
Context-Oriented Image Processing
Reconciling genericity and performance through contexts

Didier Verna
didier@lrde.epita.fr

François Ripault
francois.ripault@lrde.epita.fr

EPITA Research and Development Laboratory
14-16, rue Voltaire

94276 Le Kremlin-Bicêtre CEDEX

ABSTRACT
Genericity aims at providing a very high level of abstrac-
tion in order, for instance, to separate the general shape of
an algorithm from specific implementation details. Reach-
ing a high level of genericity through regular object-oriented
techniques has two major drawbacks, however: code clut-
tering (e.g. class / method proliferation) and performance
degradation (e.g. dynamic dispatch). In this paper, we ex-
plore a potential use for the Context-Oriented programming
paradigm in order to maintain a high level of genericity in
an experimental image processing library, without sacrific-
ing either the performance or the original object-oriented
design of the application.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Object-Oriented Programming ; D.3.2 [Language Clas-
sifications]: Object-Oriented Languages; D.3.3 [Language
Constructs and Features]: Classes and Objects; I.4.0
[Image Processing And Computer Vision]: General—
image processing software

General Terms
Design, Languages

Keywords
Genericity, Performance, Context-Oriented Programming,
Image Processing

1. INTRODUCTION
Climb is an experimental image processing library de-

signed to be highly generic. The idea behind genericity is to
be able to write algorithms only once, independently from
the data types to which they may be applied. In the con-
text of image processing, being fully generic means being
independent from the image formats, pixel types, storage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
COP ’15 Prague, Czech Republic
Copyright 2015 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

schemes etc. For example, Climb provides transparent sup-
port for graph-based images, that is, images where the pixel
adjacency relation is represented by a graph instead of a
rectangular grid. In order to ease the writing of complex
processing chains, the library also provides a domain spe-
cific language and a graphical modeling language.

Climb is actually inspired by Milena[11], another library
developed by a sister team in our laboratory as well. While
most image processing libraries out there (Milena included)
are written in C or C++ for performance, and sometimes at
the expense of genericity, we take a different approach. In-
stead of grounding our library in a statically typed language,
we arbitrarily choose to use Common Lisp[19, 18] instead, in
order to explore what a multi-paradigm dynamic language
has to offer in the context of genericity and performance. In
particular, we are interested in studying the expressiveness
of dynamic object-orientation mechanisms such as context-
oriented programming.

Section 2 gives an overview of what generic image pro-
cessing is all about. Sections 3 and 4 describe potential
optimizations available in image processing and how it is
possible to use contexts in order to implement them in a
cross-cutting fashion. Section 5 provides some performance
results. Finally, we give some conclusions and directions for
future work.

2. GENERIC IMAGE PROCESSING
When they design image processing algorithms, researchers

use abstract concepts such as “finding a maximum value” or
“browsing a neighborhood”. While these concepts make per-
fect sense for a human being, a computer needs much more
information to actually perform the tasks. For example,
finding a maximum value would require knowledge about
the data structure in which the set of values is stored, and
the type of values the computer is looking at.

The goal of Climb is to provide a layer of abstraction
allowing researchers to express abstract image processing
concepts directly. By providing a small, predetermined set
of high level operations, researchers are able to write only
one generic implementation of an algorithm that can work on
very different kinds of images, without any prior knowledge
of either their structure or the manipulated values.

2.1 Image Definition

2.1.1 Sites
The most frequent kind of image uses a regular 2D grid

to store its pixel values. In that case, the term “pixel” can

be interpreted in two ways: either the position on the grid,
or the actual value stored there. In order to remain generic
enough, we need to clearly separate these two notions. Be-
sides, digital images are not necessarily represented on a 2D
grid. Values can be stored on hexagonal grids, 3D matrices,
graphs etc.

We hence define an image as a function from a location,
called a site, to a value: image(site) → value. The site

abstraction allows us to manipulate images without knowing
exactly which data structure is used for storing values (2D
points or nodes in a graph for example).

Based on sites, site-set objects are iterators represent-
ing a set of locations such as the whole image (called the
image domain) or a neighborhood. By browsing site sets,
an algorithm is able to process different kinds of areas (a
set of nodes in a graph, a 3D cube etc.) by using the same
high level iterator, and again, without any prior knowledge
about the underlying data structure.

2.1.2 Values
Pixel values may come in many different types, such as

floating point numbers for gray-scale images, Booleans for
black and white images, RGB triplets or RGBA quadruplets
for colored images.

Genericity on pixel value type is implemented in a tradi-
tional object-oriented fashion, via a value class hierarchy,
allowing us to define generic operators such as comparison
and addition. These operators can in turn be used in image
processing algorithms without introducing type-dependent
specialization, hence preserving complete genericity.

2.1.3 Algorithms
Listing 1 shows an implementation of the dilation[17] al-

gorithm using the generic infrastructure provided by Climb.
Note that there is no information about the underlying im-
age data structure or pixel value type in the expression of
this algorithm. It will hence work out of the box on any
kind of image (including the ones for which there would be
no concrete implementation yet).

