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Our Goal

We would like to introduce a user-defined construct called
destructuring-case, which efficiently selects a clause to evaluate

designated by a destructuring lambda list depending on run-time value of
a given expression.

There semantics of the macro usage should be intuitive.

There are several cases to consider.
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Different number of required arguments

(destructuring—case expression

((X)
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Different optional arguments

(destructuring-case expression
((X &optional (Y 1))
(x X Y))
((X &key (Y 1))
(x X Y))
((X &key (Y 1) (Z 0) &allow-other-keys)
+ (x X Y) Z)))
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Types of arguments

(destructuring-case expression
(X Y)
(declare (type fixnum X Y))
(* X Y))
(X Y
(declare (type fixnum X)
(type integer Y))
(* X Y))
(X Y
(declare (type (or string fixnum) X)
(type number Y))
(¥ (if (stringp X)
(string-to-number X)
X)
Y)))
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Efficient Type-Based Pattern Matching
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Does this sequence:
(a 8 8.0 b "a" "an" "the" ¢ 8 88 888 d 8/3)
follow the pattern: (symbol - (number™ \/ string™))™ 2
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Does this sequence:
(a 8 8.0 b "a" "an" "the" ¢ 8 88 888 d 8/3)
follow the pattern: (symbol - (number™ \/ string™))" ?

number

We construct a

deterministic number

finite

automaton symbol symbol
(DFA) . e symbol

We want to

support :not string
and :and in
our DSL.

string
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(2 8 8.0 b "a" "an" "the" c 8 88 888 d 8/3)
How does a DFA work as a type predicate?

number
number
Hi : symbol symbol
symbol
string
string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 88.0b "a" string
llanll ||thell C 8
88 888 d 8/3)
string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(@ 88.0b "a" string
llanll llthe" c 8
88 888 d 8/3)
string
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How does a DFA work as a type predicate?
number

number

symbol symbol
symbol
(a 8.0 "a" string

llanll Ilthe" c 8
88 888 d 8/3)

string
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How does a DFA work as a type predicate?

number

number

symbol symbol
symbol

"aIl" Ilthe" C 8
88 888 d 8/3)

string
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How does a DFA work as a type predicate?

number
number
. symbol symbol
symbol
(a 8 8.0 ® string
lla" ||anll "thell
c 8 88 838 d
8/3) string
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How does a DFA work as a type predicate?
number

number

symbol symbol
symbol
(a88.0b string

llanll ||thell c 8
88 888 d 8/3)

string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(2 8 8.0b "a" .
string
"the" ¢ 8

88 888 d 8/3) .

string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(2 8 8.0 b "a" ]
string
llanll c 8
88 888 d 8/3) string
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How does a DFA work as a type predicate?

number
number
symbol symbol
- symbol
(a2 8 8.0 b "a" string
"anll llthe" @ 8
88 888 d 8/3)
string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a2 8 8.0b "a" string
llanll llthe" c
88 888 d
8/3) string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 88.0b "a" string
llanll llthe" c 8
888 d 8/3)
string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a8 8.0b "a"
"an" "the" c 8 string
888
88 d 8/3)
string
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How does a DFA work as a type predicate?

number
number
e symbol symbol
symbol
(a 8 8.0b "a" .
string
llanll ||thell C 8
88 888 (d) 8/3)
string
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How does a DFA work as a type predicate?

number
number
symbol symbol
symbol
(a 8 8.0b "a"
"an" "the" c 8 string
88 888 d )
string
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How does a DFA work as a type predicate?
Yes, it's a match!

number
number
symbol symbol
symbol
(2 88.0b "a" string
llanll Ilthe" C 8
88 888 d 8/3)
string
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Code generated from (symbol - (number™ V string™)) "

number
(tagbody
0
(unless seq (return

(typecase (pop seq)
(symbol (go 1)) symbol symbol
(t (return nil))) symbol
(unless seq (return nil)) string

(typecase (pop seq)
(number (go 2))

nil )) number

(string (go 3)) string
(t (return nil)))
2 3

(unless seq (return t)) (unless seq (return t))

(typecase (pop seq) (typecase (pop seq)
(number (go 2)) (string (go 3))
(symbol (go 1)) (symbol (go 1))
(t (return nil))) (t (return nil)))))
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Introducing Regular Type Expression

A Regular Type Expression (RTE) is a surface syntax DSL expressing
regular type patterns in sequences.

