
A static and complete object-oriented model in C++

mixing benefits of traditional OOP and static programming

Nicolas Burrus, Thierry Géraud, David Lesage, Raphaël Poss

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire - F-94276 Le Kremlin Bicêtre cedex - France

{nicolas.burrus,thierry.geraud,david.lesage,raphael.poss}@lrde.epita.fr

This work has its origin in the development of Olena, a C++ generic image processing
library from the LRDE [2, 11]. As in any scientific, object-oriented and real-scale software, we
faced both modeling and performance issues that led us to study C++ features with deeper
insight. We finally expressed the need for mixing object-oriented programming and static
genericity in C++. Since many static programming techniques already exist, we attempted
to formalize and to enhance their usage. In this paper, we present a model that provides all
the features of the object-oriented paradigm – and some additional ones – and benefits from
the performance of static programming.

1 C++: a multiparadigm language

The C++ language provides two different typing systems:

– a usual object-oriented typing system, based on subclassing by inheritance;
– a structural-like, unbounded typing system based on the template construct.

These two frameworks have different purposes and thus different benefits and drawbacks.
They eventually lead to different programming paradigms: classical OOP paradigm for the
former, generic and static paradigms for the latter. So far, if these paradigms have been
deeply studied separately, combining them an optimal way remains problematic.

1.1 On the object-oriented paradigm in C++

The usual C++ object-oriented paradigm allows developers to design advanced software
through a classical inheritance system and convenient features like coercion, overloading
and inclusion polymorphism.

Unfortunately, these well-known mechanisms have severe drawbacks. Overloading and
inclusion polymorphisms imply costly dynamic bindings which are unacceptable in heavily
computational applications. See Figure 1 for a typical example where such a virtual function
binding occurs.

Different approaches have already been studied in order to face this runtime cost common
to most object-oriented languages [19, 10]. More generally, static analysis [4, 3] and partial
evaluation [13] can be applied to object-oriented languages to optimize virtual function calls.
Unfortunately, almost all these efforts remain research projects.

1.2 On the static and generic paradigms in C++

The generative power of C++, based on the template construct, permits parametric poly-
morphism and then higher code factorization and reusability. Mixed with overloading and
specialization mechanisms, parameterization enables developers to express both generic and
specialized implementations. This comes with limited efficiency loss since parameter match-
ing in C++ is performed statically. Some widely adopted C++ libraries have proved the

// ’ image ’ i s an a b s t r a c t c l a s s
void f oo (const image& ima)
{

// . . .
ima .m() ; // ’m ’ member func t i on i s v i r t u a l in ’ image ’
// . . .

}

Fig. 1. Classical OO implementation of polymorphic algorithms.
The call to the method m requires a costly dynamic dispatch to find the actual implementation.

However, the signature of foo is strong, nothing but a compatible type of image will be accepted.

workability of such a polymorphism, like the Standard Template Library (STL, see [16]) and
Boost [1].

Yet, classical, STL-like parameterization in C++ remains an unbounded typing system,
despite underlying, implicit “concepts” [16]. There is no explicit requirement on the pa-
rameterized types, so that we cannot define two generic functions with the same name and
the same arity. Therefore, such a weak, structural-like typing system cannot be entirely
satisfactory. Several works already tried to cope with this lack of explicit constraint on
the parameters in C++, introducing for example static concept checking [12, 14] through
language extensions.

Another limitation is the exact matching of parameters that makes mixing inclusion
polymorphism and specialization impossible. Then, subclasses of a class A cannot benefit
from a specialization of an algorithm on A.

STL-like programming drawbacks are illustrated in Figure 2.

// Parameter ’ Image ’ i s a f r e e type v a r i a b l e .
template<class Image>
void f oo (const Image& ima)
{

// . . .
ima .m() ;
// . . .

}

// The f o l l ow i n g vers ion , s p e c i a l i z e d on ’ image2d ’ image type
// i s not e l i g i b l e f o r s u b c l a s s e s o f ’ image2d ’ .
template<>
void f oo (const image2d& ima)
{

// . . .
ima .m() ;
// ’ image2d ’− s p e c i a l i z e d treatment

}

Fig. 2. STL-like implementation of polymorphic algorithms.
No dynamic dispatch is required to call the m method. However, the signature of foo is weak and

overloading rules will choose the second version of foo only for exact image2d parameters.

