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The price of electricity on the European market is very volatile. This is due both to its mode of production
by different sources, each with its own constraints (volume of production, dependence on the weather, or
production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an
important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the
capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we

extend current state-of-the-art approaches by considering previously unused predictive features such as price
histories of neighboring countries. We show that these features significantly improve the quality of forecasts,
even in the current period when sudden changes are occurring. We also develop an analysis of the contribution
of the different features in model prediction using Shap values, in order to shed light on how models make
their prediction and to build user confidence in models.

1. Introduction

The problem of Electricity Price Forecasting (EPF) is becoming
more and more challenging to solve. The applications made possible
by a price forecasting model are crucial for achieving the energy
transition. They allow owners of renewable energy production means
to make profit on the market by anticipating price movements and pro-
mote smart applications such as self-consumption [1] or car batteries
optimization [2].

At the same time, there are numerous factors that need to be
taken into account to understand electricity prices. For example, energy
transition policies increase the proportion of renewable energy in total
production [3] and introduce new market regulations such as taxation
of carbon dioxide emissions. Moreover, cross countries interconnections
are multiplying and some markets such as the EPEX SPOT' set prices
for all European countries, bringing the forecasting task to the scale of
the continent.

Additionally, the pricing algorithms [4] used to balance generation
and consumption can lead to price spikes, both negative and positive.
These spikes can result in huge losses for unwary business owners and
are difficult to handle by traditional forecasting models. Particularly,
the current period is marked by repeated lockdowns that cause severe
changes in the European market. The economic recovery following the

COVID pandemic [5,6] also causes prices to reach up to five times the
usual season price, with an increased volatility, as shown in Fig. 1.

Meanwhile, Machine Learning (ML) models are increasingly effec-
tive in solving difficult problems [7,8] and can represent complex
situations [9,10]. However, they are sometimes hard to reproduce,
if the described methodology and parameters are not thoroughly re-
ported. ML models are also known to lack explainability, be difficult to
interpret and are often thought of as black box models. Data analysts
generally decide whether to use them or not based on a single metric
evaluated solely on one dataset.

Overall, the interest of researchers and business owners in EPF
is growing [11,12]. Each EPF publication proposes innovative and
efficient methods, but the abundance of considered markets, forecasting
tasks, time periods, models and methodologies make it difficult to
compare the literature [11]. Also, it can be tricky to reproduce the
results of a given article because details are often omitted and a simple
lack of seeds can prevent the reproducibility of stochastic processes.
Another limitation is the lack of benchmarks for model comparison,
which is a gap to be filled in regards to state-of-the-art research papers
for other ML applications [13,14]. Finally, the users of these models
need explanations to know on which phenomena the model is based to
make its predictions. This makes it possible to follow or not a surprising
prediction in a very volatile market like that of electricity. We believe
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Fig. 1. Hourly Day-Ahead prices of October for the years 2018 to 2021. The prices for
this period in 2021 is displayed in red and show abnormally high prices and increased
volatility.

that explaining the output made by any EPF model is very important as
it would help to understand what is actually captured by one model and
not by another. This also helps to know which features are important
in the prediction. Explainable artificial intelligence (xAl) is attracting
widespread interest due to the remarkable performance of blackbox
models and their need of explanations [15-18]. Although xAI has been
used a lot in real applications [19], it has not yet meet the EPF problem.
This article aims to provide answers to these needs. We detail below our
contributions which we hope will help EPF field of research to grow
richer.

1.1. Contributions

Following the guidelines introduced in a recent publication [11], we
apply a rigorous, transparent and reproducible methodology for using
ML models for EPF. We evaluate our ML models over three different
areas of Europe on two separated test periods. We detail every step
of our methodology with care and provide readers with the scripts
we designed and used to make replicating our results effortless.”? We
show that the ML models are capable of correctly forecasting recent
electricity prices.

We also provide EPF users with information on how the market
works in addition to a reliable forecasting model. This consists in using
explainable Machine Learning methods to link ML models results to
real business applications by conducting a feature analysis based on
Shap values [20]. Using these tools, we show the importance of using
external features such as Swiss and gas prices in the EPF problem.

1.2. Paper structure

Section 2 presents related work on EPF. We state the problem that
interests us and conduct a brief literature review on predictive meth-
ods used in EPF and introduce explainable artificial intelligence (xAI)
main methods. We present the technical requirements on ML models,
as well as their evaluation in Section 3. We also give details about
Shap Values, the explainability approach used to analyze blackbox ML
models. We detail the specificity of our datasets in Section 4. Due to
feature availability, we differentiate the features used in the two time
periods considered in our experiments. Section 5 reports our results.
We first analyze the quality of the models using metrics assessing the
adequacy of the predictions with true values. Then, we give to the
readers the results of the explanations of the predictions, by showing
the importance of the features for the model and their temporal changes
in regards to exogenous events that strongly influence the volatility
of the price of electricity. Finally, we conclude the paper and give
directions to future work in Section 6.

2 See repository https://github.com/Leonardbem/EPFDAML
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2. Electricity price forecasting

Electricity markets are subject to several constraints induced by
the inherent nature of this energy which requires consumption and
production to be permanently matched on a continental scale. To tackle
this problem, markets use pricing algorithms. For European exchanges,
the eupHeEmIA [4] algorithm maximizes social welfare by solving a mixed-
integer quadratic programming optimization problem. Social welfare is
defined as the sum of consumer surplus, supplier surplus and cross-
border trade congestion rents. eupHEmIA ensures the highest price for
producers, the lowest price for suppliers and a constant energy balance
by setting Day-Ahead prices, i.e. 24-hour prices for the next day. Each
market participant can submit orders until midnight for the following
day. eupHemiA calculates the prices for each country and each hour so
that they are advantageous for everyone. In doing so, it also computes
cross-border flows. The Peak-Load period is defined by the EPEX ex-
change as the period of the day between 8:00 a.m. and 8:00 p.m.,
characterized by high demand. This period is used by production plant
owners to issue specific orders for the entire period.

The day-ahead market forecasting problem consists of predicting,
before noon, the 24-hour hourly prices for the next day. Due to the
abundance of markets, business applications, and real-world forecasting
methods, the EPF literature contains many innovative contributions to
this problem. Several markets such as the Australian [21] and New
York [22] markets are investigated, but the most studied markets
are the European markets. Among them, the Spanish [23-25], the
French [26], the German [27] and the Dutch [28] markets are the most
studied. Note that some authors also evaluate the same models in mul-
tiple markets [29-32]. Others like [29,33] focus on market integration
by including prices from neighboring areas in their prediction model.

