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Abstract. In this article we examine the computation order and con-
sequent performance of three different conceptual implementations of
the fold function. We explore a set of performance based experiments
on different implementations of this function. In particular, we contrast
the traditional fold-left implementation with two other approaches
we refer to as pair-wise-fold and tree-fold. It is often implicitly sup-
posed that the binary operation in question has constant complexity. We
explore two application areas which diverge from that assumption: ratio
arithmetic and Binary Decisions Diagram construction. These are binary
operations which degrade in performance as the computation progresses.
We show that these types of binary operations are good candidates for
tree-fold.
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1 Introduction

The higher-order function[1, Sec 1.3], fold [15], is present in many programming
languages. Definition 1 shows the essence of the function including the features
which we use in this article.

Definition 1. Let f : D ×D → D be an associative function and
V[1,n] = (x1, x2, ..., xn) ∈ Dn for n > 0 be a sequence of values from D.
Then we define fold as follows.

fold
(
f, V[1,n]

)
=

{
x1 if n = 1 (1a)

f
(
fold

(
f, V[1,n−1]

)
, xn
)

otherwise (1b)

If D is a monöıd [36], it is customary to define fold for the empty sequence
to be the neutral element of the D. We avoid this degenerate case as we have no
need for it in this article.

The fold function is useful for extending a binary function to multiple arity,
and applying the function to objects in a collection which may be a sequence
or some sort of recursive data structure. Note that it is generally not supposed
that the binary function in question be commutative.

The notation is cleaner if we denote such a binary function as an operator, ◦,
rather than as a function application. Given that we can compute x1 ◦ x2, we
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may use the fold function to compute: x1 ◦ x2 ◦ ... ◦ xn. Because ◦ is assumed to
be associative (but not necessarily commutative) we are free to group the terms
how ever we like, as long as we respect the order.

fold(◦, (x1, ..., xn)) = (((x1 ◦ x2) ◦ x3)... ◦ xn) (2)

= (x1 ◦ x2) ◦ (x2 ◦ x3) ◦ ... ◦ (xn−1 ◦ xn) (3)

= (x1 ◦ ...(xn−2 ◦ (xn−1 ◦ xn))...)

= etc.

Even though all these groupings compute the same result mathematically,
we will show that some have different performance characteristics. In this ar-
ticle we look at three such groupings which we call fold-left (Section 3.1),
pair-wise-fold (Section 3.2), and tree-fold (Section 3.3). The first group-
ing, fold-left, implements the standard algorithm used in most programming
language implementations, and implements Definition 1 by following the compu-
tation directly as described in Equations (1b) and (2). The second two groupings,
pair-wise-fold and tree-fold, implement Definition 1 by grouping pairs such
as in Equation (3), evaluating those pairs to obtain another sequence of values,
to which Equation (3) is applied again and again until arriving at a final value.
The difference between pair-wise-fold and tree-fold is that the parenthe-
sized terms are resolved in different order.

2 Motivation

To better understand the connection between BDDs and the fold operation, in
this section we present a short summary of our larger research project.

In [23], we presented a technique for reasoning about the types of heteroge-
neous sequences in Common Lisp. We modeled sequences of types with determin-
istic symbolic finite automata [8], i.e. DFA over infinite alphabets—the infinite
alphabet being the set of values supported by Common Lisp. Any subset of this
set of values is called a type. Each transition in a DFA is labeled with a type
designator, such that the set of transitions leaving any given state is a (pairwise
disjoint) partition of the set of all Common Lisp values. In order to assure the
property of determinism is maintained during finite automata operations (such
as construction, combination [intersection, union, complement], and minimiza-
tion) it is necessary to perform type computations similar to what is described in
semantic type theory [10], except that we are dealing with a dynamically typed
language rather than a statically typed one.

The fact that values in Common Lisp are typed dynamically means that
certain type-based decisions can be made at compile time, while others must
be delayed until run-time. We use BDDs to represent these types, and conse-
quently represent type intersection, union, and complement operations as the
corresponding BDD operations. When a type equivalence cannot be proven at
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compile time, the DFA may as a result contain redundant, useless, transitions
which have a run-time performance penalty.

An important consideration for the programmer in implementing these type-
based computations is to understand the time and memory requirements for
constructing BDDs [27]. In [23, Sec 5.5] we reported that the particular imple-
mentation of fold which was used in BDD construction, sometimes made an
unexpected difference in construction time. We further remarked in that this un-
expected behavior deserves further systematic study. In the current article, we
analyze this effect in the context of BDD construction, and also in the context
of rational arithmetic. For additional details we recommend [24–28].

In [23] we exclusively used Common Lisp as implementation language. The
perspectives of that thesis indicated that we should attempt to generalize our
results to apply to a wider audience and wider class of programming languages.
Toward this end, for this article we have chosen Scala [29, 7] as the primary
implementation language. Scala is a strictly typed language compiled to the
Java Virtual Machine allowing the run-time environment to take advantage of
garbage collection and the JVM run-time optimization.