1.3 Our objectives

Object-oriented mechanisms, inheritance, inclusion polymorphism, overloading and labeled
types are highly valuable for software designers. More generally, we do not want to lose the
object orientation of classical C++ programming. We also seek the performance and the
specialization capabilities of the parametric polymorphism, but with stronger typing.

To achieve such an aim, different approaches can be considered. First, we could extend the
C++ language with mechanisms like static, bounded parameterization, as it was proposed
for Java in [9] 1. The other alternative is to stay within the bounds of the C++ language
without any extension, since it natively provides object-oriented mechanisms and static
parameterization. As library developers, we had to rule out the former one because we do
not want our final users to need any additional equipment.

In the following sections, we show how we managed mixing static, generic programming
and the classical OOP thanks to different existing techniques. We eventually show that
our work succeeded in defining a full-static and complete object model, with additional
properties w.r.t. type-control and design capabilities.

2 Description of the model

To achieve a full-static model, we had to simulate or to assist traditional OOP mecha-
nisms with static programming techniques. The main point was to design a static inclusion
polymorphism system and then to adapt the inheritance idiom.

2.1 Static hierarchies

The core of our model is a static hierarchy derived from the Barton & Nackman trick [5].
In [18], Veldhuizen had already discussed some extensions of this technique and assumed
the possibility of applying it to hierarchies with several levels. We effectively managed to
generalize these techniques to entire, effective hierarchies.

In our model, non final classes 2 are parameterized by the exact type of their most
derived class. Additionally, any class hierarchy must inherit from a special base class called
any. This class provides an exact() accessor to downcast the object instance to its actual
concrete type. Figure 3 describes the kind of hierarchy we obtain.

Effectively, the class parameterization implies that for any hierarchy involving N leaf
classes, N distinct types for base classes are instantiated. Therefore, dynamic polymorphism
over the base classes is unfortunately impossible.

2.2 Abstract classes and interfaces

The abstraction power comes from the ability to express class interfaces without implemen-
tation, as in Java. Our model keeps the idea that C++ interfaces are represented by abstract
classes. Instead of defining purely virtual member functions, abstract classes define abstract
member functions as dispatches to their actual implementation. This manual dispatch is per-
formed thanks to the exact() accessor provided by the any class. An example of abstract
member function is given in Figure 4.

The compliance to a particular interface is then naturally ensured by inheritance from
the corresponding abstract class.
1 in [9], Day introduces static and bounded parameterization for Java. So-called where clauses

constructs allow both structural and label constraints on parameters.
2 Non final classes are abstract classes or concrete classes that can be extended. Non parameterized

classes are necessarily final.

Any

Exact& exact ()

Exact

A

Exact

B

Meta Hierarchy

Any

A < Final > &
exact ()

A < Final >

A

Final

Instantiation of A Instantiation of B

A

B

B

Any

B& exact ()

B

Fig. 3. UML description of the model.
A single meta hierarchy generates one class hierarchy per instantiated class. Our model can

instantiate both leaf classes and intermediate ones.

template <class Exact>
RetType foo<Exact > : :m(args . . .)
{

return this−>exact () . m impl (args . . .) ;
}

Fig. 4. Abstract member function sample

3 Formalizing the model properties

Since it mixes OOP and structural programming, our paradigm inherits two main categories
of properties. This results in a full-featured object model and, in the meantime, in a strong-
typed, high performance, flexible and statically checked model.

3.1 A complete object model

We preserved the full expression power of the standard object-oriented paradigm:

– complex object hierarchies, even with multiple inheritance and diamond constructions,
can be deduced directly from the modeling;

– interfaces and abstract classes can also be implemented by explicitly preventing their
instantiation;

– we rely on the C++ inheritance mechanisms, so procedural algorithms can use both
specialization and overloading facilities without modifications;

– methods can be selectively defined in the subclasses, default implementations in base
classes will be called otherwise;

– our manual dispatch has enough information (the exact type) to handle method over-
riding in the same way than traditional C++ does.

3.2 A strong-typed and efficient model

In our model, methods and functions can express typing requirements over class hierarchies
using an hybrid between label typing and static genericity. In fact, our model introduces a
new bounded and labeled typing system. Figure 5 gives a use-case of a procedure implemen-
tation within this typing scheme. The concrete type I remains a free type variable, but it is
constrained to be a subclass of image<I>. This parametric polymorphism offers much more
type control than the STL programming style (see Figure 2), thanks to explicitly labeled
template types.