Traditionally, auto-regressive methods were used for EPF [23,34—
38]. But, over the past decade, the use of machine learning models for
EPF has increased. Many models have been studied, such as Support
Vector Machines (SVM) [21,27,35,39], Random Forests (RF) [22,25],
Artificial Neural Networks (ANN) [24,40-42], Recurrent Neural Net-
works (RNN) [43] or Convolutional Neural Networks (CNN) [44]. The
authors use these models to predict prices directly, but sometimes they
use a more sophisticated prediction framework. For example, [45-47]
predict aggregate curves (output from rupHeEmIA) and retrieves prices
by interpolation. In doing so, they model the order books of market
participants and mimic the real pricing mechanism. In addition, all
papers published for the forecasting challenge Gefcom 2014 [48-51]
produce probabilistic forecasts by performing quantile regression and
evaluate them using the pinball loss function. Finally, [52] focuses on
data augmentation and generates its datasets using autoencoders. Read-
ers can refer to the surveys in [12,53,54] for a more comprehensive
review of auto-regression and machine learning methods used for EPF.
Additionally, [11] introduces several key steps to guide EPF research.
Since the authors share their datasets, models, and methodology, we
were convinced to follow the proposed guidelines to some extent. As
part of our work, we therefore use the eprrooLBox® which provides two
models — LEAR (auto-regressive) and DNN - that we use for comparison
purposes.

Unquestionably, machine learning models for EPF have become
more and more accurate. On the other hand, they have become more
opaque, functioning as black boxes, which limits their benefit for
stakeholders [55]. Thus, explainable artificial intelligence (xAl) is an
important and timely challenge in machine learning. As a consequence,
the research field of xAI has grown rapidly [15-18]. In practice, the
most widely used explanation methods are SHAP [56] and LIME [57]
which are model-agnostic. LIME use local surrogate models to explain
model output. SHAP is based on the game theoretically optimal Shapley
values [58]. It explains the prediction of an instance by computing the

3 https://github.com/jeslago/epftoolbox
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contribution of each feature to its associated prediction. It has been
showed that LIME is related to SHAP [56]. Surprisingly, XAl has not
been considered for EPF yet. This paper is the first attempt to combine
both accurate model and explainable decision for the EPF problem.

3. Machine learning for EPF

Machine Learning (ML) is a branch of computer science proposing
forecasting models by implementing efficient learning from data algo-
rithms. This field has received a lot of attention in the past decades due
to the abundance of available data and the growing computing power
of machines. In the field of forecasting, ML models have been able to
solve very complex problems in image processing [7,59,60] but also
in multivariate Time Series regression [8,13,14,61-63]. As we believe
that the capabilities of ML models have not yet been fully unraveled
in the field of EPF, we focus on these approaches. In particular we
consider four different models exposed below. We also present the
metrics and tests used to compare them and the way we preprocess
data. We also explain how we fix hyper-parameter values and present
the recalibration strategy used to adapt models to recent changes in
the data. Finally, we describe the SHAP method that we employ in our
analysis to assess the importance of features in the prediction process.

3.1. Machine learning models

Support vector regressor. Support Vector Machines [62,64] are a cat-
egory of models with a good mathematical background based on an
optimization problem. With the use of kernels [65,66], they can be
applied on complex data structures and model non-linearity. Originally
designed to solve univariate forecasting problems, we adapt them to the
multivariate case in two ways: 1) The ChainSVR method that uses the
first forecast to predict the second one, the second forecast to predict
the third one, and so on; 2) The MultiSVR that uses one model per time
series in Y, so n, in total. We use the method SVR as implemented in
scikit-learn [67].

Random forest regressor. Random Forest Regressor models (RFR) are
widely used ML models both in the field of EPF [22,25,30] and in
forecasting tasks in general [13,14]. They consist of a combination of a
several Decision Tree Regressor (DTR) that are trained using different
subsets of the data. The Bagging [68] method used in this paper
outputs the average of their predictions. We use scikit-learn’s
implementation [67] of RFR.

Deep neural networks. The model capabilities and tremendous range of
application made Deep Neural Networks (DNN) the center of interest
of numerous researchers in EPF [11,29,30,41] but also in forecasting
tasks in general [69-71]. The DNNs we use have # + 2 layers stacked
sequentially. The number of neurons of the first and the last layer are
respectively n, and n,, the second dimensions of X and Y respectively,
the other layers having (n,,...,n,) neurons. These hyper-parameters
(¢,ny,...,n,) are set with a grid search. The model is trained using a
gradient descent algorithm of the forecast errors back to the network
weights.

Convolutional neural network. Convolutional Neural Networks (CNN)
are a variant of Deep Neural Networks which became popular for their
image processing capabilities [7,59,72,73]. They are now also used for
multivariate time series regression tasks [8,9,74,75] and in particular,
for EPF [30,44,76]. The eponymous convolutional layers combined
with pooling layers are the particularity of CNNs. By applying numer-
ous filters on the data, convolutional layers extract complex patterns
that are then generalized by a pooling operation to provide complex
feature representations of the input. We use the keras* implementa-
tion with tensorflow [77] backend to implement our Neural Networks
models (DNNs and CNNs).

4 https://keras.io
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In order to ensure the consistency of the results obtained with those
of [11] (DNN models) and to compare ML models with auto-regressive
ones (LEAR models), we also reproduce their results for four LEAR
models and four DNN models. The LEAR models are denoted LEARs,,
LEARg,, LEAR, (9, and LEAR, 56, in reference to their respective cal-
ibration window size. The DNN models are denoted DNN;, DNN,,
DNNj, DNN,.

3.2. Evaluation metrics and test

Let Ydh be the price for a day d and an hour 4 of a given country,
and let Y, dh be the values predicted by a model. The comparison of these
values is used to evaluate and test the quality of a model, but also to
learn it, through the loss function used to adjust the parameters of the
model.

Metrics. The most commonly used metric to evaluate the quality of a
model in the field of EPF is the Mean Absolute Error (MAE):

ng - o

Ly S

ey

MAEY,Y) =

It allows business owners to quickly estimate how they could use a fore-
casting model to generate profit. However, since electricity prices can
range from —500 to 3000 €/MWh in the European markets, it is useful
to use a relative error measure. While the Mean Absolute Percentage
Error (MAPE) is usually used for this purpose, we prefer employ the
Symmetric Mean Absolute Percentage Error (SMAPE). Indeed, prices
close to 0 that are incorrectly predicted lead to a unnecessary high
MAPE, which is not the case with SMAPE values:

100 <& <& 1Y -
MAPE®Y,Y) = Z Z —
fa 321 h=1 |Y
ng . ny Yh =
SMAPE(Y,¥) =100 Z Z 4
fa 421 = (|Yh|+|Yh|)

We also consider a new metric called the Daily Average Error (DAE).
It consists in computing the MAE between the average predicted price
for a day and the real average price. This metric is very useful for
trading-related activities, when one speculates on the average price for
a given day.