In [23] we constructed BDDs from a Boolean formula, usually given in a DNF
(sum of products) form such as: x1x2x3 + x1x2x3 + x1x2x3x4. As Bryant
et al. [4, 12] explain, such BDD construction can be exponential in complexity.
To gather heuristics about time and space complexity ob BDD construction in
practice, in [27] we analyzed samples of BDDs of different numbers of variables
to predict ranges of expected sizes.

In order to represent such a Boolean function programmatically, we suppose
that Γ is a finite set of variables and their complements such as

Γ = {x1, x1, x2, x2, ..., xn, xn}.

Definition 2. A subset, γ, of Γ is called Γ -contradictory (or simply contradic-
tory) if {xi, xi} ⊂ γ for some 1 ≤ i ≤ n. On the contrary, a subset of Γ which
is not Γ -contradictory is called Γ -consistent (or simply consistent).

Suppose S = {γ1, γ2, ..., γm} is a set of consistent subsets of Γ . We wish to
consider a Boolean formula in DNF (disjunctive normal form) such as:

DNF =

m∑
i=1

∏
γi =

m∑
i=1

∏
x∈γi

x . (4)

Programmatically, this sum of products is computed as two concentric fold

operations,1 as shown in Figure 1. We assume the existence of a binary func-
tion BddAnd along with its neutral element BddTrue which performs the Boolean
intersection operation between two objects of type Bdd, and as well, the exis-
tence of a binary function BddOr along with its neutral element BddFalse which
performs the Boolean union operation between two Bdd objects.

1 https://users.scala-lang.org/t/expressing-a-sum-of-products-as-a-fold/5314 Thanks
to Matthew Rooney, @javax-swing, for suggesting the concise implementation shown
here.
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1 def sumOfProducts[A](seq:Seq[Seq[A]])(plus:(A,A)=>A, zero:A,

times:(A,A)=>A, one:A):A = {

2 seq.foldLeft(zero) {

3 (sum, gamma) => plus(sum, gamma.foldLeft(one)(times))

4 }

5 }

6

7 // example usage, returns integer sum of products 6006006

8 sumOfProducts( Seq(Seq( 1, 2, 3), Seq(10, 20, 30), Seq(100, 200, 300)))(

9 plus = _ + _, zero = 0,

10 times = _ * _, one = 1)

11

12 // example usage, returns BDD which is an OR of ANDs of the given BDDs

13 sumOfProducts( Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(

14 plus = BddOr, zero = BddFalse,

15 times = BddAnd, one = BddTrue)

Fig. 1: Scala implementation of sum-of-products and usage examples.

This close connection between the fold operations and BDD operations mo-
tivated the investigation leading to this article. During that research we noticed
that changing the association (moving the parentheses) of Boolean functions
sometimes had a noticeable effect of construction times. Unfortunately, we could
not infer any practical characterization of this phenomenon. We noted in [23]
that more research was needed. The BDD construction computations in Sec-
tion 4.2, 4.3, and 4.4 are first steps in systematically investigating these effects.

3 Strategies for Computing a Fold Operation

In Section 4 we will investigate operations on BDDs as alluded to in Section 2.
Rather doing so straightaway, instead we have first devised experiments based
on arithmetic of rational numbers. We have chosen this diversion to illustrate
the principles of fold to the reader without being required to understand the
subtle inner-workings of a BDD library. Rational number arithmetic is easy
to illustrate and intuitive to understand. In particular, we explore the task of
summing a sequence of fractions, each expressed as the ratio of two integers.

1

23
+

1

29
+

1

31
+

1

37
+

1

41
+

1

43
+

1

47
+

1

53
+

1

57
+

1

67
=

3, 304, 092, 302, 051, 372

12, 831, 131, 327, 329, 923
(5)

Computing the sum in Equation (5) involves representing the numerator and
denominators as a bignum integer type. [17, Sec 4.5] Integers in Common Lisp are
specified to have unlimited precision, and the built-in ratio type provides precise
fractions whose numerator and denominator never roll-over. However in Scala,
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integers do not have this feature; thus the programmer must use a non-native
type, such as the Rational type provided by import spire.math.Rational.

Regardless of which programming language and which implementation of
ratio is used, each such addition operation must compute some variant of

n1
d1

+
n2
d2

=
n1 · d2 + n2 · d1

d1 · d2
. (6)

Each of these operations is a bignum computation, including explicit or im-
plicit fraction simplification—dividing the numerator and denominator by their
common factors. There are several strategies to optimize such a computation.
For example if the greatest common divisor, gcd(d1, d2) is known to be different
than 1, then the sum can be computed as in Equation (7). If g = gcd(d1, d2),
then we can precompute d3 = d1

g and d4 = d2
g , which are integers. The quotient

can thus be rewritten as

g · n1 · d2g + g · n2 · d1g(
g · d1g

)
·
(
g · d2g

) =
g · n1 · d4 + g · n2 · d3(

g · d3
)
·
(
g · d4

) =
n1 · d4 + n2 · d3

g · d3 · d4
(7)

According to Theorem 1, Equation (6) can be computed by an application
of Equation (7), but involving smaller numbers, in ≈ 40% of the cases.

