L (B).

Figure 1(e) shows an example of product.
Deciding whether a TGBA has an empty language can be done in linear time with

respect to the size of the TGBA [7, 28, 26]. One way is to search for a strongly con-
nected component that is reachable from the initial state, and whose transitions inter-
sects all acceptance sets. The reader can verify that the product automaton from Fig. 1(e)
has a non-empty language (for instance the word a(ba)ω is accepted thanks to the cycle
around 05 and 24 ).

We can now state our main result:

Theorem 2. Let ϕ be a property expressed as a TGBA A, and assume we know how to
obtain A. Testing ϕ for stutter-invariance is equivalent to testing the emptiness of any
of the following products:

– cl(sl(A)) ⊗ A,
– sl(cl(A)) ⊗ A,
– cl(sl2(A)) ⊗ A,
– sl2(cl(A)) ⊗ A,
– sl(A) ⊗ sl(A),
– sl2(A) ⊗ sl2(A),
– cl(A) ⊗ cl(A).

Proof. Consequence of Theorem 1 (3)–(6), and Propositions 7 and 8. ut

In a typical scenario, ϕ is a property specified as LTL or PSL, and from that we can
obtain Aϕ and its negation A¬ϕ by just translating ϕ and ¬ϕ using existing algorithms.
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Fig. 2: Illustration of the similarities between the Holzmann and Kupferman’s construc-
tion (top row), and the composition of what we defined as cl and sl (bottom row).

4 Comparison with Other Automata-based Approaches

As mentioned in the introduction, an automata-based construction described by Holz-
mann and Kupferman [19] was used by Klein and Baier [20] to implement a stutter-
invariance check in ltl2dstar. Since our constructions have been heavily inspired by
this construction, it makes sense that we discuss the similarities and differences.

Holzmann and Kupferman’s construction starts from a Büchi automaton (i.e., with
state-based acceptance) such as A2 in Figure 2(a). This automaton is first converted into
a Büchi automaton with labels on states and multiple initial states, such as the automa-
ton B2 pictured in Figure 2(b). From B2, they produce the stuttering over-approximation
B′2 in Figure 2(c). This last step essentially consists in making two copies of the automa-
ton: one non-accepting (the left part of B′2), and one non-accepting (the right part of B′2,
in which we grayed out some states that are not reachable in this example and need
not be constructed). The non-accepting part has self-loops on all its states, and is also



closed in such a way that if there exists a path of states labeled by `1`1 . . . `1`2, there
should exist a transition between the first and the last state. Additionally if this path
visits an accepting state in the original automaton, there should be a transition to the
accepting copy of the last state.

Now we can compare the transformation of A2 into B′2 and the transformation of the
equivalent2 TGBA A3 into cl(sl(A3)) presented at the bottom of Figure 2. The transfor-
mation of A2 into B2 combined with the addition of self-loops later in B′2 corresponds to
the transformation of A3 into sl(A3). The only difference is that we keep a single initial
state. Then, the closure of B′2 corresponds to our cl operation, with two differences:

– First, using transition-based acceptance we do not have to duplicate states to keep
track of paths that visit accepting states. The gain is not very important, since B′2 can
have at most twice the number of states of B2. However one should keep in mind
that the duplication of states between B2 and B′2 increases the non-determinism of
the automaton, and this will be detrimental to any later product.

– Second, there is not an exact correspondence between the shortcuts added in B′2
and those added by cl due to subtle semantic differences between automata with
transition-labels and automata with state-labels. For instance in Figure 2(f), there
is a transition 0a 2bb that is a shortcut for 0a 1b 2bb b but that has no
counterpart in Figure 2(c) because a b b is not labeled by a word of the
form `1`1 . . . `1`2.

To conclude this informal comparison, cl(sl(A)) can be considered as an adaptation
of the Holzmann and Kupferman [19] construction to TGBA. Our contribution is the
rest of Theorem 2: the fact that a different implementation of sl is possible (namely,
sl2), and the fact that we can implement a stutter-invariance check using only one of the
operators cl, sl, or sl2. Furthermore, our experiments in the next section will show that
running sl(cl(A)) is more efficient than cl(sl(A)) (because the intermediate automaton is
smaller).

The variant of Holzmann and Kupferman’s construction implemented in ltl2dstar
0.6 actually only checks stutter invariance one letter at a time. The problem addressed
is therefore slightly different [20]: they want to know whether a language is invari-
ant by repeating any occurrence of a given letter `, or removing any duplicate occur-
rence of `. In effect the automaton is cloned three times: the main copy is the original
Büchi automaton, and every time a transition is labeled by `, the automaton makes
non-deterministic jumps into the two other copies that behaves as in Holzmann and
Kupferman’s construction.