DAE(Y,Y) = Z Zyd——z

Next, to enable cross-dataset comparison, we use the Relative Mean
Absolute Error. The idea is to compare the MAE of a model with the
MAE of a naive forecaster. As naive forecaster, we use the following

strategy:
T
o Y], if d is a week day
d,naive Ydh—7 otherwise
MAE®Y,Y)
RMAE(Y, Y, name) S ARy

MAE(Y’ muLe)

Diebold & mariano test. We use the Diebold & Mariano [78,79] test to
perform more robust model comparison. Instead of averaging a loss g
across the entire dataset, it computes the loss difference d between two
model predictions ¥; and Y,. A one sided z-test is then performed to
assess if the second model forecasts are significantly better than the
first ones :

day, );1, Yz) =g(Y — YA1) -gY - Yz)
o Ed(Y,Y},Yy) >0
H, : Ed(Y.Y,Y,)<0
If the obtained p-value is lower than a fixed threshold of 0.05, then H,,
is rejected and we can conclude that the first model is better than the
second one.

We use the absolute loss g(Y,¥) = MAE(Y,Y) in our experiments
as it better reflects business applications.
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Loss. We use the LogCosH loss function for training Neural Networks
models (DNNs and CNNs). It combines the benefits of both MAE and
Mean Squared Error by being approximately equivalent to @ when
Y — Y is small, and to |Y — ¥| — log(2) when differences are large. Due
to the presence of spikes in electricity prices, it is useful not to put too
much weight on outliers:

LogCosH(Y, V) = 1og(%)

3.3. Data preprocessing

Data scaling is critical during ML model training. Most algorithms
require that both the input (X) and output (Y) data are pre-processed.
To this aim, we design simple data pipelines to process the features
and target variables of our datasets. We distinguish the scaler used
to process the input data X from the transformer used for processing
the predicted values Y. We consider these two functions as hyper-
parameters with four different possibilities for each of them: (1) the
standard scaler that standardizes data so it has a 0 mean and 1 variance,
(2) the median scaler, a outlier-robust version of standard scaler using
the median and median average deviation, and (3) their combination
with the arcsinh function [80] or not:

X — py
SS(X) = > (€Y)
GX
MSX) = X —median, o)
)= M AD?
aresinh(X, f) = log ( FOO+ VX + 1) , 3

with f either SS or MS.
3.4. Hyper-parameters search

Despite their high modeling power, ML models suffer from a critical
issue that is hyper-parameter optimization. Hyper-parameters must be
configured before training the model on the data. They need to be tuned
for optimal results. This is done by testing numerous combinations of
hyper-parameters and selecting the optimal one. As this part is very
time consuming, we use a Randomized Grid Search [81] that samples
4000 hyper-parameter combinations for each models in a pre-defined
search space. Details of the search spaces for each model are available
on our repository.®

3.5. Recalibration

Another drawback of ML models is their implicit assumption that
the future will be similar to the past. However, as seen in Fig. 1,
electricity prices can be very volatile and sudden unpredictable changes
can drastically modify the prices, such as the Covid lockdown [5] or the
European energy gaz crisis of fall 2021 [82]. Those changes are critical,
for example, [29]’s model gets confusing results while forecasting
Belgian prices due a sudden change in the generation patterns. To
leverage such problems, [22] uses an online Random Forest method to
keep the forecasting model up to date, [52] generate more current data
using autoencoders and [11] uses model recalibration. Recalibration
consists in retraining the model with most recent data, that is to say
using Xi,...,X;_; and Yj,...,Y,_; to train the model before forecasting
a new sample X;, (X{,Y}),...,(X,;_;,Y,_;) being in the test set. However,
computational costs are induced by this method as the models have
to be re-trained from scratch for each new sample to predict. Each
evaluation step requires as many model trainings as there are samples
in the test set. The search of optimal hyper-parameters, that is based
on the evaluation of numerous combinations, becomes too costly. We
decided to evaluate the performance of a combination on the basic
forecasts, without recalibration.

5 See repository https://github.com/Leonardbcm/EPFDAML

Applied Energy 313 (2022) 118752
3.6. Shapley and SHAP values

While the features all together contribute to the prediction pro-
cess, it is difficult to measure the importance of each of them in the
decision. Indeed, there are many correlations between the variables,
and properly measuring the impact of each variable requires taking
the interactions into account. Shapley values were defined within the
framework of game theory in order to fairly distribute a gain among
several players in a cooperative game. Fair means that the contribution
of the players is taken into account in obtaining the gain. This means
that a player is not only paid for what he is able to gain when he
is alone, but also for his contribution to the group when interacting
with other players. To calculate the Shapley value associated with the
feature i, ¢;, it is necessary to calculate for each coalition Z in which
i does not appear, the difference in gain f(Z u {i}) — f(Z). This makes
it possible to compare the gain obtained from the coalition with and
without i, in order to measure its impact when it collaborates with the
set Z of features. If this difference is positive, it means that feature i
contributes positively to this coalition. Conversely, if the difference is
negative, it means that i penalizes the group. Finally, if the difference
is zero, this indicates that i does not contribute anything to this group.
The gain to be distributed is here the difference between the forecast
and the average of the forecasts.

To specify more formally Shapley values, it is necessary to define
a mapping h,(Z) that maps the input vector x to the same vector
where features that are not in Z are missing. We also define f,.(Z) =
E[f(x) | x,] the expected value of f conditioned on a subset Z of
the input features. The Shapley values are a weighted average of all
possible differences between the coalitions of features including and
not including i:

Z|\(|[F| - 1Z| - D!
so- 3 1ZM0FI-1ZI-D

(fx(Zu (i} - f(2))
ZCF\{i} [F]!

where F is the set of all input features.

The calculation of a Shapley coefficient poses two difficulties: esti-
mating the conditional expectations and dealing with the combinatorial
explosion of the number of coalitions to go through, when the number
n. of features increases. The number of coalitions to be covered is
exponential, in 2". [56] introduces the concept of Shapley kernel
to approximate Shapley values and makes it possible the use of this
approach on real-world dataset such as EPF ones. We use python’s
SHAP® package to compute the SHAP values of our models, using a
total of 2500 subsets per forecasts.