Theorem 1 (G. Lejeune Dirchlet, 1849). If d1 and d2 are chosen at ran-
dom, then the probability that gcd(d1, d2) = 1 is 6/π2 ≈ 60.793%.

A proof of Dirchlet’s theorem is provided as Theorem D in Section 4.5.2 of
Knuth’s Art of Computer Programming [17, page 342]. Finally, if gcd(d1, d2) 6= 1,
Knuth [17, page 330] suggests the following to calculate n3 and d3 such that
n3

d3
= n1

d1
+ n2

d2
. Equations (8) and (9) are an improvement over Equation (7) in

the case numerator and denominator of Equation (7) have a common factor.

g1 = gcd(d1, d2)

t = n1 · (d2/g1) + n2 · (d1/g1)

g2 = gcd(t, g1)

n3 = t/g2 (8)

d3 = (d1/g1) · (d2/g2) (9)

Regardless of the implementation or optimizations a given rational number
library uses, for sufficiently large denominators, adding fractions becomes more
compute intensive as the denominators grow. E.g., it is easier to add 1

2 + 2
3 than

to add 105,000
765,049 + 385,544

4,391,633 .

Mollin [22] argues that gcd(a, b) can be computed in O(log3 max (a, b)). Since
log max (a, b) is roughly the number of digits in the larger of a and b, we see that
if the larger is an n-digit number, then the complexity of computing gcd(a, b)
is O(n3). Since multiplication and division have O(n2) complexity, Knuth’s pro-
posed algorithm has cubic complexity in the number of digits.
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3.1 Strategy using fold-left

Compu. Ratio Result Digits Digits
# Addition Computed Retained

# 1 1
23

+ 1
29

= 52
667

5 5

# 2 52
667

+ 1
31

= 2279
20,677

+ 9 = 14 9

# 3 2279
20,677

+ 1
37

= 105,000
765,049

+ 12 = 26 12

# 4 105,000
765,049

+ 1
41

= 5,070,049
31,367,009

+ 15 = 41 15

# 5 5,070,049
31,367,009

+ 1
43

= 249,379,116
1,348,781,387

+ 19 = 60 19

# 6 249,379,116
1,348,781,387

+ 1
47

= 13,069,599,839
63,392,725,189

+ 22 = 82 22

# 7 13,069,599,839
63,392,725,189

+ 1
53

= 756,081,516,656
3,359,814,435,017

+ 25 = 107 25

# 8 756,081,516,656
3,359,814,435,017

+ 1
57

= 46,456,460,884,409
191,509,422,795,969

+ 29 = 136 29

# 9 46,456,460,884,409
191,509,422,795,969

+ 1
67

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 169 33

Table 1: Intermediate and final values of added 10 ratios using default fold-left
algorithm, computed as shown in Equation (10).

The fold-left function computes the result of x1 ◦ x2 ◦ ... ◦ xi−1 before com-
bining that result with xi, grouping these addition operations as follows:

((((((((
1

23
+

1

29︸ ︷︷ ︸
# 1

) +
1

31

︸ ︷︷ ︸
# 2

) +
1

37

︸ ︷︷ ︸
# 3 ...

) +
1

41
) +

1

43
) +

1

47
) +

1

53
) +

1

57
) +

1

67

︸ ︷︷ ︸
... computation # 9

(10)

Such a computation computes eight intermediate values before arriving at the
final value. Table 1 indicates these eight intermediate values as computations # 1
through # 8 before arriving at the final value as a result of computation # 9.
The Digits Computed column records the total number of digits (numerator
digits plus denominator digits) accumulated from computation # 1 until the
row in question. These values are plotted in Figure 3 (top). We compare the
cumulative number of digits also for the analogous experiments which follow in
Sections 3.2 and 3.3. The Digits Retained column records the number of digits
(again numerator digits plus denominator digits) which must be held in memory
pending a future computation.

We present these two columns (Digits Computed and Digits Retained)
as it is conceivable that they might have an effect on the computation time. I.e.,
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we suppose the gcd computations which are calculated to perform the rational
number additions is dependent on the number of digits (roughly dependent on
the logarithms of the numbers), and also that computations which retain large
amounts of heap-allocated objects might decrease performance of computation.

3.2 Strategy using pair-wise-fold

The default fold-left algorithm, discussed in Section 3.1, groups terms toward
the left, as shown in Equation (10). As an alternative, we might instead compute
the sum in Equation (5) by first grouping consecutive terms, computing those
intermediate results, and repeating the process. Each such iteration involves
roughly half as many applications of the binary function as the previous iteration.
In the case of ratio arithmetic, even though each iteration of the algorithm
performs half as many additions as the previous iteration, these additions involve
larger numbers with each successive iteration.