Moreover, this control gain comes with no performance loss compared to STL-like pro-
gramming. Typing remains entirely static, so that static dispatch is still possible.

// ’ image ’ i s an a b s t r a c t t emp la te c l a s s .
// Parameter ’ I ’ i s cons t ra ined to be a s u b c l a s s o f ’ image<I >’
// so t ha t ’ I ’ implements ’ image ’ g ener i c i n t e r f a c e .
template <class I>
void f oo (const image<I>& ima)
{

// . . .
ima .m() ; // c a l l to ’m ’ implementat ion i s d i spa t ched s t a t i c a l l y
// . . .

}

Fig. 5. Our implementation of polymorphic algorithms.
The signature of foo is labeled and strong-typed. Dynamic dispatch is avoided.

3.3 A flexible but statically checked model

Subclassing in our paradigm is much more flexible than traditional subtyping. We are ac-
tually quite close to F-bounded polymorphism [8] and matching bounded polymorphism
[6]. Indeed, when we write template <class I> void foo(image<I>&) , we require that
I conforms to image, which is a type function, applied to I. Type conformance is ensured
by C++ inheritance at compile-time.

In addition, parent classes have access not only to the exact type, but also to properties
related to the exact type thanks to traits [18]. This feature, combined with the flexibility of
the typing and with compile-time type checking makes several interesting constructions pos-
sible in a safer way. We now detail three relevant examples: statically checked virtual types,
method argument covariance with static checks and multi-methods with static dispatch.

Statically checked virtual types Statically checked virtual types are really useful in
object-oriented design, as stated in [7]. Within our paradigm, it is possible to use bounded
virtual types that are checked at compile-time. Figure 6 illustrates this mechanism. Note
that not only types but also constants can be defined virtually using the same mechanisms.

template <class P>
struct point : public any<P> {} ;

struct point2d : public point<point2d > {} ;

template <class I>
struct image : public any<I>
{

void s e t (Point<g e t e x a c t po i n t t yp e (I)>& p)
{

exact () . s e t (p . exact ()) ;
}

} ;

d e f i n e e x a c t p o i n t t yp e (image2d , point2d) ;
struct image2d : public image<image2d>
{

void s e t (point2d& p) { . . . }
} ;

Fig. 6. Statically checked virtual type
get exact point type and define exact point type are simple macros hiding traits definitions.
In this example, nothing but a point2d can be given to image<image2d>::set without a compile-
time failure. It is important to notice that the virtual point type must conform to the point type
function.

Statically checked argument covariance Covariant parameters are usually wanted when
modeling with objects. This cannot be done in basic C++ using virtual methods. Type
safe covariance was already studied using templates in [17]. Our approach is quite different
and simpler since we have a stronger and more flexible type system. Using our paradigm,
it becomes possible to easily write methods with covariant parameters, with failures at
compile-time if misused. This is demonstrated in Figure 7.

template <class I > struct image : public any<I>
{

template <class P>
void s e t (point<P>& p)
{

exact () . s e t (p . exact ()) ;
}

} ;

struct image2d : public image<image2d>
{

void s e t (point2d& p) { . . . }
} ;

Fig. 7. Statically checked argument covariance
If a point3d is given to image<image2d>::set, failure will occur at compile-time since the compiler
will not find any method image2d::set accepting point3d arguments.

Multi-methods with static dispatch In most of the popular object-oriented languages,
only one dispatch can be achieved on the actual type of an argument. Several methods
have been studied to improve the C++ with multi-method dispatch, as in [15]. With our
paradigm, since we can get the exact type of an argument statically, we can do manual
multi-method dispatch easily, as shown in Figure 8.

template <class I1 , class I2>
void f oo (image2d<I>& i1 , image3d<I2>& i2) ;

// o ther v e r s i on s o f foo . . .

template <class I1 , class I2>
void bar (image<I1>& i1 , image<I2>& i2)
{

f oo (i 1 . exact () , i 2 . exact ()) ; // d i s pa t ch i s he lped here
}

Fig. 8. Static dispatch for multi-methods
bar, by giving exact instances of arguments, permits the compiler to find the good function consid-
ering the exact types of i1 and i2, thus emulating a multi-method dispatch.