(symbol - (rational* V float*)) A t- ratio’ - number

RTE DSL notation:

(:and (:cat symbol
(:or (:% rational)
(:+ float)))
(:not (:cat t (:? ratio) number)))

Regular type expressions express components:
required, optional, repeating, and typed.
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Destructuring Lambda lists as Patterns
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Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part

(destructuring-bind (a b)
DATA
)
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Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part

(destructuring-bind (a b &optional c)
DATA
)
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Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part, and
a repeating part.

(destructuring-bind (a b &optional c &key x y)
DATA
)
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Lambda-lists characterized by regular patterns

A lambda-list in Common Lisp has a fixed part, an optional part, and a

repeating part part. Any of the variables may be restricted by
type declarations.

(destructuring-bind (a b &optional c &key x y)
DATA

(declare (type integer a x)
(type string b c y))
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Efficiently implementing destructuring-case
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Macro: destructuring-case

(destructuring-case expression
(X Y
(declare (type fixnum X Y))
:clause-1)
(X Y)
(declare (type fixnum X)
(type integer Y))
:clause-2)
(X Y)
(declare (type (or string fixnum) X)
(type number Y))
:clause-3))
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Expansion of destructuring-case

(rte—case expression
((:cat fixnum fixnum)
(destructuring—bind (X Y) expression
(declare (type fixnum X Y))
:clause—1))

((:cat fixnum integer)
(destructuring—bind (X Y) expression
(declare (type fixnum X)
(type integer Y))
:clause—2))

((:cat (or string fixnum) number)
(destructuring—bind (X Y) expression
(declare (type (or string fixnum) X)
(type number Y))
:clause—3)))
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Simplified rte-case expansion

(rte-case expression
((:cat fixnum fixnum)
:clause-1)
((:cat fixnum integer)
:clause-2)
((:cat (or string fixnum) number)
:clause-3))
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Automata for clauses of rte-case

(rte—case expression
((:cat fixnum

o) —(0)-temem, (1) e (.2 (e
:clause—1)

((:cat fixnum
integer)

fixnum integer
clause—2) (20)boumo((2.1)) Imesero((2.2)) (clauss

((:cat (or string
fixnum)

number) . °rf.f'frﬁ'3r%) . number .@ ,-W
:clause—3)) @ Q
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Automata for clauses of rte-case

rte—case expression
( P
((:cat fixnum

fixnum) . fixnum . fixnum . -m
:clause—1) @

((:cat fixnum
integer)

:cIause—2) @ fixnum Q integer @ W

((:cat (or string
fixnum))
number) (or string

clause—3 ) ) ‘ fixnum, ‘ number ‘ -

We could select the appropriate clause by executing the three automata in
turn at run-time.
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Automata for clauses of rte-case

rte—case expression
( pressi
((:cat fixnum

fixnum ) fixnum fixnum m
:clause—1) . . . -

((:cat fixnum
integer)

‘clause—2) @fixnum 2.1 )_integer /5 5 m

((:cat (or string
fixnum)
number) (or string

clause—3 )) ‘ fixnum, ‘ number ‘ -

We can do better.
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DFAs for disjoined clause-1, clause-2, and clause-3

(rte—case expression
((:cat fixnum
fixnum )
:clause—1)

@ fixnum @ fixnum Q m

((and (:cat fixnum
integer)
(:not ...T1...))

:clause—2)

fixnum

fixnum

((:and (:cat (or string
fixnum))
number)
(:not ...T1...)
(:not ...T2...))
:clause—3))
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(and (not integer)
number)
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Calculating synchronized cross product

We can merge the three disjoint automata into one single automata.
Worst-case run-time is divided by 3.