Such grouping corresponds to inserting parentheses as in Equation (11).

( ( 1

23
+

1

29︸ ︷︷ ︸
# 1

)
+
( 1

31
+

1

37︸ ︷︷ ︸
# 2

)
︸ ︷︷ ︸

# 6

)
+
( ( 1

41
+

1

43︸ ︷︷ ︸
# 3

)
+
( 1

47
+

1

53︸ ︷︷ ︸
# 4

)
︸ ︷︷ ︸

# 7

)

︸ ︷︷ ︸
# 8

+
( 1

57
+

1

67︸ ︷︷ ︸
# 5

)

︸ ︷︷ ︸
computation # 9

(11)

Just as in Section 3.1, this computation again involves eight intermediate
results. However, we notice that these intermediate results tend to be smaller
than those resulting from the default fold-left approach.

We observe two additional features of the pair-wise-fold approach. The
first observation, which we consider an advantage, is that the computation is po-
tentially parallelizable. I.e., computations # 1, # 2, # 3, and # 4 could be done
in parallel. Of course we do not suspect that such parallelization would be of sig-
nificant benefit for this small example. There are also problematic cases, such as
the BDD examples which are the prime motivating factors for our research. The
binary operations, AND and OR, even though associative, are not parallelizable. In
the case of BDDs, many implementations [2] prohibit parallelized construction.
Some work has been done to lift this restriction [6, 14, 9].

The second observation, which we consider a disadvantage, is that in a näıve
implementation of this algorithm, intermediate results must be stored in memory
until they are used. I.e., results # 1, # 2, # 3, and # 4, must be stored in memory
until computations # 6 and # 7 are performed. It is generally assumed that such
memory retaining is not an issue, but in the case of huge data structures such
as BDDs, we explicitly do not assume such memory retaining is free.
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Compu. Ratio Result Digits Digits
# Addition Computed Retained

# 1 1
23

+ 1
29

= 52
667

5 5

# 2 1
31

+ 1
37

= 68
1147

+ 6 = 11 11

# 3 1
41

+ 1
43

= 84
1763

+ 6 = 17 17

# 4 1
47

+ 1
53

= 100
2491

+ 7 = 24 24

# 5 1
57

+ 1
67

= 124
3819

+ 7 = 31 31

# 6 52
667

+ 68
1147

= 105,000
765,049

+ 12 = 43 32

# 7 84
1763

+ 100
2491

= 385,544
4,391,633

+ 13 = 56 32

# 8 105,000
765,049

+ 385,544
4,391,633

= 756,081,516,656
3,359,814,435,017

+ 25 = 81 31

# 9 756,081,516,656
3,359,814,435,017

+ 124
3819

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 114 33

Table 2: Intermediate and final values of added 10 ratios using default
pair-wise-fold algorithm, computed as in Equation (11).

3.3 Strategy using tree-fold

The tree-fold described here alleviates one of disadvantages of the
pair-wise-fold as described in Section 3.2—namely rather than retaining in-
termediate values, the tree-fold consumes the values as soon as possible while
still respecting the same grouping. The parenthesized grouping of the tree-fold
shown in Equation (12) is exactly the same as Equation (11). However, the order
which computations are performed is different.

((( 1

23
+

1

29︸ ︷︷ ︸
# 1

)
+
( 1

31
+

1

37︸ ︷︷ ︸
# 2

)
︸ ︷︷ ︸

# 3

)
+
( ( 1

41
+

1

43︸ ︷︷ ︸
# 4

)
+
( 1

47
+

1

53︸ ︷︷ ︸
# 5

)
︸ ︷︷ ︸

# 6

)

︸ ︷︷ ︸
# 7

)
+
( 1

57
+

1

67︸ ︷︷ ︸
# 8

)

︸ ︷︷ ︸
computation# 9

(12)

Both the pair-wise-fold and the tree-fold coincide about computations
# 1 and # 2. However, whereas pair-wise-fold retains these two intermediate
values while performing computations # 3 and # 4, tree-fold consumes # 1
and # 2, immediately in computation # 3. Admittedly, the value returned from
computation # 3 is held until # 4 and # 5 and combined in # 6 at which
point both results # 3 and # 6 are combined in computation # 7. Whereas
pair-wise-fold retains n

2 intermediate results (n being total length of the se-
quence being combined in Equation (5)), tree-fold retains at most log2 n.
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Compu. Ratio Result Digits Digits
# Addition Computed Retained

# 1 1
23

+ 1
29

= 52
667

5 5

# 2 1
31

+ 1
37

= 68
1147

+ 6 = 11 11

# 3 52
667

+ 68
1147

= 105,000
765,049

+ 12 = 23 12

# 4 1
41

+ 1
43

= 84
1763

+ 6 = 29 18

# 5 1
47

+ 1
53

= 100
2491

+ 7 = 36 25

# 6 84
1763

+ 100
2491

= 385,544
4,391,633

+ 13 = 49 25

# 7 105,000
765,049

+ 385,544
4,391,633

= 756,081,516,656
3,359,814,435,017

+ 25 = 74 25

# 8 1
57

+ 1
67

= 124
3819

+ 7 = 81 32

# 9 756,081,516,656
3,359,814,435,017

+ 124
3819

= 3,304,092,302,051,372
12,831,131,327,329,923

+ 33 = 114 33

Table 3: Intermediate and final values of added 10 ratios using default tree-fold
algorithm, computed as shown in Equation (12).