The method SHAP (SHapley Additive exPlanations) uses the Shapley
values to compute an additive explanatory model g that is a linear
combination of Shapley values:

gx) = o+ ) dix,
i=1

with ¢, the average output of the model, ¢; the explained effect of
feature i and x’ a binary encoding of instance x. This explanatory model
is constrained to be roughly equal to f in the vicinity of x.

4. Datasets

Many multivariate time series forecasting research articles [13,14]
recommend to evaluate models on several datasets as the behavior
of a same algorithm can be very different depending on unknown
characteristics of the dataset. The relative performances of several
models can even vary and considering a large number of datasets makes
it possible to have a more robust evaluation of the model performances.
To assess the specific qualities of a model, it is therefore relevant to
consider datasets from different countries. Indeed, the energy mixes are

6 https://shap.readthedocs.io/en/latest/index.html
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Table 1
Exogenous inputs of eprroorBox dataset. Each dataset is composed of the Day-Ahead
prices for the specified country and 2 exogenous features.

Dataset Exogenous input 1 Exogenous input 2

FR Consumption forecast Production forecast

BE French consumption French production
forecast forecast

DE Amprion consumption Amprion, TenneT, 50 H
forecast renewable forecasts

very different from one country to another and have a strong influence
on the dynamics of the prices of electricity.

To build predictive models of electricity prices, we extend the
classically considered datasets [11], called hereafter SOTA, by adding
new attributes as predictive features and considering more recent data.
These datasets and their specificity are presented below.

4.1. SOTA datasets

We consider three datasets from [11]. These datasets contain elec-
tricity prices for 6 years for three geographical areas: France (FR),
Germany (DE), and Belgium (BE). Each dataset includes next day prices
and has two additional exogenous features given in Table 1.

Electricity price datasets are a multivariate time series made of daily
data. Those datasets can be reconfigured into a (X,Y) couple suitable
to learn machine learning models. The predictive data is represented
by a two dimensional matrix X € R"*"c whose rows represent days
and columns are n, predictive time-dependent values. The values to
be predicted correspond to another matrix ¥ € R"4*", whose rows
also stand for the days and columns are the n, day-ahead prices to be
predicted: Y, = (Yle, ,Y;f:l . To model the time series aspect of
the features, X includes the prices of the current day, those of the day
before, two days before and the previous week (1, 2, 3 and 7 days lag).
Exogenous features are included for the day, the day before and the
previous week. In addition to these 240 characteristics, the day of the
week is also encoded as an integer and added to the matrix X. Indeed,
electricity prices are non-stationary time series and exhibit seasonal
trends captured by this additional feature. All features (prices and
exogenous) are provided with hourly granularity. Thus, the predictive
matrix X is as follows:

Xy = (Y. Yy .Yy 3.Y, 7. E1;,Ely_, El, 4,
E24,E24_;, E2,_7,DayOfWeek) with n, = 241.

In order to forecast 24-hour prices for the next day, the datasets are

reshaped so that for one day d, Y, contains all 24 prices for the next
.y = (y! 24

day: Y, = (YdH,...,YdH).

4.2. Enriched datasets

For the enriched datasets considered in this study, we focus on
three European countries: France, Germany and Belgium. These coun-
tries are at the same time geographically close, but have features
that make them unique. For example, the French generation fleet is
75% composed of nuclear power plants [3] which are to some extent
controllable, unlike wind turbines which constitute 45% of the German
generation system. As a result, prices in Germany tend to be more
volatile and sometimes reach negative values. In addition, French
consumption is mainly heat-sensitive due to the massive use of electric
heaters leading to higher prices in the winter period. Belgium, for
its part, has a much lower level of consumption and can be used to
transport energy from France to Germany or the Netherlands.

From these data we build four datasets, three (FR, DE, BE) com-
prising the data of each country taken individually, and a fourth
(Multi-Output) merging together the data of the three countries. With
this dataset, we seek to forecast the prices of the three countries at the
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same time. Due to the pricing algorithm, all European prices are set at
the same time and we want to model this phenomenon.

Electricity day-ahead price is fixed by eupHEmMIA through the coupling
of different markets where energy transactions can involve sellers and
buyers from different countries, only limited by the constraints of the
electricity network. All bilateral interconnections make it possible to
transport less expensive production assets from one country to another
with an important demand. Thus, the price within a country is highly
dependent on exogenous factors in surrounding countries. This is why
we have included production and consumption forecasts from neigh-
boring countries in our datasets. Similarly, we used Dutch, Spanish and
Swiss prices. Swiss prices are attractive as they are available every day
at 11.15 am and can be used in a forecasting model before the European
market closes at noon.

Another aspect that can strongly influence the prediction are the
dates, especially the days of the week that involve differentiated human
activity and therefore impact energy consumption and production. But,
as shown by [83], the seasonality of the electricity market is not only
dependent on the day of the week. We therefore propose to incorporate
various date dummy variables into our enriched dataset. We decided
to include weekday, week number, day of month and month number
as predictive functions. To better integrate these cyclic data into our
ML models, we apply a circular encoding transformation f of a cyclic
feature that encodes the original feature of the domain value C (with
cardinality «) into two numeric values:

fiCHR?
X (sin(zn—x), cos(2”—x))
o o

Finally, we also integrate gas prices. Indeed, to maximize social
welfare, the rupHEMIA algorithm favors the power plant with the lowest
marginal cost. Accordingly, there is an order of merit for the technology
of production plants. Gas-fired power plants are one of the cheapest
ways of generating electricity among other coal or oil-fired thermal
power plants. However, its marginal cost is a function of gas prices.
Therefore, depending on the country’s energy mix, gas prices are an
important feature of electricity prices. We therefore decided to include
the EGSI gas index’ in our dataset. As this index is available every day
at 6pm, after the market closure, it has to be included for predicting
prices 2 days after.

As previously, to model the time series aspect of these features, X
contains the country’s prices for the previous day, those of two days
before, three days before and the previous week (1, 2, 3 and 7 days
lag). Other features (see Table 2) are included for the day before, the
previous week, and if possible the current day. Indeed, production and
consumption forecasts as well as Swiss prices are available for the day
to be forecast before noon. Then, with the exception of gas prices and
date dummies, all features are included for the 24 h of the day. The
datasets therefore have n, = 24 x nl. x n + +8+ 1 columns, with n, the
number of features as described in Table 2 and nj, the number of shift
days for a given feature f.

4.3. Train/test splits

In [11], the authors provide open-access benchmark datasets for
the 6-year period between 2011 and 2016. A good practice in the
field of machine learning is to evaluate models over the same time
period to allow comparison of results. We therefore start our analysis
by evaluating our models on the same data (see dataset description T;
in Table 3).