Similar stuttering-checks for a single letter ` can be derived from any of the proce-
dures we proposed. It suffices to modify cl, sl, or sl2 so that they add only self-loop or
shortcuts for `.

Peled et al. [25, Th. 16] also presented an automaton-based check similar to cl(sl(A)),
although in a framework that is less convenient from a developer’s point of view: the
transformation of an automaton into its stutter-invariant over-approximation is achieved
via multi-tape Büchi automata.

2 A1, A2, and A3 are equivalent automata. The only reason we used two acceptance sets in A1

was to demonstrate how cl deals with multiple acceptance sets.



Finally, there is also a related construction proposed by Etessami [12, Lemma 1]
that provides a normal form for automata representing stutter-invariant properties. The
construction could be implemented using cl(sl(A)) (or Holzmann and Kupferman’s con-
struction) as a base, but the result is then fixed to ensure that one cannot arrive and de-
part from a state using the same letter. The latter fix (which is similar to some reduction
performed while constructing testing automata [17, 15]) is only valid if the property
is known to be stutter invariant: when applied to a non-stutter invariant property, the
resulting automaton is not an over-approximation of the original one, so building a
stutter-invariance check on that procedure would require a complete equivalence check
instead of an inclusion check.

5 Evaluation

We evaluate the procedures of Theorem 2 in the context of deciding the stutter invari-
ance of LTL formulas. LTL formulas are defined over a set AP of Boolean propositions
(called Atomic Propositions), and the TGBAs that encode these formulas are labeled by
valuations of all these propositions. In this context we therefore have Σ = 2AP.

Our motivation is very practical. Since version 1.0, Spot distributes a tool called
ltlfilt with an option --stutter-invariant to extract stutter-invariant formulas
from a list of LTL formulas [10]. Our original implementation was based on Etessami’s
rewriting function τ′ [13]: if an LTL formula ϕ uses the X operator, we compute τ′(ϕ)
and test the equivalence between ϕ and τ′(ϕ) by converting these formulas and their
negations into TGBA and testing L (Aτ′(ϕ) ⊗ A¬ϕ) = ∅ ∧L (A¬τ′(ϕ) ⊗ Aϕ) = ∅. However
this equivalence3 test proved to be quite slow due to the translation of τ′(ϕ) and its
negation, which are often very large formulas.

Furthermore Spot also supports PSL formulas for which we would also like to de-
cide stutter invariance. The checks based on automata transformations discussed in this
paper therefore solve our two problems: they are faster, and they are independent on the
logic used.

In this section we show to which extent ltlfilt --stutter-invariantwas im-
proved by the use of automata-based checks, and compare the various checks suggested
in Theorem 2 to reveal which one we decided to use by default.

It should be noted that those benchmarks are completely implemented in Spot (See
Appendix A for tool support), in which transition-based generalized Büchi acceptance
is the norm, so we did not implement any technique for automata with state-based
acceptance. We also know of no other publicly available tool that would offer a similar
service, and to which we could compare our results.4

3 Unlike automata-based constructions such as cl(sl(A)), the formula τ′(ϕ) is not necessarily an
over-approximation of ϕ, so the equivalence check between ϕ and τ′(ϕ) cannot be replaced by
a simple inclusion check.

4 The only actual implementation of a construction similar to the one of Holzmann and Kupfer-
man [19] that we know about is in ltl2dstar [20], but it decides only stutter-invariance for
one letter at a time, is used to improve Safra’s construction, and is not directly accessible to
the user.



Table 2: Time to classify 500 random LTL formulas that all use the X operator and have
the given number of atomic propositions.

|AP| = 1 |AP| = 2 |AP| = 3

L (Aτ′(ϕ) ⊗ A¬ϕ) = ∅ ∧L (A¬τ′(ϕ) ⊗ Aϕ) = ∅ 0.32s 40.62s >4801s (OOM)
L (A¬(ϕ↔τ′(ϕ))) = ∅ 1.18s 3347.92s
L (cl(sl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61s 1.91s 6.14s
L (sl(cl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61s 1.91s 6.10s
L (cl(sl2(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61s 1.89s 5.97s
L (sl2(cl(Aϕ)) ⊗ A¬ϕ) = ∅ 0.61s 1.91s 5.97s
L (sl(Aϕ) ⊗ sl(A¬ϕ)) = ∅ 0.61s 1.92s 6.18s
L (sl2(Aϕ) ⊗ sl2(A¬ϕ)) = ∅ 0.61s 1.90s 5.99s
L (cl(Aϕ) ⊗ cl(A¬ϕ)) = ∅ 0.60s 1.89s 5.94s

number of stutter-invariant formulas found 234 162 112

We opted to implement cl, sl, sl2, and ⊗ as separate functions that take automata
and produce new automata, the best as we could, using the TGBA data structure in
the current development version of Spot. In the cases of cl and sl2 our implementation
modifies the input automaton in place to save time. We use Couvreur’s algorithm [7]
for emptiness check.