As in Sections 3.1 and 3.2, once again we look at the number of digits com-
puted and retained by tree-fold. When we observe the Digits Computed
column of Table 3 and the curve in Figure 3 (top) corresponding to tree-fold,
we see at computation # 9, that this algorithm computes the exact same number
of digits as tree-fold but fewer than fold-left. In fact the actual computa-
tions performed by tree-fold and pair-wise-fold are exactly the same, but
the order is different. In terms of number of digits retained, tree-fold again
falls in between the other two implementations.

A recognizable advantage of tree-fold over pair-wise-fold is that the
code (Figure 2) in its implementation is much more concise.2 The implementation
of pair-wise-fold is 36 lines, whereas tree-fold is 11 lines.

3.4 Summarizing the three fold strategies

The three sequences of computations outlined in Sections 3.1, 3.2, and 3.3 are
recapped in Figure 3. When we observe the Digits Computed column of Ta-
bles 1, 2, and 3 and the curve in Figure 3 (left), we see that fold-left computes
the most digits of the three strategies. In terms of number of digits computed,
it is the worst of the three alternatives. However, when we observe the Digits
Retained column of Table 1, 2, and 3 and the corresponding curve in Figure 3
(right) we see that it fold-left retains the least amount of heap storage during
the computation.

2 The Scala pair-wise-fold source code is elided for lack of space. The curious reader
may refer to https://scastie.scala-lang.org/p7WeM5vlSXmgKKM3prZiuw.
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1 def treeFold[A](m: List[A])(z: A)(f: (A, A) => A): A = {

2 def consumeStack(stack: List[(Int, A)]): List[(Int, A)] = {

3 stack match {

4 case (i, b1) :: (j, b2) :: tail if i == j => consumeStack((i + 1,

f(b2, b1)) :: tail)

5 case _ => stack

6 }}

7 val stack = m.foldLeft((1, z) :: Nil) { (stack: List[(Int, A)], ob: A)

=>

8 consumeStack((1, ob) :: stack)

9 }

10 stack.map(_._2).reduce { (a1: A, a2: A) => f(a2, a1) }

11 }

Fig. 2: Scala implementation of the tree-fold algorithm.

(a) Left (b) Right

Fig. 3: (Left) Cumulative Digits Computed For Each Fold Strategy. (Right)
Quantity of Digits Retained at each Computation State

It is not surprising that (at computation # 9) pair-wise-fold and
tree-fold have computed the exact same number of digits. In fact, the compu-
tations are determined by the parentheses which are the same in Equations (11)
and (12). In the case of summing rational numbers, by design, tree-fold com-
putes the digits more greedily than does pair-wise-fold. The rational numbers
in question, Equation (5), have been especially chosen to be a worst case in some
sense. The denominators are all prime numbers, assuring that the gcd = 1 in
every case, and thus the sizes of the ratios, in terms of number of digits will
be monotonically increasing. As was mentioned in Theorem 1, 40% of the time,
the gcd will be different than 1, so we suspect cases exist for which the plots of
tree-fold and pair-wise-fold might be oriented differently.
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From the plot in Figure 3 (right), we see that all three algorithms retain
exactly the same number of digits at computation # 9. This is obvious because
the only thing retained is the 33 digits of the final result 3,304,092,302,051,372

12,831,131,327,329,923 .
However, it appears, at least for the single example computation, that tree-fold
is a happy medium between fold-left and pair-wise-fold as far as greedy
release of heap allocation is concerned.

4 Experimental Results

First in Section 4.1, we examine the computation time results of the three fold

algorithms, first when applied to ratio additions as explained in Sections 3.1, 3.2,
and 3.3. Thereafter, in Sections 4.2, 4.3, and 4.4 we examine the results when
we apply the same techniques to BDD construction.

All timing tests mentioned in the following sections were performed using
Scala version 2019.2.36, running within IntelliJ IDEA 2019.2.4 (Ultimate Edi-
tion), on the same computer (with the hardware overview shown below).

