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Chapter 1

Introduction

TRANSFORMERS is a project that has to make code transformations on C++ programs. To ac-
complish this goal we first have to parse and disambiguate the C++.

The important feature of TRANSFORMERS it is our will to keep the grammar describe in the
C++ standard (ISO/IEC, 2003). The main problem with this grammar is that it has not been
created to be parsed. Most implementation of C++ parser have modified the grammar in order
to parse all C++ constructions with a reduce number of ambiguities.

In TRANSFORMERS we have chosen to parse any C++ program with the standard grammar
and a Scanner-less Generalized LR (SGLR) parser. This parser generates a parse-tree that con-
tains a huge number of ambiguities. To remove ambiguities we use an Attribute Grammar (AG)
to disambiguate the C++.

Since 2004, TRANSFORMERS uses AGs to disambiguate. For 3 years we have tried to use AGs
to disambiguate the C (ISO/IEC, 1999) and the C++. Today, in 2007, the C++ disambiguation is
not functional as we have expected. After 3 years, we think it would be important to know if
our system is capable to disambiguate any source code.

The purpose of this work is to verify that our system is able to disambiguate any source code
similar to a C or C++ code.

This work has offer the opportunity to rebuild the attribute propagation system from the
beginning. This would become the first definition of a tool to automatically propagate attributes
in an AG as far as we know.

Therefore, we introduce a notation that would help for the manipulation of AG. Then we can
study the problem of attribute propagation and the problem of disambiguation with AG.

Acknowledgments

Renaud Durlin for helping me by reporting some bugs of the new attribute propagator.

Stephen-Joseph FRANK and Thomas MOULARD for reading a draft of this report.

Microsoft Word 2003 for correcting a great deal of grammar mistakes.



Chapter 2

Notations

This chapter introduces Attribute Grammars (AGs) with a different notation compared to the notation
introduced by Knuth (1968). First it reminds the notation of AGs. Second it describes the hybrid logic.
Third it makes an equivalence relation of notation to express AGs. The reason is that the hybrid logic
notation can be represented easily as a graph instead of the usual AG notation.

2.1 Attribute Grammars

This section is extracted from the article of Knuth (1968, section 2) where he introduces the first
notation for attributes grammars. Some parts have been removed because they aren’t required
in our usage of AGs or can be satisfy easily by small transformations.

A context free grammar is defined by G = (V,N , S,P) where V is the (finite) vocabulary
of terminal and nonterminal symbols; N ⊆ V is a set of nonterminal symbols; S ∈ N is the
“start symbol”, which appears on the right-hand side of no production rule; and P is a set of
production rules.

Semantic rules are added to G in the following manner: To each symbol X ∈ V we associate a
finite set A (X) of attributes; A (X) is partitioned into two disjoint sets, the synthesized attributes
A0 (X) and the inherited attributes A1 (X).

Let P consist of m productions, and let the pth be

Xp0 → Xp1Xp2 . . . Xpnp (2.1)

where np ≥ 0, Xp0 ∈ N , and Xpj ∈ V for 1 ≤ j ≤ np. The semantic rules are fpjα defined for
1 ≤ p ≤ m, 0 ≤ j ≤ np, and α ∈ A0 (Xpj) if j = 0, and α ∈ A1 (Xpj) if j > 0. Each semantic rule
maps values of certain attributes of Xp1, Xp2, . . . , Xpnp onto the value of some attribute of Xpj
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2.2 Hybrid Logic

This section presents the notation of the hybrid logic language (Blackburn, 2000). This language
derived from the modal logic language. It provides us an explicit expression which is evaluated
with a graph as model.

In this report, all expressions of hybrid logic used symbols described in the Table 2.1. Those
symbols are used to define the hybrid logic language.

n Represents a variable which could be bind to a node.
ϕ Represents hybrid logic expressions.
p(..) Represents a property.

P (ϕ, ..) Represents a predicate.

Table 2.1: Hybrid logic symbols.

Table 2.2 defines all constructions valid in an hybrid logic expression. This table is divided
in two parts: the syntax, the semantic. Hybrid logic expressions are evaluated on a graph. An
expression is always evaluated on a node of the graph. In normal cases only expressions which
start with one of these quantifiers are valid: @n where n is a node of the graph; ∀ ; ∃ .

> This expression is always true.
⊥ This expression is always false.
n This expression is true only if the current node is the node n.