It is also important to extend our study to the current period,
whose peculiarities are a source of evaluation of the robustness and
adaptability of the models in a context of high variability. Therefore, we

7 https://www.boursorama.com/cours/1rPGTT/
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Table 2

Composition of the datasets for each country and the two time periods.
Features FR DE BE

T, T, T, T, T, T,

French prices Target Target v v v v
German prices v v Target Target 4 v
Belgian prices v v v v Target Target
Dutch prices v v v v v v
Spanish prices v v

Swiss prices v 4 v v

French consumption forecast v v v v v v
German consumption forecast v 4 v v 4 v
Belgian consumption forecast v v v
French production forecast v v v v v v
German renewable energy forecast v v v v v v
Belgian renewable energy forecast v v v
French gas prices v v v
Date dummies v v v v v v

Table 3

Time period of data used for training (learning of model parameters), validation
(determining hyperparameter values), and testing (evaluating models) for EeprrooLBox
datasets. As we use the first seven days of the dataset as the input features, the train
dataset starts seven days after the first data sample.

Period Train start Validation start Test start Test end
T, 2011-01-16 2014-01-07 2015-01-04 2016-12-31
T, 2016-01-01 2019-01-01 2020-01-01 2021-12-31

consider a second dataset with 3 years from 2016 to 2019 for training
and two test years from 2020 to 2021 (see dataset description 7, in
Table 3). Recent electricity prices present a more difficult challenge
for prediction because the lock down related to Covid-19 has caused
massive changes in the European market. Furthermore, 2021 is marked
by a limited energy crisis. In addition, since 2015, the ENTSOE trans-
parency platform® has brought together and published data from almost
all European TSOs in free access. This results in much more available
data. The features of our datasets therefore vary depending on the
period considered as described in Table 2.

5. Evaluation of the models on the different datasets

The objective of this section is to evaluate the different models
of machine learning. First, we measure the impact of considering the
additional features on the accuracy of predictions. We also evaluate the
interest of simultaneously predicting the price of electricity in several
countries. Then, we propose to study the models from an XAI point of
view, to identify on which variables the predictions are based.

5.1. How well do the models performs?

We present the performance measures of the different models in Ta-
ble 4. We both compare the models to each other, but also evaluate the
impact of adding features on the predictions. To do a fair comparison
with [11], we consider the 7, time period that was used in this paper.
For a better interpretability of the multi-country models, we display the
metrics for each of the forecasts of the three countries.

First, we can observe that using additional features to predict prices
always increases performance. Each model gets better metric values
with the use of the new features with up to 15% gain. We support this
finding by highlighting the p-values of Diebold & Mariano tests between
models trained on SOTA datasets and their counterparts trained on
enriched datasets in Table 5 (A). We can observe that this difference
is statistically significant for the vast majority of countries and models
(values in bold). These tables also reveal that Belgian prices are more

8 https://transparency.entsoe.eu

difficult to predict than other country prices in the single-country
framework. The RMAE in Table 4 indicates that the best model for
that country only achieves a fraction of 0.7 of the error of a naive
forecaster. The other datasets have an RMAE lower than 0.6, or even
0.45 on German dataset. We believe this is due to the fact that Belgian
consumption and production forecasts are not available for this period.
This is discussed in more detail in Section 5.2. Another conclusion
from these experiments is that Random Forest models do not predict
prices accurately. Their metric values are always significantly higher
than those of the other models on all datasets. The enriched datasets
still increase performances but they do not necessarily outperform other
models based on SOTA datasets. It also appears that CNN models are
not state-of-the-art forecasting models for EPF. Even though they obtain
reasonable metric values on the enriched datasets, they never signifi-
cantly outperform the DNN or SVR models and this for all datasets.
We believe that the data provided to CNN models is not suitable
for convolutions. CNN models are tailored for extracting meaningful
patterns among raw features, such as basic geometric shapes on an
image. We feed it with data such as production or generation forecasts
which is a high-level representation of meteorological data. Moreover,
we reshape our data as 32 x 24, which is a very small amount of
data compared to SOTA CNN models. For example, the AlexNet model
introduced in [7] works on images of 224 x 224 pixels. Finally, still
considering Table 4 and the p-values in Table 5 (B) and (C), we see
that the interest of jointly predicting the prices of several countries
is mixed. The multi-country forecast model reduces forecast quality
by up to 5%. This reduction is significant on 4 of the 5 models in
France and Germany (column C). However, it significantly increases
the performance of 3 out of 5 models in Belgium (column B). Merging
the three datasets did not add any crucial and previously unknown
information to the French and German datasets. On the other hand,
it allows the model to use Swiss prices to predict Belgian prices. We
believe this explains the significant increase in Belgium’s performance.

We now study the robustness of these observations by considering
the time period T,. We present the metric values obtained for this
period in Table 6. We can make the following observations. First, the
best absolute metrics (MAE & DAE) increased by almost a factor of
two over the T, period. This is not surprising as price levels also shift
from 38€44/MWh on average in 2015 to 109€11/MWh in 2021 in
France. However, the RMAE decreased from 0.55 to 0.46 for the French
MultiSVR, from 0.44 to 0.42 for the German DNN and from 0.67 to 0.57
for the Belgian MultiSVR, which shows that the models are performing
better against the baseline than for the previous period. Our ML models
successfully integrated sudden changes in electricity markets. Second,
it appears that the Belgian dataset experiences the most significant
performance increase. The availability of Belgian consumption and
production forecasts made this data set easier to predict than for the
previous period. However, it is still the most difficult country to predict
because we do not use Swiss prices, as this country does not border
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Performance metrics over the period 7,. The multi-output models’ metrics are reported country by country. Best performance metrics are always obtained on enriched datasets

and for Belgium on the multi-output models.