Hardware Overview
Model Name: MacBook Pro
Operating System: macOS Catalina
Version: 10.15.1
Processor Name: Quad-Core Intel Core i7
Processor Speed: 2.7 GHz
Number of Processors: 1
Total Number of Cores: 4
L2 Cache (per Core): 256 KB
L3 Cache: 8 MB
Hyper-Threading Technology: Enabled
Memory: 16 GB

4.1 Results of Ratio Addition

The first experiment we performed entailed summing a sequence of rational
numbers of incrementally increasing length. The plots in Figure 4 show the com-
putation time, in milliseconds, of computing sums of different length sequences,
using three different folding algorithms. The left and right plots in Figure 4 dif-
fer only in that the plot on the left is the result of summing the sequence in
sorted order, and the right sums the same sequence shuffled into random order.
The x-axis indicates the value of n and the y-axis indicates the time needed to
compute the sum ∑

−n≤ i ≤−1

1

i
+

∑
1≤ i ≤n

1

i
= 0

whose sum is expected to be zero. I.e., we sum the negative and positive fractions
of the form 1/i, for −n ≤ i ≤ n, excluding 1/0.
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(a) Left (b) Right

Fig. 4: Performance of fold strategy on rational addition. Left shows addition in
sorted order. Right shows addition in randomized/shuffled order.

For each value of n, the sum was performed in three different ways as out-
lined in Sections 3.1, 3.2, and 3.3. It is fairly clear from Figure 4, that tree-fold
and pair-wise-fold perform better especially as the value of n grows, partic-
ularly for values of n > 100. Moreover, the benefit gained from the tree-fold

and pair-wise-fold algorithms increases as measured by the gap between the
fold-left and the other two curves. This gap widens as n increases.

These results are promising and lend some credence to our hope that such
techniques might also benefit BDD construction times.

However, it does not appear, at least for now, that the amount of heap usage
has any effect on computation time. Despite our investigation of the effect of
retained digits, we do not conclude any causal connection. This may be do to
the memory management capabilities of the JVM.

4.2 Results of Constructing Random BDDs

The construction of random BDDs of increasingly many Boolean variables is
known to have exponential complexity [4, 12]. For a given number of Boolean
variables, n, the truth table has 2n rows. Each row which has true in the function
value column corresponds to a minterm of the underlying Boolean function. I.e.,
the set of Boolean functions of n variables is isomorphic to the set of subsets
of the set of all minterms. There are 22

n

such subsets, thus as many Boolean
functions, and thus as many n-variable BDDs.

How do we generate a random BDD? To choose a random BDD, we effec-
tively fill out this truth table by forming subsets containing minterms; i.e., with
balanced distribution include or exclude a given minterm. This selection process
is equivalent to choosing a random integer j between 0 and 22

n − 1 (inclusive),
and then selecting all the minterms, k, for which the kth bit of j (in base-2) is 1.
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For performance and memory reasons, it is not necessary to compute j explicitly.
It suffices to iterate through a sequence of 2n random bits, generated lazily.

On the average a randomly selected DNF contains 2n

2 = 2n−1 minterms, and
each such minterm contains 2n−1 true plus 2n−1 false Boolean variables.

We did not observe any significant difference between the performance of the
implementations based on different fold strategies.

4.3 Results of Fixing the Term Length

The experiments discussed in Section 4.2 are based on uniform samples of a space
of n-variable Boolean functions. In such a sample, a minterm is likely to contain
n
2 true literals and n

2 false literals. However, in many real-world applications
the Boolean variables are correlated in a way that each term contains a small
number of literals. Langberg et al. [19] refer to such Boolean formulas as simple.
Knuth [18, Sec 7.1.4] demonstrates a playful example: 4-coloring map problem.
The constraint that two neighboring regions on the map be colored differently
results in a conjunction of Boolean terms each involving exactly 4 literals.

(a) Left (b) Right

Fig. 5: Performance of fold strategy on construction of BDDs. Each BDD is
constructed as an OR of ANDs. Each AND-term is limited to 4 literals. (Left)
Each point plotted shows the average time of 3 runs of the fold function in
question. (Right) Cumulative memory in terms of number of BddNode objects
allocated. The allocation increases slower for tree-fold than for fold-right.

The next experiment, whose results are shown in Figure 5 (Left), ex-
plores these so-called simple Boolean formulas. The experiment is similar
to that in Section 4.2, but we limit our samples in the number of terms
and the size of each term. We fix the number of Boolean variables to
n = 30, and randomly select terms having exactly 4 literals. I.e., we consider
Γ = {x1, x1, x2, x2, ..., x30, x30} (See Definition 2) and limit ourselves to Γ -
consistent subsets of size 4, such a subset being {x10, x13, x19, x25}. During this
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computation, assuming that m is the number of terms, the inner fold iterates
(m− 1) ∗ (4− 1) = 3m− 3 times, and the outer fold iterates m− 1 times.

The plot in Figure 5 (Left) shows BDD construction times (in milliseconds)
for a range of number of terms going from 10 terms to 200 terms. The results
are somewhat surprising. Although we observe a high degree of noise in the
curves, we can observe a tendency between about 50 and 180 terms where the
fold-left algorithm is slower than other others by a factor of 2 to 3.

