Finite Automata Theory Based Optimization of

Conditional Variable Binding

An efficient type-aware destructuring-case

Jim Newton

12th European Lisp Symposium

1,2 April 2019

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 1/32

Our Goal

We would like to introduce a user-defined construct called
destructuring-case, which efficiently selects a clause to evaluate

designated by a destructuring lambda list depending on run-time value of
a given expression.

There semantics of the macro usage should be intuitive.

There are several cases to consider.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Different number of required arguments

(destructuring—case expression

((X)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 3/32

Different optional arguments

(destructuring-case expression
((X &optional (Y 1))
(x X Y))
((X &key (Y 1))
(x X Y))
((X &key (Y 1) (Z 0) &allow-other-keys)
+ (x X Y) Z)))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 4/32

Types of arguments

(destructuring-case expression
(X Y)
(declare (type fixnum X Y))
(* X Y))
(X Y
(declare (type fixnum X)
(type integer Y))
(* X Y))
(X Y
(declare (type (or string fixnum) X)
(type number Y))
(¥ (if (stringp X)
(string-to-number X)
X)
Y)))

1,2 April 2019 5/32

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

@ Motivating Example

@ Efficient Type-Based Pattern Matching

© Destructuring Lambda lists as Patterns

@ Efficiently implementing destructuring-case
© Short Demo

@ Conclusion

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Efficient Type-Based Pattern Matching

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 7/32

Does this sequence:
(a 8 8.0 b "a" "an" "the" ¢ 8 88 888 d 8/3)
follow the pattern: (symbol - (number™ \/ string™))™ 2

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Does this sequence:
(a 8 8.0 b "a" "an" "the" ¢ 8 88 888 d 8/3)
follow the pattern: (symbol - (number™ \/ string™))" ?

number

We construct a

deterministic number

finite

automaton symbol symbol
(DFA) . e symbol

We want to

support :not string
and :and in
our DSL.

string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 8/32

(2 8 8.0 b "a" "an" "the" c 8 88 888 d 8/3)
How does a DFA work as a type predicate?

number
number
Hi : symbol symbol
symbol
string
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 88.0b "a" string
llanll ||thell C 8
88 888 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 8/32

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(@ 88.0b "a" string
llanll llthe" c 8
88 888 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?
number

number

symbol symbol
symbol
(a 8.0 "a" string

llanll Ilthe" c 8
88 888 d 8/3)

string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number

number

symbol symbol
symbol

"aIl" Ilthe" C 8
88 888 d 8/3)

string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
. symbol symbol
symbol
(a 8 8.0 ® string
lla" ||anll "thell
c 8 88 838 d
8/3) string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?
number

number

symbol symbol
symbol
(a88.0b string

llanll ||thell c 8
88 888 d 8/3)

string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(2 8 8.0b "a" .
string
"the" ¢ 8

88 888 d 8/3) .

string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(2 8 8.0 b "a"]
string
llanll c 8
88 888 d 8/3) string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
- symbol
(a2 8 8.0 b "a" string
"anll llthe" @ 8
88 888 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a2 8 8.0b "a" string
llanll llthe" c
88 888 d
8/3) string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 88.0b "a" string
llanll llthe" c 8
888 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a8 8.0b "a"
"an" "the" c 8 string
888
88 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
e symbol symbol
symbol
(a 8 8.0b "a" .
string
llanll ||thell C 8
88 888 (d) 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 8 8.0b "a"
"an" "the" c 8 string
88 888 d)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

How does a DFA work as a type predicate?
Yes, it's a match!

number
number
symbol symbol
symbol
(2 88.0b "a" string
llanll Ilthe" C 8
88 888 d 8/3)
string

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Code generated from (symbol - (number™ V string™)) "

number
(tagbody
0
(unless seq (return

(typecase (pop seq)
(symbol (go 1)) symbol symbol
(t (return nil))) symbol
(unless seq (return nil)) string

(typecase (pop seq)
(number (go 2))

nil)) number

(string (go 3)) string
(t (return nil)))
2 3

(unless seq (return t)) (unless seq (return t))

(typecase (pop seq) (typecase (pop seq)
(number (go 2)) (string (go 3))
(symbol (go 1)) (symbol (go 1))
(t (return nil))) (t (return nil)))))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 9/32

Introducing Regular Type Expression

A Regular Type Expression (RTE) is a surface syntax DSL expressing
regular type patterns in sequences.

