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Abstract

Given a directed acyclic graph (DAG) and two arbitrary nodes, find
maximal common joins of the two nodes. In this technical report I suggest
an algorithm for efficiently calculating the minimal set of nodes which
derive from a pair of nodes.

1 Motivation

In Common Lisp type hierarchies including CLOS class hierarchies form a di-
rected lattice with the least specific class, T, being the top of the lattice and
the most specific class, NIL, being the bottom. The lattice is can be illustrated
as in Figure 1 with has arrows pointing downward from each class to its direct
superclasses. If otherwise a class has no arrow leaving it, then there is an arrow
to it from NIL. Arrows point upward from most specific to least specific classes.

Given two classes, we wish to find the least specific common subclasses.

2 Example

Looking at the DAG shown in Figure 1 we can see that classes S7, S11, S14,
S15 as well as a few others are subclasses of both X and Y. However, what is
the set S such that all elements of S are common subclasses of X and Y but S
contains no distinct elements A and B such that A ⊂ B? That would be the
set containing exactly S7, S11, and S16.

3 Algorithm

The following is a description of an efficient algorithm for finding such a minimal
set. The algorithm proceeds in two phases: down-traversal and up-traversal.
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Figure 1: Example CLOS class graph

3.1 Phase One: down traversal

The DAG will be traversed in a particular order. The traversal algorithm resem-
bles a breadth-first-search algorithm, but is initialized differently which leads to
the nodes of the graph being visited in an order different than breadth first.

The down-traversal phase proceeds as follows:

• Initialize a queue with the starting nodes X and Y.

• Assign the color pink for X and its children and blue for Y and its children.

• Visit each node in the queue starting at the beginning. The queue will
grow while traversing.

– Visit each non-NIL child.

1. Add a back-pointer from child to parent.

2. If the child is not already somewhere in the queue, add it to the
end.
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3. If the child is not yet colored, color it the same as its parent.

4. If the child is already colored but different than its parent, change
its color to lavender, and remember it in the lavender list.

X Y

Down traversal initial state: We’ll use the DAG shown in Figure 1 as an example.
Initialize a queue with the starting nodes X and Y.
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X Y S1

S2
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X
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Now proceed visiting the nodes in the queue in order, starting with X. Append
each child of the node to the end of the list. The direct children of X are S1

and S2, so S1 and S2 are colored pink, the same as X. Construct respective
back-pointers from S1 and S2 to X.

Done

X
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Visiting
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X
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Now visit Y. Append each child of the node to the end of the list: S5 and S6

each with a back-pointer to Y and each inheriting the set of root nodes Y from
its parent. At this point the DAG has been partially breadth-first traversed as
shown.
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Done
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Now visit S1. Append the single child S4 to the end of the queue, with a back-
pointer to S1. S4 inherits the color, pink, of its parent, signifying that it is a
descendant of X.
Now visit S2. Its single child, S4 is already in the list, so we simply create a
back-pointer from S4 to S2. The color of S4 is already pink, and the color of its
parent S2 is also pink, so there is no need to change the color of S4.
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Done

X Y
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Next visit S5 and S6 in turn. The children of S5 are S7 and S11. The child of S6
is S13. The nodes S7, S11, and S13 are added with appropriate back-pointers
and root sets from their respective parents. They are colored blue, the same as
their respective parents, indicating that they are descendants of Y.
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Done
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Next visit S4. The children of S4 are S7 and S8. S7 is already in the queue, but
we add S8 to the end of the queue. Add a back-pointer from S7 to S4 and one
from S8 to S4. Since S7 now has back-pointers both to pink and blue nodes (S4
and S5) we change its color to lavender. Since S8 is newly added, then it gets
the color pink of the node being visited.
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Done
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Next in the queue is S7. S7 has two children S9 and S10. Add them to the end
of the queue, and color them them lavender, the same as S7. Add back-pointers
from S9 and S10 respectively to S7.
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Done
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Next visit S11 and S13. Their only child of S11 is NIL, so there is nothing to do
for it. The children of S13 are S14 and S15. We add S14 and S15 to the queue,
with appropriate back-pointers. S14 and S15 are colored blue, the same as S13.
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Done
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Now visit S8. S8 has three children: S11, S12 and S16. S11 is already in the
queue with color blue. Since the color of S8 is pink, we change the color of S11
to lavender. We add the other two nodes S12 and S16 to the queue.
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Done
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Next we visit S9 and S10 which are both colored lavender. Its their children,
S13 and S14 are already in the queue, so we change their color to lavender to
their respective parents S10 and S19, and create the back-pointers.
One thing to notice at this point is that the blue node S15 has a lavender parent,
but remains colored blue as we are not treating it in this step of the iteration.
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Done
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Now visit S15. Its child is S16 which is already in the queue and is colored pink.
Since the color of S15 is blue, we must change the color of S16 to lavender. We
also add a back-pointer from S16 to S15
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Done
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Next we visit S12 which has one child S14. S14 is already in the queue and is
already colored lavender so we don’t need to change its color. We simply add a
back-pointer from S14 to S12.
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Figure 2: Final graph of back-pointers

Finally we visit S16. It has no children so there is nothing to do. This
completes the graph defined by the back-pointers.

