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ABSTRACT

Many bio-medical applications involve the analysis of se-
quences for motion characterization. In this article, we con-
sider 2D+t sequences where a particular motion (e.g. a blood
flow) is associated with a specific area of the 2D image (e.g.
an artery) but multiple motions may exist simultaneously in
the same sequences (e.g. there may be several blood vessels
present, each with their specific flow). The characterization
of this type of motion typically involves first finding the areas
where motion is present, followed by an analysis of these
motions: speed, regularity, frequency, etc. In this article, we
propose a methodology called “area-of-motion characteriza-
tion” suitable for simultaneously detecting and characterizing
areas where motion is present in a sequence. We can then
classify this motion into consistent areas using unsupervised
learning and produce directly usable metrics for various ap-
plications. We illustrate this methodology for the analysis of
cilia motion on ex-vivo human samples, and we apply and
validate the same methodology for blood flow analysis in fish
embryo.

Index Terms— Fourier analysis, classification, unsuper-
vised learning, cilia, flow analysis.

1. INTRODUCTION

Sequence analysis, and in particular those that involve mo-
tion, is common in bio-medical applications [1]. In this
article, our domain of application concerns areas-of-motion
characterization in 2D+t sequences. This means that we as-
sume that in our sequences of interest, we can tessellate the
2D domain into consistent areas that may undergo various
degrees of patterned geometry evolution, texture changes
or grey-level intensity variation. We also assume that these
areas-of-motion remain unchanged through the sequence.
Note that this is a very different problem from object tracking,
where an otherwise broadly unchanging, identifiable object
might move through the sequence (e.g a fish swimming) in a
non-repeating pattern.

In general terms, to characterize areas-of-motion in an im-
age sequence, it is therefore necessary to find areas in the se-
quence of interest where some motion occurs. Since these ar-
eas are assumed fixed, but motion occurs in there repeatedly,

it seems natural to assume that these motions are periodic or
quasi periodic, i.e. they occur with significant, but not metro-
nomic regularity. If we take as example the case of a sequence
of an otherwise unmoving but beating heart in a transparent
fish, we may find areas in the sequence that correspond to ge-
ometry changes (the moving contours of the heart) and others
where only grey-level changes are visible (as the ventricles
of heart fills and empties with blood). However we may dis-
cover that these separate changes are linked and consistent
because they are spatially related, synchronized and periodic,
and therefore belong to the same object.

This suggests using motion analysis descriptors to these
areas that are as parameter free as possible and can distinguish
areas of motion based on their combined response. Assuming
quasi periodic motion, we propose to use multiscale Fourier
domain analysis. Because we do not assume the availability
of labelled or annotated data, we propose to use an unsuper-
vised learning approach, so that areas of consistent motion
can be detected by clustering methods.

Although sometime described in a different way, area-
of-motion tessellation has been studied before: In [2], au-
thors propose a joint segmentation and motion analysis in a
Bayesian framework. In [3], periodic motion segmentation is
investigated. In [4], a multiple level-line framework is used
to delineate independent areas of motion. In [5], unsuper-
vised spectral clustering is used to detect these areas over a
few frames. In previous work [6, 7], we have used variance
analysis on temporal gradient to propose area-of-motion iden-
tification. In [8], we used optical flow [9] for area of motion
clustering. In this new work, we combine the strong prior
knowledge of repeating motion with unsupervised clustering
to propose a flexible and robust approach for area-of-motion
detection. We also show how our proposed descriptors can be
used for motion characterization in the detected areas, with
applications to several bio-medical problems.

The remainder of the article is structured as follows: in
section 2, we propose suitable motion analysis descriptors. In
section 3 we describe our unsupervised learning framework.
Section 4 shows our results on several applications. We con-
clude in section 5.



Fig. 1. Illustration of neighbors centroı̈ds with their areas.

2. PROPOSED MOTION DESCRIPTORS

A statistical process that retains its defining characteristics
(e.g. amplitude, density, frequency, etc) through time is called
stationary in time. A process that has varying characteristics
(i.e. parameters) depending on the location is called spatially
variant. Areas of motion are simultaneously stationary in time
and spatially variant. In this section, we propose descriptors
that are suitable for these types of processes.

2.1. Nearly stationary processes

Periodic processes constitute a large subclass of stationary-
in-time processes. The processes that we study are assumed
to be nearly periodic (i.e, as much as biological processes can
be), and we only expect slow changes in motion patterns dur-
ing analysis, so they can be assimilated to nearly stationary-
in-time, periodic processes. A standard tool to study these
processes is the Fourier Transform (FT). Continuous wavelets
like the Gabor-Morlet wavelets [10, 11] are designed for the
frequency analysis of non-stationary processes, so they are
not ideal here. Discrete wavelets (Haar, Daubechies, etc)
are even less suitable since they are more associated with
the notion of scale than with the notion of frequency. Our
proposed approach consists of comparing Fourier spectra in
small neighboring regions.