(symbol - (rational* V float*)) A t- ratio’ - number

RTE DSL notation:

(:and (:cat symbol
(:or (:% rational)
(:+ float)))
(:not (:cat t (:? ratio) number)))

Regular type expressions express components:
required, optional, repeating, and typed.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

1,2 April 2019 10/32

Destructuring Lambda lists as Patterns

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 11/32

Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part

(destructuring-bind (a b)
DATA
)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 12 /32

Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part

(destructuring-bind (a b &optional c)
DATA
)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 12 /32

Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part, and
a repeating part.

(destructuring-bind (a b &optional c &key x y)
DATA
)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 12 /32

Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part, and a

repeating part part. Any of the variables may be restricted by
type declarations.

(destructuring-bind (a b &optional c &key x y)
DATA

(declare (type integer a x)
(type string b c y))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

1,2 April 2019 12 /32

Efficiently implementing destructuring-case

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 13/32

Macro: destructuring-case

(destructuring-case expression
(X Y
(declare (type fixnum X Y))
:clause-1)
(X Y)
(declare (type fixnum X)
(type integer Y))
:clause-2)
(X Y)
(declare (type (or string fixnum) X)
(type number Y))
:clause-3))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 14 /32

Expansion of destructuring-case

(rte—case expression
((:cat fixnum fixnum)
(destructuring—bind (X Y) expression
(declare (type fixnum X Y))
:clause—1))

((:cat fixnum integer)
(destructuring—bind (X Y) expression
(declare (type fixnum X)
(type integer Y))
:clause—2))

((:cat (or string fixnum) number)
(destructuring—bind (X Y) expression
(declare (type (or string fixnum) X)
(type number Y))
:clause—3)))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 15/32

Simplified rte-case expansion

(rte-case expression
((:cat fixnum fixnum)
:clause-1)
((:cat fixnum integer)
:clause-2)
((:cat (or string fixnum) number)
:clause-3))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Automata for clauses of rte-case

(rte—case expression
((:cat fixnum

o) —(0)-temem, (1) e (.2 (e
:clause—1)

((:cat fixnum
integer)

fixnum integer
clause—2) (20)boumo((2.1)) Imesero((2.2)) (clauss

((:cat (or string
fixnum)

number) . °rf.f'frﬁ'3r%) . number .@ ,-W
:clause—3)) @ Q

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 17 /32

Automata for clauses of rte-case

rte—case expression
(P
((:cat fixnum

fixnum) . fixnum . fixnum . -m
:clause—1) @

((:cat fixnum
integer)

:cIause—2) @ fixnum Q integer @ W

((:cat (or string
fixnum))
number) (or string

clause—3)) ‘ fixnum, ‘ number ‘ -

We could select the appropriate clause by executing the three automata in
turn at run-time.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Automata for clauses of rte-case

rte—case expression
(pressi
((:cat fixnum

fixnum) fixnum fixnum m
:clause—1) . . . -

((:cat fixnum
integer)

‘clause—2) @fixnum 2.1)_integer /5 5 m

((:cat (or string
fixnum)
number) (or string

clause—3)) ‘ fixnum, ‘ number ‘ -

We can do better.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

DFAs for disjoined clause-1, clause-2, and clause-3

(rte—case expression
((:cat fixnum
fixnum)
:clause—1)

@ fixnum @ fixnum Q m

((and (:cat fixnum
integer)
(:not ...T1...))

:clause—2)

fixnum

fixnum

((:and (:cat (or string
fixnum))
number)
(:not ...T1...)
(:not ...T2...))
:clause—3))

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

number

(and (not integer)
number)

1,2 April 2019

Calculating synchronized cross product

We can merge the three disjoint automata into one single automata.
Worst-case run-time is divided by 3.