Our first experiment is to compare the speed of the proposed automata-based checks
to the speed achieved in our previous implementation. For Table 2 we prepared three
files of 500 random formulas with a different number of atomic propositions, all us-
ing the X operator (otherwise they would be trivially stutter-invariant, and there is no
point in running our algorithms), then we used our ltlfilt tool [10] with option
--stutter-invariant to print only the stutter-invariant formulas of this list. The
reported time is the user’s experience, i.e., it accounts for the complete run of ltlfilt
(including parsing of input formulas, stutter-invariance check, and output of stutter-
invariant formulas) and differs only by the stutter-invariance check performed. As the
first line of this table demonstrates, testing the equivalence of ϕ and τ′(ϕ) as we used
to quickly becomes impractical: the experiment with |AP| = 3 aborted after 80 minutes
with an out-of-memory error.5

It was recently pointed to us that Etessami [13] does not suggest to test the equiv-
alence of ϕ and τ′(ϕ), but to test whether ϕ ↔ τ′(ϕ) is a tautology, i.e., whether
¬(ϕ ↔ τ′(ϕ)) is satisfiable. This alternative approach is not practical in our imple-
mentation. The second line of Table 2 shows the cost of translating ¬(ϕ↔ τ′(ϕ)) into a
TGBA and testing its emptiness6: the run-time is actually worse because in order to be

5 Measurements were done on a dedicated Intel Xeon E5-2620 2GHz, running Debian
GNU/Linux, with the memory limited to 32GB (out of the 64GB installed).

6 A better implementation of this check would be to construct the automaton for ϕ ↔ τ′(ϕ)
on-the-fly during its emptiness check, as done in dedicated satifiability checkers [27]. Alas,
the implementation of our algorithm for translating LTL/PSL formulas into TGBA is not im-
plemented in a way that would allow an on-the-fly construction. So this experiment should
not be read as a dismissal of the idea of testing whether L (A¬(ϕ↔τ′(ϕ))) = ∅ but simply as



Table 3: Cross-comparison of the checks of Theorem 2 on 40000 random LTL formulas
with X. A value v on line (x) and column (y) indicates that there are v cases where check
(x) was more than 10% slower than check (y). In other words, a line with many small
numbers indicates a check that is usually faster than the others.

run time
(1) (2) (3) (4) (5) (6) (7) total median

L (cl(sl(Aϕ)) ⊗ A¬ϕ) = ∅ (1) 24615 38158 38593 1999 35200 39660 45.8s 162µs
L (sl(cl(Aϕ)) ⊗ A¬ϕ) = ∅ (2) 244 38343 38832 91 34965 39813 34.9s 135µs
L (cl(sl2(Aϕ)) ⊗ A¬ϕ) = ∅ (3) 536 419 7413 67 10297 29495 11.0s 57µs
L (sl2(cl(Aϕ)) ⊗ A¬ϕ) = ∅ (4) 264 163 671 30 10223 28880 10.2s 55µs
L (sl(Aϕ) ⊗ sl(A¬ϕ)) = ∅ (5) 33410 39112 39746 39909 38403 39977 59.4s 208µs
L (sl2(Aϕ) ⊗ sl2(A¬ϕ)) = ∅ (6) 2689 2564 16896 18621 580 26693 11.7s 64µs
L (cl(Aϕ) ⊗ cl(A¬ϕ)) = ∅ (7) 16 13 3487 2993 11 2409 7.3s 39µs

translated into an automaton, the formula ¬(ϕ↔ τ′(ϕ)) has first to be put into negative
normal form (i.e., rewriting the↔ operator and pushing negation operators down to the
atomic propositions), which means the the resulting formula has a size that is the sum
of the sizes of each of the formulas ϕ, ¬ϕ, τ′(ϕ), and ¬τ′(ϕ) used in the first line.

On the other hand, all the tests from Theorem 2 show comparable run times in
Table 2: this is because most of the time is spent in the creation of Aϕ and A¬ϕ, and the
application of cl, sl, and sl2 only incurs a minor overhead.

We then conducted another evaluation, focused only on the checks from Theorem 2.
In this evaluation, that involves 40000 unique LTL formulas (10000 formulas for each
|AP| ∈ {1, 2, 3, 4}) using the X operator, we first translated Aϕ and A¬ϕ, and then mea-
sured only the time spent by each of the checks (i.e., the run time of cl, sl, sl2, the
product, and the emptiness check). The resulting measurements allow to compare the 7
checks on each of the 40000 formulas, as summarized by Table 3.