2.2. Calculating the descriptors

Let I be a 2D+t sequence of spatial sizeM×N and consisting
of F frames indexed {1 . . . F}. We distinguish the notion of a
2D location l at coordinates (i, j), which remains unchanged
throughout the sequence, from that of a pixel p of coordinates
(i, j, t), located in frame t. We denote I(l) the 1D sequence
of F values, e.g. I(l) = {I(i, j, 1), . . . , I(i, j, F )}.

Let l,m be neighboring locations in the sequence. We
consider a square window Rl (resp. Rm ) of width (2r +
1) pixels centered on these (see Fig 1). so each region Rl

contains (2r + 1)2 spectra.
We denote sk the power spectrum at location k belonging

to the window Rl. The considered spectrum Sl associated
this window is the average of all the sk, i.e.:

sk = F(I(k)) (1)

Sl =
1

(2r + 1)2

∑
k(i,j)∈Rl

‖sk‖, (2)

Fig. 2. Multiscale merging and averaging of the FFT spec-
trum for calculating the Vl

where F denotes the Fourier transform. Since we consider
the power spectrum, only the components [1, F/2] of Sl are
relevant since the components [F/2 + 1, F ] are symmetrical.

We then compute F − 1 descriptors {Vl[1] . . . Vl[F − 1]}
from Sl[1, F/2]. They are obtained by considering the low
pass Haar wavelet decomposition of the FFT spectrum, i.e. by
recursively averaging and merging the vector Sl (see Fig. 2).
In particular we have the properties

Vl[
F

2
+ g − 1] = S[g] ∀g ∈ [1,

F

2
] (3)

Vl[h] = V [2h] + V [2h+ 1] ∀h ∈ [
F

2
, 1] (4)

There are indeed
∑log2(F/2)

i=0 2i = F −1 such descriptors.
In this way the resulting descriptors corresponds to a multi-
scale wavelet representation of the average power frequency
spectrum of the region around the location of interest. It is
inspired by but different from a multiscale spatial represen-
tation found in standard wavelets. We can also consider the
high-pass coefficients Wl defined in this way:

Wl[h] = V [2h]− V [2h+ 1] ∀h ∈ [
F

2
, 1], (5)

but we did not use them in this work as they are fairly noisy.
In practice we do not need to consider all the wavelet coef-
ficients, only those near the low-pass area of the spectrum
(for example in the interval [1, F8 ]), since most of the high-
frequency part of the power spectrum is also noise. To further
reduce noise we may also only keep some of the averaged de-
scriptors, for instance only the first {Vt[1], . . . , Vt[FQ ]}, with
Q varying depending on the temporal resolution and length
of the sequence. In all our experiments reported below, we
adjusted Q so that F

Q = 32, replacing Vt[1], which is not very
informative, with the pure DC component S[1].



3. ANALYSIS

One way to use these Vl descriptors could be use them as mea-
sures of similarity between locations and perform a region-
based segmentation. However, here we wish to identify the
areas of motion first.

3.1. Dimension reduction

To this end, we first reduce the dimensionality of the data
via a Principal Component Analysis [12]. This is justified
because there is some redundancy in the descriptors due to
the recursive merging process used to compute them. The
decriptors were whitened (normalized to zero-mean and unit
variance). PCA was performed with scikit-learn [13]. Ex-
periments showed that a dimensionality reduction from E to
2 or 3 dimensions was sufficient. We broadly followed the
heuristic that K dimensions or less were sufficient for up to
2K clusters

3.2. Clustering

Clustering was performed using k-means [14]. We again
used the scikit-learn implementation. We typically chose
3-8 classes depending on the problem at hand. As shown
on Fig. 3(c), the combination of dimension reduction and
clustering is effective at labeling areas of motion correctly.

As a first illustration, we used this methodology to iden-
tified areas of motion in the tail of a fish embryo to detect
blood vessels (see Fig. 3). Image sequence was acquired at
100 frames per second in a bright field inverted microscope at
40× magnification.

For a second illustration, we analyze a sequence of ex-
vivo human ciliated cell, part of a nasal biopsy. The sequence
was acquired at 358 frames per second in an inverted bright
field microscope at 1000×magnification. The cilia at the sur-
face of the cell are at the limit of resolution (0.25-0.15µm in
diameter, about 10µm in length). As shown on Fig. 4, our
method can automatically distinguish between cilia beating
patterns, which is an improvement on previous work [6].