—»{10 fixnum ‘ fixnum ‘ -

fixnum

— 2.0

—{(3.0 "fixnum

integer

string Q number e [clause-3>

(and (not integer)
number)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

CXP: after fixnum

Easy, because fixnum transition is found on each input DFA.

s 1.0 FIXNUM 11 fixnum e w

i
. 20 —FIXNUM_ 5% M FIXNUM 1

bignum » 0

string (3.0)——"UmEer (32) ofclause3)
— 3.0

FIXNUM

33 integer .
(and (not integer)
35) clause:3)

number)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

CXP: after string

Easy, because string and fixnum are disjoint transitions of state 3.0.

fixnum @ fixnum @ m

fixnum

— 0 STRING

fixnum

2

STRING (3.1 number @ [Clause-3>
—» 30

fixnum

integer

(and (not integer)
number)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

1,2 April 2019

CXP: after fixnum fixnum

Challenging, because fixnum is not found on DFA 3.

(subtypep fixnum integer) 7

1.0 fixnum _ 4 4 FIXNUM &4 5

FIXNUM (2.2

. fixnum < 5 4 -
. bignum

string (3.1)—TUmber (752 fcfause-3)

fixnum
33 Gy 3.4
(and (not integer)
number)
3.5) —»{CaSE>

string number

5 _FIXNUM 4]

Challenging because subtypep might return nil, nil.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

1,2 April 2019

Consequence of subtypep returning nil,nil

Every time subtypep returns nil,nil the risk is that the remaining
automata size doubles.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 24 /32

DFA representing synchronized-cross-product of rte-case

number

(and (not integer)
number)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 25/32

Short Demo

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 20

HyperSpec entry for DEFMETHOD

G .,
Dy peneSpét [i=[1]

Macro DEFMETHOD
Syntax:
defmethod funcrion-name {method-qualifier }* specialized-lambda-list [{declaration® | documentarion]] form*
=> new-method
Sfunction-name::= {symbol | (setf symbol)}
method-qualifier::= non-iist
specialized-lambda-list::= ({var | (var parameter-specializer-name)}*
[&optional {var | (var [initform [supplied-p-parameter]])}+]
[&rest wvar]
[&key{var | ({var | (keywordvar)} [initform [supplied-p-parameter]])}*
[&allow=-other-keys] 1]

[&aux {var | (var [initform] }}*])
parameter-specializer-name::= symbol | (eql egl-specializer-form)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

All the valid defmethod forms which are unaccounted for.

doc/declaration

!-doc/declaration

declaration
e
0 docstring Q I-declaration

defmethod

I-doc/declaration

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 28

Short Demo

All the remaining ways a valid defmethod form can appear, some
accounted for in the destructuring-case and some accounted for.

t

(15— defimethiod-3

12 —{ defmethod-4:

declaration

docstring

Ldeclaration

docdeciraton A
6 - -JmEsH)

Ldefmethod

not-defmethod

defmethod-1

ijﬁ- defrmiethod-2

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Summary

Our implmentation of an N-clause destructuring-case reduces the
number of traversals of the sequence in question from N + 1 to 2, once for
descrimination, and one for binding.

The code is available from quicklisp via package :rte.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

Lots more to be done: benchmarking, connection to method dispatch...

There are two CloJure libraries segspec and spec which seem very
related. According to the author of seqspec, seqspec does not optimize
using finite automata because of some annoying limitations of the JVM.

Thanks to Didier Verna for begin my PhD advisor for the past 3 years.
Also thanks to Robert Strandh, Pascal Costanza, and Christophe Rhodes
for serving on my PhD defense committee.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019 31/32

Questions/Answers

Questions?

ECOLE D’INGENIEURS EN INFORMATIQUE

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019

	Motivating Example
	Efficient Type-Based Pattern Matching
	Destructuring Lambda lists as Patterns
	Efficiently implementing destructuring-case
	Short Demo
	Conclusion