The benchmark data, as well as instructions to reproduce them can be found at
http://www.lrde.epita.fr/˜adl/spin15/. In addition to source code, this page
contains CSV files with complete measurements, and a 16-page document with more
analysis than we could do here.

Based on this evaluation, we decided to use L (cl(A) ⊗ cl(A¬ϕ)) = ∅, the last line
in the table, as our default stutter-invariance check in ltlfilt. The operation cl seems
to be more efficient than the other two because it can be performed in place without
adding new states. The table also suggests that checks that involve the sl operation (i.e.,
the one that duplicates each state for each different incoming letter) should be avoided.
sl2 seems to be a better replacement for sl as it can be implemented in place.

Different implementations of these checks could be imagined. For instance the com-
posed constructions like sl2(cl(A)) or cl(sl2(A)) could be done in such a way that the
outer operator is only considering the transitions and states that were already present in
A. The product and emptiness check used for cl(A) × cl(A) could be avoided when it is

a justification of why we used L (Aτ′(ϕ) ⊗ A¬ϕ) = ∅ ∧ L (A¬τ′(ϕ) ⊗ Aϕ) = ∅ in our former
implementation.

http://www.lrde.epita.fr/~adl/spin15/


detected that neither A nor A have been altered by cl (likewise with sl2). Also the sl and
sl2 constructions, as well at the product, could be all computed on-the-fly as needed by
the emptiness check, so that only the parts of sl(A) and sl(A) that is actually needed to
prove the product empty (or not) is constructed.

6 Conclusion

We have presented seven decision procedures that can be used to check whether a prop-
erty (for which we know an automaton and its complement) is stutter-invariant. A typ-
ical use case is to decide whether an LTL or PSL property is stutter-invariant, and we
provide tools that implement these checks. The first variant of these procedures is essen-
tially an adaptation of a construction by Holzmann and Kupferman [19] to the context
of transition-based acceptance. But we have shown that this construction can actually be
broken down into two operators: cl to allow longer words and sl to allow shorter words,
that can accept different realizations (e.g., sl2), and that can be combined in different
ways.

In particular, we have shown that it is possible to implement a stutter-invariance
check by implementing only one operation among cl, sl, or sl2. This idea is new, and
it makes any implementation easier. The implementation we decided to use in our tool
because it had the best performance in our benchmark uses only the cl operation.

The definition of cl, sl and sl2 we gave trivially adapt to ω-automata with any kind
of transition-based acceptance, such as those that can be expressed in the Hanoi Omega
Automata format [3], and that our implementation fully supports. Indeed, those three
operations preserve the acceptance sets seen infinitely (and finitely) often along runs
that are equivalent up to stuttering, so it is not be a problem if those acceptance sets are
used by pairs in a Rabin or Streett acceptance condition, for instance. The acceptance
condition used is relevant only to the emptiness check used.

To implement a check in a framework using state-based acceptance, we recommend
using the sl2(A) ⊗ sl2(A) check, because the definition of sl2(A) is trivial to adapt to
state-based acceptance: the acceptance sets simply do not have to be changed. As we
saw in Section 4, the operations cl and sl are less convenient to implement using state-
based acceptance since one needs to add additional states to keep track of the accepting
sets visited by some path fragments. Furthermore, sl2(A) has the advantage that it can
be implemented by modifying A in place.
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A Tool Support

All the checks described in this article are implemented in Spot 1.99.1 which can be
obtained from https://spot.lrde.epita.fr/.

Stutter-invariance of LTL or PSL formulas can be tested on-line without installing
anything:
1. Load https://spot.lrde.epita.fr/trans.html.
2. Type an LTL or PSL formula.
3. Select “Desired Output: Formula” and then “property information”.
4. Scan the resulting properties for “syntactic stutter invariant” (this means the for-

mula belongs to LTL\Xor siPSL), “stutter invariant” or “stutter sensitive”. In the
latter two cases, the automata-based check had to be performed.

If Spot is installed, the tool ltlfilt can be used from the command-line to make
the same decision. For instance ltlfilt -f ’ϕ’ --stutter-invariant will print
ϕ back iff ϕ is stutter-invariant.

Similarly the tool autfilt can be used to apply the operations cl, sl, and sl2 to any
automaton (with any acceptance condition). The corresponding options are --destut,
--instut, and --instut=2 respectively.

http://dx.doi.org/10.1007/978-3-642-24372-1_28
https://spot.lrde.epita.fr/
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