—»{10 fixnum ‘ fixnum ‘ -

fixnum

— 2.0

—{( 3.0 "fixnum

integer

string Q number e [clause-3>

(and (not integer)
number)
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CXP: after fixnum

Easy, because fixnum transition is found on each input DFA.

s 1.0 FIXNUM 11 fixnum e w

i
. 20 —FIXNUM_ 5% M FIXNUM 1

bignum » 0

string (3.0 )——"UmEer (32 ) ofclause3)
— 3.0

FIXNUM

33 integer .
(and (not integer)
35 ) clause:3)

number)

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization 1,2 April 2019



CXP: after string

Easy, because string and fixnum are disjoint transitions of state 3.0.

fixnum @ fixnum @ m

fixnum

— 0 STRING

fixnum

2

STRING (3.1 number @ [Clause-3>
—» 30

fixnum

integer

(and (not integer)
number)
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CXP: after fixnum fixnum

Challenging, because fixnum is not found on DFA 3.

(subtypep fixnum integer) 7

1.0 fixnum _ 4 4 FIXNUM &4 5

FIXNUM (2.2

. fixnum < 5 4 -
. bignum

string (3.1 )—TUmber (752 fcfause-3)

fixnum
33 Gy 3.4
(and (not integer)
number)
3.5 ) —»{CaSE>

string number

5 _FIXNUM 4]

Challenging because subtypep might return nil, nil.

Jim Newton (12th European Lisp SymposiumFinite Automata Theory Based Optimization

1,2 April 2019



Consequence of subtypep returning nil,nil

Every time subtypep returns nil,nil the risk is that the remaining
automata size doubles.
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DFA representing synchronized-cross-product of rte-case

number

(and (not integer)
number)
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Short Demo
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HyperSpec entry for DEFMETHOD

G .,
Dy peneSpét [i=[ 1]

Macro DEFMETHOD
Syntax:
defmethod funcrion-name {method-qualifier }* specialized-lambda-list [{declaration® | documentarion]] form*
=> new-method
Sfunction-name::= {symbol | (setf symbol)}
method-qualifier::= non-iist
specialized-lambda-list::= ({var | (var parameter-specializer-name)}*
[&optional {var | (var [initform [supplied-p-parameter] ])}+]
[&rest wvar]
[&key{var | ({var | (keywordvar)} [initform [supplied-p-parameter] ])}*
[&allow=-other-keys] 1]

[&aux {var | (var [initform] }}*] )
parameter-specializer-name::= symbol | (eql egl-specializer-form)
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All the valid defmethod forms which are unaccounted for.

doc/declaration

!-doc/declaration

declaration
e
0 docstring Q I-declaration

defmethod

I-doc/declaration
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Short Demo

All the remaining ways a valid defmethod form can appear, some
accounted for in the destructuring-case and some accounted for.

t

(15— defimethiod-3

12 —{ defmethod-4:

declaration

docstring

Ldeclaration

docdeciraton A
6 - -JmEsH)

Ldefmethod

not-defmethod

defmethod-1

ijﬁ- defrmiethod-2
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Summary

Our implmentation of an N-clause destructuring-case reduces the
number of traversals of the sequence in question from N + 1 to 2, once for
descrimination, and one for binding.

The code is available from quicklisp via package :rte.
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Lots more to be done: benchmarking, connection to method dispatch...

There are two CloJure libraries segspec and spec which seem very
related. According to the author of seqspec, seqspec does not optimize
using finite automata because of some annoying limitations of the JVM.

Thanks to Didier Verna for begin my PhD advisor for the past 3 years.
Also thanks to Robert Strandh, Pascal Costanza, and Christophe Rhodes
for serving on my PhD defense committee.
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Questions/Answers

Questions?

ECOLE D’INGENIEURS EN INFORMATIQUE
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