In Figure 5 (Right) we see the memory allocation growing as one iteration
progresses. I.e., the experiment starts with a single 4-term min-term, and at
each iteration of the fold one additional 4-term minterm is added (Boolean OR
operation), causing a larger BDD to be computed. As we expect, the memory
allocation exists as the iteration progresses. What is remarkable is that the mem-
ory consumed by fold-right is at times roughly 10 times that of tree-fold.
This progression is reminiscent of the plot in Figure 3 (left).

4.4 Results of Varying Term Length

(a) Left (b) Right

Fig. 6: Performance (left) and relative memory allocation (right) of fold strategy
on BDD construction as function of term length. A ratio < 1 means tree-fold
performed better than fold-left. Each point plotted is obtained by selecting 10
random DNFs and constructing BDDs from each using the two fold strategies.

In this experiment, whose results are plotted in Figure 6 (Left), we hold the
number of Boolean variables constant at n = 30, and test construction of BDDs
of varying number of terms, from 10 to 200, and repeat this process while varying
the term size from 2 to 7. We only tested this using fold-left and tree-fold

and plotted the normalized, relative time consumption.

relative time =
time of tree-fold

time of fold-left
.
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Where a curve lies below y = 1, is a region where tree-fold is faster (fewer
milliseconds) than fold-left. We see that this is more often than not the case
for term sizes of 4, 5, and 6. Notably, and curiously, for term size of 7, tree-fold
performs much worse than fold-left.

The plot in Figure 6 (Right) we see the relative memory allocation of the
fold-left vs tree-fold for various term densities. A value greater than 1
means fold-left is more efficient (allocates less memory), and a value less
than 1 means tree-fold allocates less memory. We observe in the plot that
for densities greater than 2 that the tree-fold based approach allocates less
memory than does fold-left, at least for the iteration range we investigated.

4.5 Reproducing our Results

The code used in the experiments in Section 4 are freely and publicly available
on the GitLab server of EPITA: gitlab.lrde.epita.fr. The code is governed by an
MIT-style license. To download the code, clone the git repository.3 The project
regular-type-expression is a research project whose scope is much larger than
what is discussed in this article. The relevant part can be found at the relative
path cl-robdd/src/cl-robdd-scala, which is a Scala/sbt project.

The plots in the figures in Sections 4.1, 4.2, 4.3, and 4.4 may be reproduced
using the Scala functions indicated in Table 4. Each function is provided in two
forms: a 0-ary form which uses default arguments, and an n-ary form for which
you may specify custom values.

Figure No. Package.Object path Scala Function

Figure 4 treereduce.RationalFoldTest rationalFoldTest

Figure 5 Left bdd.ReducePerf testLimitedBddConstruction

Figure 5 Right bdd.ReducePerf testGenSizePlotPerFold

Figure 6 Left bdd.ReducePerf testNumBitsConstruction

Figure 6 Right bdd.ReducePerf testGenSizePlotPerFold

Table 4: Scala functions to reproduce the plots in Section 4. The functions may
be called with various arguments limiting the bounds of the timing tests.

Each of the functions produces a file with a .gnu extension. This file is
intended as input to the gnuplot program. To produce a graphical plot in PNG

format, for example, execute

gnuplot -e "set terminal png" file.gnu > file.png

In addition to the Scala code for reproducing the results, sample data is
available in several formats: .gnu, .png, and .csv. These data files can be found
relative to the top of the git repository in cl-robdd/data/fold-performance.

3 git clone https://gitlab.lrde.epita.fr/jnewton/regular-type-expression.git -b fold-
strategy. Commit SHA id 4f68cd7e5 marks time this article was submitted.
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5 Historical Context

Because of its higher-order nature, the fold function was originally conceived
for functional-style languages. One might guess that the earliest appearance of
fold would have been in Lisp. While Lisp 1.5 [20, 21] did have the functions MAP
and MAPCAR [31], we found no reference to the fold function.

As far as we can determine, David Turner (author of SASL and Miranda),
seems to be4 the inventor of fold [34]. In 1986, Turner [33] shows how to im-
plement foldr in Miranda. The earliest mention of fold that we have found,
was from 1979 where Turner [35] mentions that “folding a list to the right” is a
“commonly occurring pattern” and encapsulates the pattern by defining foldr

in SASL.
In Common Lisp [3] the function is called REDUCE; Scala [29, 7] offers several

variants foldLeft, foldRight and others; Haskell [16, p. 115] offers foldl and
foldr and others; and OCaml [30, p. 63] offers fold left.

In recent times, many tools of functional programming languages have made
their way into many other languages which are traditionally thought of as im-
perative or object-oriented [32, 11]. Although it is not a definitive source of in-
formation, we note that the Wikipedia article on Fold5 lists ≈ 44 programming
languages which support this feature, sometimes with different names such as
reduce, accumulate, aggregate, compress, or inject.

6 Conclusion

In this article we have looked at three implementations of the fold function
which agree on their semantics but differ as far as how they group expressions
and which order evaluation occurs. We have looked at several experiments which
measure execution time of the various approaches. We found that in some cases
the approach makes a significant difference and in other cases it does not.