4 Conclusion

In this paper, we described a new complete and full-static object-oriented model in C++.
This model combines the expression power of traditional OO and the performance of static
programming. It introduces a strong-typed but flexible typing scheme that brings new in-
teresting features such as statically checked virtual types and argument covariance.

This paradigm has been implemented and successfully deployed in Olena. The library
mixes different complex hierarchies (images, points, neighborhoods) and heavily relies on
overloading capabilities. We make an intensive use of virtual types and multi-methods,

which considerably simplify the expression of generic algorithms and increase the overall
type safety.

The main limitation of our model is the closed world assumption, which may be inade-
quate for some projects since it prevents the usage of separated compilation and dynamic
libraries. The other issues are common drawbacks of the intensive use of templates:

– heavy compilation time;
– cryptic error messages;
– unusual code, unreadable by the casual reader.

However, the model and the collection of associated constructs are suitable (at least
partially) for most projects. Therefore, it can be perceived as an alternative to the traditional
object-oriented paradigm when both performance and design capabilities are critical.

References

1. Boost libraries. http://www.boost.org.
2. Olena image processing library. http://www.lrde.epita.fr/olena.
3. Gerald Aigner and Urs Hölzle. Eliminating virtual function calls in C++ programs. Lecture

Notes in Computer Science, 1098:142–167, 1996.
4. David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls. In

Proceedings of the 11th ACM Conference on Object-Oriented Programming Systems, Languages
and Applications (OOPSLA’96), pages 324–341, 1996.

5. John Barton and Lee Nackman. Scientific and engineering C++. Addison-Wesley, 1994.
6. Kim B. Bruce. Typing in object-oriented languages: Achieving expressibility and safety, 1996.
7. Kim B. Bruce, Martin Odersky, and Philip Wadler. A statically safe alternative to virtual types.

In Proceedings of the 12th European Conference on Object-Oriented Programming (ECOOP),
volume 1445 of Lecture Notes in Computer Science, pages 523–549, Brussels, Belgium, July
1998. Springer-Verlag.

8. Peter S. Canning, William R. Cook, Walter L. Hill, John C. Mitchell, and Walter G. Olthoff.
F-bounded polymorphism for object-oriented programming. In Proceedings of the 4th In-
ternational Conference on Functional Programming Languages and Computer Architecture
(FPCA’89), pages 73–280, London, UK, September 1989. ACM.

9. Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes vs. where clauses:
Constraining parametric polymorphism. In Proc. ACM Symp. on Object-Oriented Program-
ming: Systems, Languages, and Applications (OOPSLA), SIGPLAN Notices volume 30 number
10, pages 156–168, 1995.

10. David Detlefs and Ole Agesen. Inlining of virtual methods. In Proceedings of the 13th European
Conference on Object-Oriented Programming (ECOOP), Lisbon, Portugal, June 1999.

11. Alexandre Duret-Lutz. Olena: a component-based platform for image processing, mixing
generic, generative and OO programming. In Proceedings of 2nd International Symposium on
Generative and Component-Based Software Engineering (GCSE 2000), pages 653–659, Erfurt,
Germany, October 2000. Young Researchers Workshop (published in ”Net.ObjectDays2000”).

12. Brian McNamara and Yannis Smaragdakis. Static interfaces in C++. In First Workshop on
C++ Template Programming, Erfurt, Germany, October 10 2000.

13. Ulrik P. Schultz. Partial evaluation for class-based object-oriented languages. Lecture Notes in
Computer Science, 2053:173–198, 2001.

14. Jeremy Siek and Andrew Lumsdaine. Concept checking: Binding parametric polymorphism in
C++. In Proceedings of the First Workshop on C++ Template Programming, Erfurt, Germany,
October 2000.

15. Julian Smith. C++ & multimethods. ACCU spring 2003 conference, 2003.
16. A. A. Stepanov and M. Lee. The Standard Template Library. Technical Report X3J16/94-0095,

WG21/N0482, 1994.
17. Vitaly Surazhsky and Joseph Y. Gil. Type-safe covariance in C++, 2002. Unpublished.
18. Todd L. Veldhuizen. Techniques for scientific C++, August 1999.

19. Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient Dynamic Dispatch without
Virtual Function Tables. The SmallEiffel Compiler. In 12th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA’97),
volume 32 of Issue 10, pages 125–141, Athlanta, GA, USA, October 1997.