Metric SOTA datasets

Enriched datasets Multi-output models

LEAR DNN CNN DNN RF
1092

56 84 1456 1 2 3 4

SVR CNN DNN RF SVR CNN DNN RF SVR

Chain Multi Chain Multi Chain Multi

smape 13.32 13.41 13.57 14.59 12.00 11.65 11.75 11.51 12.05 11.57 13.42
mae 4.63 4.58 435 448 434 415 417 412 427 415 473
dae 337 334 325 338 335 313 3.09 3.09 314 3.05 346
rmae 0.69 0.68 0.65 0.67 0.65 0.62 0.62 0.61 0.64 0.62 0.71

FR

11.23 11.26 10.80 11.12 11.81 10.43 10.56 11.07 10.95 12.44 10.66 10.67
4.03 4.06 379 3.89 411 3.65 3.67 392 385 430 371 371
3.02 3.02 267 271 290 257 256 281 278 299 261 257
0.60 0.61 0.57 0.58 061 0.54 055 059 057 0.64 055 0.55

smape 15.25 15.16 17.31 17.94 14.27 14.49 14.25 14.20 16.26 14.47 17.43
mae 3.64 359 361 372 327 334 322 323 363 327 411
dae 254 253 265 274 232 246 229 233 258 227 279
rmae 0.50 0.49 050 0.51 045 0.46 044 0.44 050 0.45 0.57

DE

14.48 14.53 14.24 13.56 15.83 13.84 14.40 14.42 13.96 16.45 14.22 14.29
327 328 319 3.12 372 315 325 329 324 411 326 3.28
238 238 216 212 237 222 231 226 222 271 233 234
0.45 045 044 043 051 0.43 045 045 045 0.57 045 045

smape 17.02 17.32 17.20 17.75 15.77 14.79 15.77 15.17 15.20 14.59 15.37
mae 7.28 7.32 6.68 6.73 6.84 6.37 676 6.50 6.43 6.25 6.55
dae 518 520 4.84 491 515 4.67 500 475 462 450 479
rmae 0.82 0.83 076 0.76 0.78 0.72 0.77 0.74 0.73 0.71 0.74

BE

1450 14.46 14.12 14.82 15.22 14.35 14.28 13.8 13.60 15.50 13.50 13.47
6.41 6.25 6.14 6.33 650 6.11 614 6.01 587 6.66 5.88 5.90
4.77 4.62 451 4.69 485 458 454 428 420 498 4.35 429
0.73 071 0.70 0.72 0.74 0.69 0.70 0.68 0.67 0.75 0.67 0.67

Table 5

P-values of the Diebold & Mariano tests for the T, period. (A) the test compares
models trained on SOTA datasets with the same trained on enriched datasets. The
null hypothesis states the enriched dataset has lower metric values than SOTA dataset
models. With a threshold « = 5%, models in bold are significantly better when trained
on the enriched datasets. (B) compares the single country forecasting models with the
multi-country ones. The null hypothesis states the multi-country forecasting models are
better than single-country ones on enriched datasets (values in bold). (C) The null
hypothesis states the single-country forecasting models are better than multi-country
ones on enriched datasets (values in bold).

Country Model A B C
H,: H, H,:
Mgora > Mepriched Mepriched > Ml Mytii > Mepriched
CNN 0 1 0
DNN 0 0.176 0.824
FR RF 0 1 0
ChainSVR 0 0.989 0.011
MultiSVR 0 0.975 0.025
CNN 0 1 0
DNN 0.001 0.999 0.001
DE RF 0 1 0
ChainSVR 0.003 1 0
MultiSVR 0.219 0.949 0.501
CNN 0 1 0
DNN 0.919 0 1
BE RF 0.117 0.845 0.155
ChainSVR 0.998 0 1
MultiSVR 0.991 0 1

Belgium. Third, the differences in performance between the models are
greater over this period. We clearly identify that the SVR models are
better on the French and Belgian datasets while the DNN is the best
model on the German dataset. The DM test pvalues in Fig. 2 confirm
that this difference is significant. On this figure, colored squares at
coordinates (i, j) indicates that the forecasts of model i are significantly
more accurate than forecasts of model j. We clearly identify green
columns for the SVR models in France and Belgium, indicating that the
MultiSVR and ChainSVR significantly outperform the other models. For
these countries, the DNN model outperforms the RF and CNN models.
Finally, the CNN model is significantly less efficient than all the other
models. For Germany, only the DNN significantly outperforms all other
models, while the RF model is significantly outperformed by all other
models.

5.2. Forecast explanations

We have seen that the performance of the models is generally of
good quality. Some of these models even have equivalent performance
and it is difficult to decide between them. Moreover, to increase the
confidence in the predictions given by models, it is necessary to be

Table 6
Performance metrics over period 7.

Country Metric Enriched Datasets
CNN DNN RF SVR
Chain Multi
smape 19.75 15.97 17.33 14.23 14.23
R mae 10.40 7.96 9.41 6.86 6.61
dae 7.65 5.70 7.06 5.10 4.74
rmae 0.73 0.56 0.66 0.48 0.46
smape 20.36 18.79 22.35 18.80 19.45
DE mae 8.66 7.66 10.77 8.44 8.85
dae 6.53 5.13 7.77 6.25 6.62
rmae 0.47 0.42 0.58 0.46 0.48
smape 24.85 21.65 21.60 18.93 19.17
BE mae 14.18 11.86 12.30 9.35 9.51
dae 10.09 9.37 9.68 6.67 6.78
rmae 0.88 0.73 0.76 0.58 0.59

DM test results for T,

DE

SVR Chain

0.02 0.03
Pvalue of the DM test

Fig. 2. P-values of the Diebold & Mariano tests computed on the recalibrated forecasts
on period T,. Colored squares in (i,j) indicates that the forecasts of model i are
significantly more accurate than forecasts of model j. Green columns indicate that
the corresponding models are significantly better than every other. Black lines indicate
that the model on the y-axis’ forecasts are significantly worse than every other.

able to explain them and to identify the most important characteristics
in the decision-making process. This allows us to better appreciate
their quality and better understand the phenomena involved in price
prediction.

We have seen that adding features dramatically improves model
performance for the vast majority of datasets and models. A legitimate
question is then to ask which features contribute the most to the
prediction? Different techniques exist to explain the decision process
of a model [57,84]. In the following, we consider the SHAP value
approach [85], a method that assigns each feature a value that reflects
its importance in the prediction process. 4:;”” designates a SHAP value
and denote the contribution of a column ¢ to the output o on day d.
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Contributions on the test set for the RF

German Prices

, German Consumption Forecast .
¥o

German Generation Forecast

YE i y!
Ylh ylb
i
7 lag days 3 lag days 2 lag days 1lag day 7 lag days ay 0 lag day 7 lag days 1lag day 0 lag day
French Prices , French Consumption Forecast ~ French Generation Forecast
o v Y
YE Y 8 YS
yls yle yle
7 lag days 1lag day 7 lag days 1lag day 0 lag day 7 lag days 1lag day 0 lag day
Belgian Prices s Belgian Consumption Forecast . Belgian Generation Forecast ,
v ] v ¥o
I YS YS E YS
ylie yle t yle
| 1 | L
7 lag days 1lag day 7 lag days ay 0 lag day 7 lag days 1lag day lag day
Swiss Prices Dutch Prices ¥®
yo0 Yo )
| g
ve ve E Y8 %
yle i yle § yis a
O
7 lag days 1lag day lag day 7 lag days 1lag day
e\“ \"\be et
: . , it
0.0 0.1 0.2 03 0.4 0.5 D"‘\o%g\\“ N

Mean SHAP values accross the test set

Fig. 3. Average feature contribution of the RF model for the German dataset. Each subplot displays the contributions of a single feature on all target variables. The target variables
are on the y-axis while the lag days and hours are represented on the x-axis. A red square on subplot f at the coordinates ((/, h),0) means that the contribution of feature f with
I lag days at hour A is high on average for the output o. We observe numerous contributions close to 0, meaning that some features are omitted.