We have investigated fold-based computations whose binary operation de-
grades in performance due to growth in intermediate values. The tree-based fold
implementations (tree-fold and pair-wise-fold) outperform the traditional
fold-left implementation in some cses. We have no data to suggest that tree-
based folds are better in all cases. Rather we suggest that in some cases the
programmer needs finer control over the computation order depending on the
nature of the computation being performed.

We believe that researchers should be honest about their results and avoid the
temptation to show only positive results. In keeping with this belief we emphasize
that some of the results in Section 4.2, 4.3, and 4.4 are as of yet inconclusive.

4 https://www.quora.com/Where-did-the-common-functional-programming-
functions-get-their-names Mark Harrison inlines an email form David Turner
claiming to be the inventor of the foldr/foldl functions sometime between 1976
and 1983. We verified this claim in a face-to-face conversation with David Turner.

5 https://en.wikipedia.org/wiki/Fold (higher-order function), last edited on 5 Novem-
ber 2019, at 05:48.
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This fact is disappointing as one of the primary motivating factors for starting
this research was to improve BDD construction times or at least to characterize
which cases can be improved. While we observe a correlation between minterm
density and BDD construction, we do not have enough evidence at this point to
make any predictions with confidence. More research is needed in this area.

We were able to demonstrate computations of rational numbers (ratios of
integers) where a tree-fold or pair-wise-fold unambiguously outperforms
the linear fold-left. However, as to the motivating example, BDD construction,
we have not demonstrated consistent results. There are some situations where a
linear fold out-performs a tree-fold, and vise versa. There is some evidence that
for DNF formulations of certain range of term lengths, a tree-fold is superior, but
our findings are not conclusive. More work is needed to characterize definitive
predictions or even rule-of-thumb advise for potential users.

1 // Example usage, returns integer product of sums 216000

2 sumOfProducts( Seq(Seq( 1, 2, 3), Seq(10, 20, 30), Seq(100, 200, 300)))(

3 plus = _ * _, zero = 1,

4 times = _ + _, one = 0)

5

6 // Example usage, returns BDD which is an AND of ORs of the given BDDs

7 sumOfProducts( Seq(seq1ofBdds, seq2ofBdds, sea3ofBdds))(

8 plus = BddAnd, zero = BddTrue,

9 times = BddOr, one = BddFalse)

Fig. 7: Scala example of using the sum-of-products function to compute the
product of sums, simply by swapping the arguments at the call site.

7 Perspectives

In this article we have investigated computations whose performance degrades
over time due to the progressive growth of intermediate results. Can our method
can be applied to computations whose precision degrades over time due to accu-
mulating round-off error of intermediate values? An example would be summing
or multiplying a sequence of floating point numbers6. If intermediate values con-
tain round-off error, then that error compounds each time those values get reused
in successive computations. One might suspect that a tree-fold approach could
mitigate the negative effects of this kind of accumulating round-off, since the
technique would limit the number of times such inaccurate intermediate values
get reused. This topic deserves investigation.

Our experiments on BDDs have been based on randomly generated samples,
albeit with certain constraints which effect the distribution. There is reason to
6 This idea was suggested by John Hughes.
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doubt whether real-world problems can be well modeled by random sampling.
For example, in real-world problems, the Boolean variables have correlations
which we have not attempted to mimic. We plan to test our process on some
large examples of BDD construction which are more consistent with reality.

In this article we have addressed constructing BDDs only as a sum of prod-
ucts (Equation (4)), i.e., as DNF. BDDs used in model checking [5] and SAT
solving [13] are most often constructed based on a product of sums, referred to
as CNF (conjunctive normal form), as Equation (13).

CNF =

m∏
i=1

∑
γi =

m∏
i=1

∑
x∈γi

x . (13)

The computation necessary to construct a BDD from a CNF form can be
done using the code in Figure 1, simply by swapping the keyed arguments, as
in Figure 7. We would expect to get the same performance characteristics using
CNF rather than DNF, but admittedly we have not tested this hypothesis.

In this article we have not investigated how our computations interact with
the heap, garbage collection, nor run-time optimizations of the JVM. Previ-
ous work [23] discussed the incorporation of weak-hash-tables into the BDD
computation which showed very positive results in our Common Lisp BDD im-
plementation. Unfortunately, similar enhancements to our Scala library do not
show analogous performance boosts. On the contrary, we have noticed the using
WeakValueHashMap from org.jboss.util as the weak-hash-table implementa-
tion may have a net negative effect as it seems to significantly increases memory
usage over all. Our conclusions are not definitive; more research is needed.

Until now, we have observed similar results (not published here) using the
Common Lisp language. Both Scala and Common Lisp have strict evaluation
orders. It would be interesting to know which if any of our observations depend
on this order, and whether normal evaluation order obviates any of our suggested
need to user intervention in the associativity of the fold operation.
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