@n ϕ This expression is true only if ϕ is true for the node n.
↓n ϕ This expression binds the node n to the current node and is true only if ϕ is true.
¬ϕ This expression is true only if ϕ is false.
ϕ∨ψ This expression is false only if ϕ and ψ are false.
ϕ∧ψ This expression is true only if ϕ and ψ are true.
ϕ⇒ψ This expression is true only if ϕ and ψ are true or if ϕ is false.
∀ ϕ This expression is true only if ϕ is true for all nodes.
∃ ϕ This expression is true only if ϕ is true for one node.

[R]ϕ This expression is true only if all nodes reachable by relation R verify the expression ϕ.
〈R〉ϕ This expression is true only if one node reachable by relation R verify the expression ϕ.

Table 2.2: Hybrid logic language.

In the previous table the relationR can be seen as an edge in a directed graph. These relations
can handle some attributes described in Table 2.3

† Inverse relation.
∗ Reflexivity relation.
+ Transitivity relation.

Table 2.3: Relations operators.
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The dagger symbol (†) is frequently used in this report. It means that you are following the
edge in the opposite direction. The following expression describes that for any models if you
can reach the node n2 by following the relation R from the node n1 then you can reach the node
n1 by following the relation R in the opposite direction from the node n2.

|= @n1 〈R〉n2⇒@n2

〈
R†

〉
n1 (2.2)

Be careful with the Equation 2.2, you cannot change the 〈R〉 expression by the [R] expression
on both sides.

In this report the following notations are strictly followed:

• All nodes are written with small caps like “NODE”.

• All relations are written in italic like “relation” and abbreviated with the initial in all math
expressions like “R”.

• all relations’ annotations are written as subscript of the relation in all math expressions
like “Rannotation”.

• All predicates are written in bold like “Predicate”.

Any use of the relation R would refer to the relation R even if the relation is annotated in the
graph. This allows us to write relation hierarchies.

2.3 Hybrid Logic for Context-Free Grammars

This section defines a bridge between the context-free grammar notation and the hybrid logic
notation.

There are two kinds of nodes related to the context-free grammar definition: a terminal or a
nonterminal is a SYMBOL; and a production is a PRODUCTION1.

Those nodes are joined by two kinds of relations, as described in the Equation 2.1: In the
production P , all Xpj where 0 < j ≤ np are used by the PRODUCTION P ; and Xp0 is produced by
the PRODUCTION P . So the PRODUCTION P uses all SYMBOLS from Xp1 to Xpnp and produces
Xp0

In TRANSFORMERS we have to propagate attributes on the grammar and return the expected
grammar. This step is easier to do with a graph instead of a list of productions. So to be able to
come back to the previous notation we need a bijective transformation. So it is required to add
the position in the production as an annotation to the produce relation. So all use relations have
to keep the rank j of each SYMBOL used by the PRODUCTION.

The following list of expressions expresses limitations of context-free grammars:

• A PRODUCTION has to produce only one SYMBOL.

∀ ↓s (is-symbol⇒
[
P †

]
(is-production⇒ [P ] s))

1This production is a node
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• A PRODUCTION can use a SYMBOL at the position n if this PRODUCTION uses a SYMBOL at
the position n − 1 or if n = 1. The following expression is used to specify the maximum
rank of a production in a context-free grammar.

∀ is-production⇒(〈Un〉 is-symbol⇒ equal(n, 1)∨ 〈Un−1〉 is-symbol)

• A SYMBOL can only be used by a PRODUCTION. The following expression is used to add
type check information to distinguished nodes.

∀ (is-symbol⇒
[
U†] is-production)

• A SYMBOL can be produced by at least one PRODUCTION. The following expression does
the same thing as the previous one.

∀ (is-symbol⇒
〈
P †

〉
is-production)

Figure 2.4: Example of a grammar model.

Figure 2.4 summarizes a model used in hybrid logic to represent a grammar in this report.

2.4 Hybrid Logic for Attribute Grammars

This section defines AGs in hybrid logic from the definition specified in the section 2.1 of this
report.

In addition to previous nodes introduced in the description of the context-free grammar, there
are two more nodes. One is used to represent ATTRIBUTE and the other used to represent
STRATEGY. A STRATEGY is like a PRODUCTION in that it uses and produces ATTRIBUTES.