4. APPLICATION AND VALIDATION

To demonstrate the potential of our method for the automated
analysis of more complex motions, we propose to estimate the
heart rate of fish embryos by measuring the change of velocity
in the their tail artery over time. Even though it would appear
at first glance that this motion is no longer stationary, we can
still deal with it by performing our descriptor calculation on
a squared temporal gradient, representing the square of the
velocity, i.e. the kinetic energy.

I.e. instead of I in Eq (1), we use ∇2
t (I) = (I(i, j, t) −

I(i, j, t+1))2. With this, the temporal velocity variation (and

(a) (b)

(c)

Fig. 3. Areas of motion identification in the tail of a fish em-
bryo. (a) original image (c) PCA + k-means clustering ; (b)
areas identification. The blue region is an artery and the green
area a vein. The tail of the fish embryo also moves slightly
and is identified as such (red area). The yellow area is the
immobile background.

(a) (b)

(c)

Fig. 4. Areas of motion identification on the surface of a cil-
iated cell. (a) original image; (b) areas identification and (c)
corresponding FT in green and black areas. The green and
black areas are associated with cilia beating in a different pat-
tern, as illustrated in the average FT of their respective areas.



Fig. 5. Variation of the temporal squared gradient over time.
A nearly periodic process is evident.

Fig. 6. Fourier analysis of the squared temporal gradient in a
fish embry artery (in red) vs. that of the optical flow variations
in the same area or motion (in green). The peak frequencies
are almost exactly the same.

hence the kinetic energy variation) becomes a stationary pro-
cess again, since the pattern of beating heart and hence of
velocity change is periodic. This is illustrated in Fig. 5.

On Fig. 6, we show the result of the Fourier analysis of
the variation of the optical flow magnitude averaged in the
embryo tail artery vs. the same analysis on the squared tem-
poral gradient. The peaks in both analyses are exactly the
same, which suggests that the latter can be used to study the
embryo’s heart rythm.

To validate this observation, we perform this frequency
analysis on a series of 15 sequences of blood flow in the tail of
fish embryos. The ground truth consists of expert assessment
of the embryo heart rhythms [8]. Results are shown on Fig. 7.
As can be seen on this figure, the two analyses yield almost
identical results over a large range of values (from 0.7 to 2.5
Hz).

The main benefit of the approach that we propose in this
article, is that it can be entirely automated with a high degree
of robustness. A single measure (the squared temporal gradi-
ent) can be used for the areas-of-motion clustering proposed
in section 3, identification of the area with the highest average
motion (corresponding to the artery), and velocity analysis,

Fig. 7. Validation by comparing the squared temporal gradi-
ent Fourier analysis to the ground truth. The correlation is
excellent overall over a large range of variations. The numer-
ical values are in Hz.

yielding the heart rate.

5. CONCLUSION

In this article, we have proposed a methodology for identi-
fying and analyzing motion in sequences where the motion
is spatially variant but stationary in time: in a given area,
the apparent motion remains unchanged but its characteristics
vary with the location in the image. We call this methodology
“area-of-motion characterization”. We carry it out by propos-
ing descriptors corresponding to a multi-scale analysis of tem-
poral Fourier coefficients. The characterization is performed
by PCA for dimensionality reduction followed by k-means
clustering. We have shown that our proposed methodology
works well on various applications, in particular cilia beating
and blood flow analyses. In the latter case, we have validated
our proposed methodology by comparing our estimation of
the frequency of the blood flow variations against the heart
rhythm, with very good performance. The advantages of our
proposed methodology are its versatility, simplicity, and the
ability to perform joint area identification and analysis. The
ability of the proposed method to distinguish between subtle
motion patterns will be exploited in future work.
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ing of linear subspaces for motion segmentation,” in
2009 IEEE 12th International Conference on Computer
Vision. IEEE, 2009, pp. 678–685.

[6] E. Puybareau, H. Talbot, G. Pelle, B. Louis, J.-F. Papon,
A. Coste, and L. Najman, “A regionalized automated
measurement of ciliary beating frequency,” in Biomedi-
cal Imaging (ISBI), IEEE 12th International Symposium
on. IEEE, 2015, pp. 528–531.

[7] E Puybareau, Hugues Talbot, E Bequignon, B Louis,
G Pelle, J-F Papon, A Coste, and Laurent Najman, “Au-
tomating the measurement of physiological parameters:
a case study in the image analysis of cilia motion,” in
2016 IEEE International Conference on Image Process-
ing (ICIP). IEEE, 2016, pp. 1240–1244.

[8] E. Puybareau, H. Talbot, and M. Leonard, “Automated
heart rate estimation in fish embryo,” in Image Pro-
cessing Theory, Tools and Applications (IPTA), Inter-
national Conference on, Orleans, November 2015, pp.
379–384.
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