One thing to recognize that this graph (Figure 2) could look different de-
pending on the order that the child nodes are treated. However, in any case you
will have at this point a graph with some lavender nodes, otherwise the classes
X and Y would have no common non-NIL subclasses.

Also notice, that not all common subclasses of X and Y are colored lavender.
For example, S15 remains blue, simply as an artifact of the order the graph was
traversed. This is not a problem.

3.2 Phase Two: up traversal

The graph shown in Figure 2 contains some lavender nodes. These nodes form
a subset of the common subclasses of X and Y. To find the least specific of these
these, we simply eliminate any lavender node for which another lavender node
is reachable from it via the back-pointers.

For example, starting at S16, we find that S13 is reachable by tracing the
back-pointers. So we eliminate S16 from the candidates. To determine this
efficiently, we can perform a breadth-first-search starting at node S16 in 2. We
terminate the search as soon as we find another lavender node. If we find no
lavender node, the search will continue until the graph is exhausted. Here is an

14



example BFS (breadth-first-search), the results may differ according to which
order the back-pointers from a given node are traversed.

1. S16 S8 S15

2. S8 S15 S4

3. S15 S4 S13

The BFS terminates after step 3 because S13 is encountered whose color is
lavender.

Likewise, S13 can be eliminated because S10 is reachable from it.
However, S7 and S11 have no lavender node reachable via their back-pointers.

1. S11 S4 S5

2. S4 S5 S1 S2

3. S5 S1 S2 Y

4. S1 S2 Y X

5. S2 Y X

6. Y X

7. X

From this we conclude the least specific common subclasses of X and Y are
exactly S7 and S11.

4 Example implementation

First define a useful macro, unionf, which allows us to use a syntax like (unionf
place value) which is equivalent to (setf place (union place value)).

(define-modify-macro unionf (&rest args) union)

Define a generic function, so we can handle class specializers isolated from
equivalence specializers. Methods of this generic function will compute and
return a list of specializers (classes for example) which inherit from both spec1
and spec2. E.g., if spec1=class-A and spec2=class-B, then calculate a list of
classes inheriting from both A and B. But if C and D both inherit from A and
B, but C also inherits from D, then omit C in the return list.

(defgeneric specializer-intersections (spec1 spec2))

Define a function to calculate the read-accesser from a plist.
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(defun getter (key)

#’(lambda (obj)

(getf obj key)))

The method for two classes does a breadth first search down the class hier-
archy towards NIL. Each element of the BFS queue is a plist with three fields.

:class class in the sub-tree of either class1 or class2 (or both)

:roots subset of class1,class2 indicating which root classes are eventually super-
classes of the :class field of this plist.

:supers list of plists, back-pointers. If classX has sub as direct-subclass then the
node with :class = sub has the node with :class = classX in its :supers
list.

After the BFS finishes, (car queue) remains a list of plists corresponding
to the union of the sub-trees of class1 and class2. If any class appears on both
sub-trees, then only one corresponding node is found in (car queue) but it
has field :roots containing class1 and class2. These correspond to the lavender
nodes in Figure 2.

Finally filter the list of plists. Find all the plists which are descendants of
both class1 and class2, but which have no parent node which are also; both
descendants thereof. Return this list of classes.

(defmethod specializer-intersections ((class1 class)

(class2 class))

(let ((both-roots (list class1 class2))

(queue (tconc nil

(list :class class1

:roots (list class1)

:supers nil)

(list :class class2

:roots (list class2)

:supers nil))))

(dolist (node (car queue))

(dolist (sub (class-direct-subclasses (getf node :class)))

(let ((found (find sub (car queue) :key (getter :class))))

(cond

(found

(pushnew node (getf found :supers))

(unionf (getf found :roots) (getf node :roots)))

(t

(tconc queue (list :class sub

:roots (getf node :roots)

:supers (list node))))))))

(mapcar (getter :class)
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(setof node (car queue)

(and (subsetp both-roots (getf node :roots))

(not (exists super-node (getf node :supers)

(subsetp both-roots

(getf super-node :roots)))))))))

Special handling of equivalence specializers.

(defmethod specializer-intersections ((eql1 eql-specializer)

(class2 class))

(when (typep (eql-specializer-object eql1) class2)

(list eql1)))

(defmethod specializer-intersections ((class1 class)

(eql2 eql-specializer))

(when (typep (eql-specializer-object eql2) class1)

(list eql2)))

(defmethod specializer-intersections ((eql1 eql-specializer)

(eql2 eql-specializer))

(when (or (eql eql1

eql2)

(eql (eql-specializer-object eql1)

(eql-specializer-object eql2)))

(list eql1)))

5 Conclusion

In this report I have presented and illustrated an algorithm to find the set of least
specific common children of two given nodes in a directed acyclic graph. The
algorithm is useful particularly in CLOS when finding the set of least specific
subclasses of two given classes. In addition to the illustration, I have presented
a sample implementation written in Common Lisp.
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