Following expressions describe type limitations of the model:
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• A STRATEGY has to produce only one ATTRIBUTE.

∀ ↓a (is-attribute⇒
[
P †

]
(is-strategy⇒ [P ] a))

• A STRATEGY can only use ATTRIBUTES.

∀ is-strategy⇒([U ] is-attribute)

• An ATTRIBUTE can only be used by a STRATEGY.

∀ (is-attribute⇒
[
U†] is-strategy)

• An ATTRIBUTE can be produced by at least one STRATEGY.

∀ (is-attribute⇒
〈
P †

〉
is-strategy)

To link the definition of context-free grammar with semantic rules, we have to add the relation
“on”. This describes that STRATEGIES and ATTRIBUTES are respectively linked to PRODUCTIONS
or SYMBOLS.

The following expressions describe how ATTRIBUTES and STRATEGIES are related to the context-
free grammar:

• A STRATEGY is always on one PRODUCTION.

∀ ↓p (is-production⇒
[
O†] (is-strategy⇒ [O] p))

• An ATTRIBUTE is always on one SYMBOL.

∀ ↓s (is-symbol⇒
[
O†] (is-attribute⇒ [O] s))

• For all PRODUCTION “p” where there is a STRATEGY, all Related ATTRIBUTES are on SYM-
BOL Related to the PRODUCTION “p”.

Related†(ϕ) =
〈
P †

〉
ϕ∨

〈
U†〉ϕ

¬Related(¬ϕ) = [P ]ϕ∧ [U ]ϕ

∀ ↓p (is-production⇒
[
O†]¬Related(¬ [O] Related†(p)))

The propagation system is easier to write if there is a way to know if the attribute is synthesized
or inherited as described in the article by Knuth (1968). It is easy to write because we have to
know if the propagation direction is the same as the production in the grammar (synthesized)
or the opposite (inherited). To satisfy this we have to add annotations on all produce and use
relations related to an ATTRIBUTE.
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Figure 2.5: Example of an AG model.

Figure 2.5 summarizes a model used in hybrid logic to represent an AG in this report.

2.5 Implementation Similitude

This section is used to show that the implementation used for the new propagator is very similar
to expressions of hybrid logic. As seen in previous sections the hybrid logic is used to express
expression on a graph. The graph is the model.

In any implementation you have to use conditions to choose between processes. The hybrid
logic is advantageous because graphs can be implemented in our programming language. In
addition the hybrid logic language facilitates the writing of conditions on graphs.

To implement this in STRATEGO we have use a new extension of the STRATEGO compiler
(Kalleberg and Visser, 2006). We have to use an extension of the compiler because the normal
compiler, offer with the STRATEGO/XT framework (Bravenboer et al., 2006), does give us a
support for graph manipulation. For some performance reasons we have implemented a new
version of this extension. This new version is not safe with back-tracking operations. Therefore
we have not to keep all states of the graph. This implies that all modifications produce a side
effect if a back-tracking operation is use over the modification part. This implementation has
also been created to be at least a bit compatible with the original extension.

The implementation has been made to correspond to the hybrid logic language. It defines
all constructions describe in section 2.2 to fit the language. These constructions are useful to
express conditions on the graph. With these constructions we are now able to verify if our
conditions are correct.



Chapter 3

Attribute Propagator

The reason for this chapter is that the previous attribute propagator was not correct. So this chapter is
dedicated to formalizing a method to propagate attributes in a grammar. The first section describes the
common part of each propagation. The second section is more precise.

3.1 General Propagation

The attribute propagation is needed. This is the case in the C++ grammar when we can have
trees with great depth. The aim of the attribute propagation is to reduce the amount of code to
make a small modification.

In the approach of Swierstra et al. (2003), the user has to declare all attributes that are on
each symbol of the grammar. This method can not be used in TRANSFORMERS. Currently, the
C++ AG of TRANSFORMERS contains more than 1000 strategies defined by the user in order to
disambiguate the C++. In addition some production names are generated at the generation of
the parse table used by SGLR (Visser, 1997). So the approach used by UU-AG can not be used
by TRANSFORMERS following the quantity of symbols.

For example you can see, in Figure 3.1, a small tree which represents the C++ Abstract Syntax
Tree (AST) of the code “int main(){return 0;}”. Each word in the previous quote has the same
color as a tree node in Figure 3.1.
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Figure 3.1: “int main(){ return 0; }” C++ AST.