Note that a column ¢ = (f, !, h) refers to the hour 4 of a feature f with
I days lag. We also divide the contribution of each column ¢ so that
an (Dd o= 1.

We first focus on explaining the performances gaps between models.
Results for period 7, on the German dataset are presented on Figs. 3,
4, 5. Each subplot corresponds to a feature f. On the x-axis are all
possible lags in hours for this feature, while the outputs are shown on
the y-axis. For a feature f, we display 43”. ,at coordinates ((/, h), 0), the

d,o
average SHAP values over all days d — Z d Prin

average contribution for each feature (D + as a percentage of the total
contribution in Table 7:

ng.hgy p.ny
;= ! — @0

f.Lh
Malo g o=t "hM 2=

We also report the

The average contribution for each day lag &, is shown in Table 8:

ng.n, np.nyg

=

=l,0 1"h"fh1f1

d,o
d)f,l,h'

Lastly, we study the evolution of feature contribution along time.
Particularly, we study the effects of the three Covid lockdowns in
France on the daily mean unit contribution that we defined as

n,n n,
FYRED B < U P

1= - fiLh®
mnph {5 n, o

Fig. 6 displays these measures.

Fig. 3 presents the feature contribution of the Random Forest model
for the German dataset. We can observe that most of the feature
contributions are close to 0 or are used uniformly to predict all hourly
prlces over 24, forming a vertical line of red squares (d>” is high Vo =

: n,). We relate this observation to the way RF models are trained: the
Mult1 Output Decision Tree algorithm chooses a division that satisfies
the split criterion for all target variables. Therefore, at least on the
higher nodes, the same characteristics are used to determine all the
target features and their contributions is thus high. Moreover, we see

in Table 7 that the RF models do not use all the information of the
different features with the same importance: most of the contributions
are made by the Swiss prices and by the country-specific prices (for
French and German datasets). Finally, from Table 8, we observe that
they barely use the feature with a two, three or seven day lag. We be-
lieve that these three facts explain why RF models perform significantly
worse than any other model on every data set.

MultiSVR contributions, shown in Fig. 4, display diagonals of red
squares that occur when di" is high Yo = h. This means that a
column ¢ = (f,l,h) contrlbutes to target variable o only if 0o = A.
This is most visible for the German generation forecast for the day to
predict. Indeed, the generation forecast in Germany is a volatile feature
(half of it comes from wind generation) that market players usually
take into account for making their order books and helps estimating
the prices. Patterns are hard to identify in the foreign features with
lag days such as French consumption or generation forecasts, even
though the contributions for these features are not null. We can observe
partial diagonals in German, Dutch or Swiss price features. Due to
market coupling, prices at a given hour from neighboring countries
are sometimes identical, hence they constitute an important feature
for prediction. Lastly, we observe strong contributions from evening
prices with a 1-day lag, such as German, French and Dutch prices. The
previous evening’s prices are closest in time to the prices we aim to
predict and are therefore an interesting feature well captured by the
model.

The DNN model contributions in Fig. 5 display centered group of
red squares: high @;M for h = 8 am to 8 pm and target variables
o = 8 am to 8 pm. For instance, the German consumption forecasts
from 8 am to 8 pm highly contributes to the German prices forecasts
from 8 am to 8 pm. Peak-load specific orders can be issued by market
players during those hours, and this is most used by power plant owners
to allow them to either turn their plant on or shutting it down during
those 12 h. We also identify diagonal patterns for several features such
as the Generation forecasts or German and Dutch prices. The patterns
observed on this model give a finer representation of its use of input
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Fig. 4. Average feature contribution of the MultiSVR model for the German dataset. We observe diagonal lines of high contributions. This means that features of hour A contribute
mainly for predicting the output o if 4 = o.
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Fig. 5. Average feature contribution of the DNN model for the German dataset. We observe centered squares high contributions between hours from 8 am to 8 pm for French
consumption and generation forecasts. The Neural Network models display peak-load related patterns in their feature contributions.

features, and attest of its capacity to integrate complex phenomenons. It We observe from Table 7 that both SVR and DNN models use foreign
also helps explaining the performance gap between all models. Similar features for more than half of their total contribution (right-hand side
figures for the CNN, ChainSVR and for other countries can be found in columns). German renewable forecasts account for almost one fifth of
our repository. the total contribution for predicting the German prices. This is the
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Fig. 6. Evolution of the daily mean unit contribution of each feature for the prediction of French prices over the period 7, in the DNN model. The daily RMAE is displayed in

red.

Table 8
Summary of average contributions per lag across all datasets for the first period T,.
Contributions are summed for all targets, all times and features for each lag.

Model D D-1 D-2 D-3 D-7
CNN 20.27 37.59 4.05 4.21 33.88
DNN 46.71 29.83 2.41 2.32 18.73
FR RF 73.81 21.05 0.30 0.34 4.49
ChainSVR 42.34 31.42 2.72 2.63 20.89
MultiSVR 44.87 30.74 2.85 2.12 19.42
CNN 38.65 33.48 3.89 3.06 20.93
DNN 43.53 30.01 3.50 2.92 20.04
DE RF 54.12 40.13 0.49 0.39 4.87
ChainSVR 36.28 37.52 2.92 2.92 20.36
MultiSVR 38.62 37.12 2.55 2.48 19.24
CNN 19.89 40.91 4.21 5.18 29.80
DNN 28.39 39.72 3.99 3.89 24.01
BE RF 21.55 64.20 1.25 1.31 11.69
ChainSVR 29.55 43.65 3.90 3.27 19.63
MultiSVR 29.61 43.72 3.93 3.30 19.44