To do this we have to review the problem in detail. To facilitate the process we have to split
it in two main parts: the need of propagation, propagation rules. The need of propagation is a
simple part which has to be common to all propagations. Propagation rules are used to define
how a specific attribute have to be propagated. Propagation rules could be Top-Down (TD),
Bottom-Up (BU) or Left-to-Right (LR).

This section deals with the common part the propagation problem.

A way to solve this problem is to find all attributes that are used and that have no definition.
If this way still exist after the attribute propagation then the evaluation or compilation process
should failed because no value have been associated to this attribute. The goal of the attribute
propagator is to prevent that case either by propagating attributes correctly or by throwing an
error.

Table 3.2 is used to check all possible cases that can occur in the AG system of TRANSFORM-
ERS. Those cases are combined with a small conclusion which describes the result and what we
expect to do with the attribute propagator.

The symbol 3 specifies that the expression is verified. The symbol 7 specifies that the expres-
sion is not verified. If there is no symbol, the expression result is ignored.

The expressions used in Table 3.2 are the following:
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• The ATTRIBUTE “a” is used by a STRATEGY which is on a PRODUCTION; the PRODUCTION
uses the SYMBOL on which the ATTRIBUTE “a” is.

〈
U†

syn

〉
(3.1)

• The ATTRIBUTE “a” is produced by a STRATEGY which is on a PRODUCTION; the PRODUC-
TION produces the SYMBOL on which the ATTRIBUTE “a” is.

〈
P †syn

〉
(3.2)

• The ATTRIBUTE “a” is produced by one STRATEGY on each PRODUCTION; each PRODUC-
TION produces the SYMBOL on which the ATTRIBUTE “a” is.

[O]
[
P †

] 〈
O†〉 [Psyn] (3.3)

• The ATTRIBUTE “a” is used by a STRATEGY which is on a PRODUCTION; the PRODUCTION
produces the SYMBOL on which the ATTRIBUTE “a” is.〈

U†
inh

〉
(3.4)

• The ATTRIBUTE “a” is produced by a STRATEGY which is on a PRODUCTION; the PRODUC-
TION uses the SYMBOL on which the ATTRIBUTE “a” is.〈

P †inh

〉
(3.5)

• The ATTRIBUTE “a” is produced by one STRATEGY on each PRODUCTION; each PRODUC-
TION uses the SYMBOL on which the ATTRIBUTE “a” is.

[O]
[
U†] 〈

O†〉 [Pinh] (3.6)

(3.1) (3.2) (3.4) (3.5) Conclusion
7 3 The attribute is considered as a local attribute.
3 The Equation 3.2 has to be satisfied.
3 3 The Equation 3.3 has to be satisfied.

3 The Equation 3.5 has to be satisfied.
3 The Equation 3.6 has to be satisfied.

3 3 The attribute cannot be produced as synthesized and inherited.

Table 3.2: Conditions of the propagation system.

This table shows us that we have to compute it each time on each attribute due to the local
attribute detection. An ATTRIBUTE can be considered as local while no use exists, but the at-
tribute propagator system can add a use of this ATTRIBUTE and the ATTRIBUTE won’t be local
any more.

The implementation of the common part of the propagation uses the previous expressions.
There is a small algorithm that compute one step of the propagation. Before going forward we
have to remark some important points:
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• Each grammar is a finite structure.

• The algorithm never remove information from the grammar.

• The algorithm never add information if it already exists.

• The modification of some parts of the grammar can induce a modification of other parts.

Those remarks enable us to use the algorithm in a fix-point algorithm. So, we are sure that
the attribute propagation do the job well and terminate.

3.2 Propagation Rules

A propagation rule is a list of rules that define how the propagator should act when it is try-
ing to propagate an attribute. The goal of this section is to define rules used in BU, TD, LR
propagations.

A rule defines a way to add a strategy or information to compute the attribute propagation
in the context of a production.

To simplify the problem of specific propagation, we have added the idea of flags. A flag is a
mark that is set on a symbol. It specifies that an attribute with a certain name and a certain kind
can be added on the symbol. Flags are used to define a cover set for attribute propagation rules.
They are mainly used to reduce the propagation problem to a problem that is local to a unique
production. Only the BU and LR propagations required the use of these flags.

Paradoxically we do not want to add everything. This restriction comes after an observation
of the previous system. The previous system automatically added a BU attribute where it was
required but if it can not find any definition it will define its value on the empty list. The prob-
lem arise when a propagation problem is not seen by the user and the system cannot warn him.
In the new system this problem has been solved by merely activating that kind of propagation
on empty productions.

3.2.1 Top-Down

TD attributes don’t need flags and they need only one rule to define the TD propagation.

TD attributes are coming from the top to go to the lower part of a parse tree. So any require-
ment of this kind of attribute will ask the parent symbol in a production to define it.

3.2.2 Bottom-Up

BU flags need two rules.

The first rule is used to define if a symbol possesses a BU attribute. If so, then the symbol
should also possesses a BU flag.

The second rule is used to define if a symbol possesses a BU flag. If so, then all its parents in
all existing productions should have the same BU flag.
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BU attributes need only one rule.

This rule defines that on a production the value is a concatenation of all values coming from
all symbols used by the production that has the corresponding BU flag.

3.2.3 Left-to-Right

LR flags need two rules.

LR flags are annotated with a value. This value could be inherited, synthesized or both. The
inherited value means that the represented attribute expect to be define. The synthesized value
means that the represented attribute is already define.

The first rule is used to define if a symbol possesses a LR attribute. If so, then it should also
possesses a LR flag. If the attribute is used then the corresponding flag have the inherited value.
If the attribute is produced then the corresponding flag have the synthesized value.

The second rule is a bottom-up propagation of LR flags. That means if in a production some
symbols can use or produce a LR attribute then the produced symbol can possibly use or pro-
duce the same LR attribute.

LR attributes need only one rule.

This rule requires to have a list of symbols which are in the same order as the production
from where they are coming from. This list has to have the produced symbol at the first and at
the last position in the list. This list is used to fetch the nearest symbol on the left that satisfies
a property. The property checks if it exists an inherited flag on a used symbol or a synthesized
flag on the produced symbol. The property is used to fetch a symbol that can produce a value
to define the requested attribute.



Chapter 4

Disambiguation

After the generation by SGLR (van den Brand et al., 2002) of an ambiguous parse-tree, we have to
disambiguate with our AG system.

In this chapter we are looking for proving that our system is correct. To accomplish this hard task we
have to: define what is required to disambiguate; define an ambiguity; define the formal process of our
evaluation; and verify the validity of the disambiguation.

4.1 Ambiguities definition

An ambiguities is the possibility to find different interpretations for a unique text at a specific
abstraction level. The disambiguation process is the fact to disambiguate something by the use
of an abstraction that is over the abstraction level of the ambiguities.

In our case we are trying to disambiguate syntactical ambiguities by the use of semantics’
evaluation. We have to understand that we are not able to disambiguate semantics’ ambiguities
by the use of semantics’ evaluation. That is the reason why some ambiguities can remain after
our disambiguation process.

4.2 Attribute Evaluation

To prove if we can disambiguate with our current system, we have to check how it proceeds
and what its limitations are.

The first step of the evaluation is to add attributes on the parse-tree. The evaluator read the
input tree and identifies each node with the production used by the parser. Then it adds at-
tributes on the tree and defines a unique identifier. The identifier represents the future attribute
value and refers to a list of functions that are used to compute the value of the attribute.

There are two different attribute values: valid or invalid. In TRANSFORMERS the invalid value
is represented as a specific term that should not be used any where else. Otherwise a normal
term, as defined in the STRATEGO language, is accepted as a valid value.
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We need a list of functions because an attribute can be computed by different ways if its value
is synthesized through an ambiguity. The problem with this list of functions is what happens
when two or more functions return valid values. This problem is currently solved by comparing
all returned values. If all values are identical then the value is synthesized. Otherwise the
synthesized value is declared as invalid. This is a dangerous feature of our system.

After the evaluation process, each node of the parse-tree has annotations. Each annotation
contains all attributes of the corresponding symbol with their values. At this moments all am-
biguities remains in the tree. The last step of this process is to remove all invalid branch from
the tree and return the disambiguated tree. This process use a top-down traversal to find any
invalid trees.

• If in the current tree root an attribute is invalid then the tree is invalid.

• If in the current tree one of its branches is invalid then the current tree is invalid.

• If the current tree root is an ambiguity node then the process keep all valid trees.