highest contribution after Swiss and German prices and it is almost
twice the contribution of the French generation forecast for predicting
French prices (or Belgian generation forecast for predicting the Belgian
prices) that reach 10% at maximum. We explain this observation by the
difference in energy mix between these countries. Nuclear electricity is
produced according to the pricing algorithm, while renewable energies
are generated independently and determine market prices. As a result,
models have to put more weight to those features. We also observe that
the French consumption forecast contributes to predict French prices
more than the German consumption forecast for German prices (and
Belgian consumption forecast for the Belgian prices). It reflects the ther-
mosensibility of the French consumption, making it more volatile and
more determinant for setting the prices. Our studied models consider
that this feature is more decisive in setting prices and gives it more
weight. In addition, it is clear form Table 7 that Swiss prices accounts
for an important part of the feature contribution for all datasets that
contain them. They are not part of the rupHEmia algorithm and can
therefore be used by market participants to create their order books.
Owners of power plants can use these prices to plan their production.
Thanks to cross-border energy flows, market players can also exchange
energy from and to this country using its price as a reference. Swiss
prices thus constitute a good overview of the price level that will
be reached by its neighboring countries. Finally, from Table 8, we
can conclude that features with two or three day lag contribute very
little to the decision. They never contribute more than 5% of the total
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contribution. However, features with one or seven days lag are an
important part of the model decision process. Different seasonalities can
be observed in electricity prices. Among them, the weekly seasonality
is one of the most important: due to weekends, the prices of the week
before are generally more similar than the prices of the previous 2 or 3
days. In addition, prices are fixed daily by the rupHemiA algorithm, that
uses as input the order books specific to the corresponding day. Thus,
the data of the previous days, although similar to the current data,
are not decisive in settling the prices. Contribution weights assigned
to features with two and three day lags confirm that our models are
also mostly based on current data.

Lastly, we focus on the daily average unit contribution of the
features and their evolution along time period T,. Fig. 6 displays
these values for the best performing model for the French country:
the MultiSVR. Gray rectangles delimit the periods of confinement, and
we have displayed the SMAPE model in red. First, we observe the
evolution of SMAPE during the three lockdowns. The model hardly
adapts to the first lockdown (March 17, 2020-May 11, 2020) and the
highest error is reached in the middle of it. The second lockdown
(November 2020) shows no significant increase in errors overall. The
third confinement (April 2021) corresponds to a decrease in SMAPE.
We explain this evolution by two factors: (1) The first confinement
was more brutal for the French market. Because industry has come to
a standstill, prices and consumption have fallen. This is not the case
for the other two lockdowns. (2) The first lockdown was a completely
new situation for the model, which was not the case for the following.
This also explains why the SMAPE drops after the first lockdown:
the model has integrated several data samples from the confinement
period and is able to adapt. Thus, the next two confinements are more
easily dealt with. Next, we focus on the period following the first
lockdown. On the market, this period was characterized by a slow
French industry recovery and warm temperatures with consumption
still below the standards. We see the Swiss and gas price contributions
falling at the benefit of French production forecasts and date indicators.
The model correctly balances the trade-off between French production
forecasts and gas prices. Indeed, during this period, the French nuclear
production fleet was enough to cover the consumption and no gas-fired
plant was required. As a result, the SMAPE on this period is low. The
third lockdown (May-December 2021) is opposite to the previous one.
High volatility in gas prices, due in part to the economic recovery in
China, is driving volatility in electricity prices, as shown in Fig. 1. In
this context, let us look at the relationship between the contributions
of Swiss and gas prices. These two features are most of the time the
two most important characteristics and their movements are generally
opposite: when one decreases, the other increases. Periods when the gas
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price contribution increases and the Swiss price contribution decreases
are marked by a SMAPE spike. The model captures the importance of
the gas price as shown by the strong increase in the contribution, but
this price is so volatile that using gas price from two days ago results in
a high error. A good way to avoid error spikes over this period would be
to find a more reliable value than the EGSI index to estimate the price
of gas two days before. Using the last value traded on the gas market
could be an alternative. Lastly, we notice little variation in contribution
among the other features. The French consumption forecast contributed
more from January to March 2020 and from November 2020 to April
2021. During these winter periods, the model gave more weight to
the consumption forecasts to reduce price temperature sensitivity. This
is not the case during the winter of 2021. Very low French nuclear
production, due to the maintenance of the power stations, obliges the
gas park to ensure the balance between consumption and production.
The proportion of gas-generated electricity in the total mix was so high
that small variations in consumption did not affect prices. Indeed, all
gas-fired power plants have the same marginal cost: the price of gas.

6. Synthesis, discussion and future work

In this section, we summarize our conclusions and observations
from the results of our experiments. First, we see that including new
features in the predictive dataset dramatically increases model perfor-
mance. Among these added features, the most discriminating are the
features without lag days: production and consumption forecasts, and
Swiss prices. We believe that the Belgian dataset is more difficult to
grasp as it lacks the forecasts for the period 7} and the Swiss prices for
the period T,. We also observe that the feature contributions depend on
the considered dataset. These differences reflect the specificities of the
European market such as the temperature sensitivity of consumption in
France, or the intermittency of production in Germany.

Second, we report significant inequalities in the performance of
ML models. RF and CNN are not suitable for the EPF paradigm we
are studying. These models incorrectly incorporate input features and
therefore we cannot identify significant patterns in their contribution
analysis. In contrast, DNN and SVR extract meaningful information
from features and display diagonal and peak load patterns in their con-
tributions. As a result, these models are better over the three considered
countries and the two time periods. Further analysis of the contribution
revealed that they are able to react to significant market changes by
updating the weight of discriminating features such as gas price when
necessary. Although this adaptation is not instantaneous and a short
period of performance deterioration is observed, the models produce
accurate predictions in new situations. For example, performance has
increased during the second semester of 2021 for the French market
even though prices are more volatile.

Due to the high computation times and the difficulty of acquiring
new data, several experiments were left for future work. The integration
of new EPF features such as coal, oil or carbon prices, or the use
of more data from foreign countries such as Spain, Italy, Austria or
Denmark could be considered as future work. Given the importance of
Swiss and gas prices in the total contribution, it will also be interesting
to include other prices without lag days available before the close of
the EPEX market, such as EXAA prices or UK prices. Moreover, the
available transfer capacities are essential to understand the cross-border
energy flows that are necessary to explain the price differences between
countries. Their inclusion in our datasets should increase the accuracy
of the multi-country forecasting framework.

Finally, many other ML models could be tested, such as Gaussian
processes, nearest neighbors or multi-kernel SVR. Regarding the sig-
nificant contribution made by data with one or seven days lag, we
believe that time series ML models such as recurrent neural networks,
convolutional kernel random transformation models [86] or Dynamic
Time warp models would challenge the benchmark state of the art.
Additionally, we observed a slight degradation in performance while
forecasting multiple countries at once. Managing European network
topology using Graph Neural Network looks promising and will be our
next challenge.
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