• If there is no more valid trees under an ambiguity node then the current tree is invalid.

4.3 Disambiguation Validity

Now, we will see if our system is able to disambiguate any parse-tree. To achieve this task we
have to define what is our problem about the disambiguation process. After we will try to prove
that our system is able to disambiguate some minimal cases that are representative of all cases
found in some ugly grammars. (?)

We have to keep in mind that disambiguate does not mean removing all ambiguities from a
tree, but keeping only all ambiguities that could not be solved by the semantics of the language.

All disambiguation problems are caused by declarations and the use of the declared elements.
This problem can be seen as a source of information and as an element that required this infor-
mation. To describe this problem we have four trees where each represents one case of our
problem. (see Figure 4.1 to 4.4)

Figure 4.1: No ambiguities case.

Figure 4.1 has no ambiguities1 and so can be disambiguated. It represents the case where the
declaration and the use are not ambiguous.

1This is not a joke, we just want to observe all cases
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Figure 4.2: Ambiguous Use.

Figure 4.2 has an ambiguity on the use part of the tree. To disambiguate that kind of tree we
have to fetch information from the declaration part of the tree. On each branch of the ambiguous
node, we check if the use is coherent with the information.

Figure 4.3: Ambiguous Declaration.

Figure 4.3 has an ambiguity on the declaration part of the tree. This tree is more complex to
solve than the previous case because you have to remember that the system use the declaration
to verify the usage. As describe in our attribute evaluation our system cannot fetch information
from an ambiguity. To solve this problem, a special attribute has been introduced. It is named
“replace”. It allows the user to delay the evaluation by copying the tree and replacing it after.
To disambiguate the previous tree we first have to add the tree with the ambiguous node in the
environment and check on the usage if one of the declarations can match the usage, in order to
be coherent.

This problem can also be solved by using the same method used to disambiguate Figure 4.2.
Be careful, you cannot use this method to handle the two cases at the same time without having
a cycle in our AG.
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Figure 4.4: Ambiguous Declaration & Use.

Figure 4.4 has ambiguities on the declaration part and on the use part of the tree. The method
uses to solved this problem is quite similar to the disambiguation of the declaration. First, we
have to add the ambiguous trees corresponding respectively to the declaration part and to the
use part. Second, we have to check for each couple of trees if some of them are coherent.

Unfortunately our system is not able to raise an ambiguity over the Root node. So, if we have
only some couple that are valid like “Decl 1” with “Use 2” and “Decl 2” with “Use 1” then
our system will generate a tree that is identical to the input tree (Figure 4.4) but in this case we
expect a better disambiguation like Figure 4.5.

Figure 4.5: Ambiguous Declaration & Use.

This solution is more explicit because it has raised all ambiguous nodes over the Root and
filtered all valid couples.

So our system is not able to generate a clear output to specify which couples are valid and so
it is not able to disambiguate this case correctly except if there is only one solution.

We hope that case does not happen in the C++. This case has already happened when the
typename keyword was not in C++. The problem with the typename keyword was that all tem-
plate definitions are totally ambiguous because they could be use with different parameters.
This keyword removes an ambiguity of the kind seen in Figure 4.4.



Chapter 5

Conclusion

TRANSFORMERS is a project that has been created to transform some C++ code. To accomplish
this task we have to disambiguate the C++.

With this, AGs can be manipulated with a new notation. This notation uses the hybrid logic
language. The hybrid logic language can be used to express with ease conditions on a graph.
As presented, an AG can be represented as a graph. With this new abstraction we are now able
to implement correctly conditions. So there are no more differences between a source code and
an expression expresses in hybrid logic.

This work has offered the possibility to build another attribute propagator system. It gives
us a good background to continue to work with AGs. It has been created to be modular. A
first part defines propagation conditions. Propagation conditions define all parts common for
all attribute propagations. Others parts define attribute propagations that are very dependent
on the attribute kind.

The conclusion of this report is that we are able to disambiguate the C++ except if we found
a new ambiguity similar to the problem of the typename keyword that implies that we have
an ambiguous declaration and an ambiguous use. This work concludes the problem of the
disambiguation with our AG system.

Expected future works on the attribute propagator would be to define a language to describe
any propagations rules. This system would offer us the possibility to extend our attribute prop-
agation system dynamically. In addition, we can expect to be able to define our own attribute
kinds.
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