(defun dilation
(image &aux (result (copy image)))

(do-sites (site (domain image))
(let ((max no-value))

(do-sites (neighbor (neighbors site))
(setq max

(max max (iref image neighbor))))
(setq (iref result site) max)))

result)

Listing 1: Generic dilation algorithm

2.2 Graph Images
The very high level of genericity provided by the library

allows us to transparently handle very peculiar kinds of im-
ages, such as graph-based ones.

2.2.1 Description
In Image Processing, it is customary to use graphs for rep-

resenting special kinds of images such as segmented ones.
This is illustrated in figure 1. In the original 2D image, a
segment is an area in which all pixels have the same value.
In the graph representation, every node (or vertex) corre-
sponds to a segment and edges represent the inter-segment
connexity relations.

Figure 1: Segmented 2D image to graph representation

2.2.2 Usage
In Climb, graph-based images are just another kind of

image and are used in the exact same fashion as any other.
The site abstraction supports graph-based images by mak-
ing graph nodes (even edges in some cases) a special kind of
pixel. All other concepts in the library (neighbors, iterators
etc.) will work equally well and transparently. As a con-
sequence, the dilation algorithm presented in listing 1 will
work on graph images without any modification to the code.

Figure 2 exhibits the result of this algorithm on two very
different images. Note again that the same, unique imple-
mentation of the algorithm is used in both cases.

Original Result

Figure 2: Dilation algorithm on different images structures

2.3 Processing Chains
Image processing applications often involve more than just

one algorithm. It is in fact frequent to use a “chain” of algo-
rithms and apply them sequentially, in parallel with merg-
ing, or even both in order to get the desired result. For
example, a contour detection application may require first
the conversion from color to gray-scale, and then different
passes of morphological operators such as erosion and dila-
tion.

Climb provides a domain-specific language for the build-
ing of complex image processing chains. Although this fa-
cility makes the task much easier for programmers, many
“clients” of image processing software are not even program-
mers at all. For that reason, Climb also provides a graphical
modeling language. This language allows to visually design
complex chains of algorithms without any knowledge in pro-
gramming. It also provides real-time visualization of the in-
termediate and final results of the current processing chain
(figure 3). In the graphical user interface (GUI), algorithms
are depicted as graphical boxes that can be moved around
and interconnected with each other (figure 4).

Figure 3: Visual display of the processing chains

Figure 4: Interface Layout

3. CONTEXTUAL IMAGE PROCESSING
The development of generic algorithms (image processing

ones in particular) by traditional object-oriented techniques
is usually bound to have a negative impact on performance,
for several reasons.

1. Generic algorithm implementations do not take into
account image specificities that could lead to potential
optimizations,

2. crossing abstraction layers at run-time is costly in gen-
eral,

3. in the image processing field in particular, algorithms
often involve very small/short methods called very of-
ten, hence an even greater proportional cost for mech-
anisms such as dynamic dispatch.

3.1 Image Specificities
Regarding the first point, one way to improve the perfor-

mance of generic algorithms is to provide specialized versions
that take into account the various specificities of an image.

As mentioned earlier, such specificities include image for-
mats, pixel types, storage schemes etc. One problem here
is that if we want to take all those specificities into account
in the object-oriented design of the library, it would lead to
class/method proliferation, which we want to avoid.

Images also have other interesting specificities which are
orthogonal to the ones mentioned above, and which we would
rather call“properties”[12]. The efficiency of site access, that
we call the speed property, is one of them. This property
may have 3 values: slow, meaning that the access complex-
ity is greater than O(1), fast for O(1), and fastest meaning
O(1) plus pointer semantics (access to the pixel values of an
image directly through pointers). This property is interest-
ing for optimization purposes: because the access speed to
an image can be fast, a processing chain could use a spe-
cific image traversal algorithm, faster than the generic one.

However, this property is hard to express in the original
oriented-object design of the library because it depends on
both the image type and the site set type.

To sum up, the difficulty we face in order to preserve
both genericity and performance is to avoid cluttering up
the original object-oriented design of the library, and to
express properties that are orthogonal to it, hence cross-
cutting. That is why using context orientation seems like an
interesting idea to try out.

3.2 Contextual Image Properties
Context-oriented programming[6] is a paradigm that ad-

dresses cross-cutting concerns and context-dependent be-
havior in a program. We argue that image properties can
be seen as contextual information.

Many image processing algorithms can be specialized in
different ways for specific sets of properties. By representing
such properties with layers (in our case, using ContextL[2]),
the applicability of such or such specialized algorithm ver-
sion can be decided automatically based on the set of cur-
rently active layers.

Because ContextL allows us to layer not only methods but
classes as well, we can even optimize beyond just algorithms.
We can also optimize the low level implementation of our
data structures (image types, values, storage etc.).

4. CONTEXTUAL OPTIMIZATION
This section presents two cases of contextual optimization,

both at the behavioral and structural levels.

4.1 Behavioral Optimization: Static Types
The first idea is to provide low level optimizations for the

representations of pixel values. In the fully generic imple-
mentation, a value class such as rgb provides 3 slots (one
for each color channel). Because each component of an RGB
value can in turn be represented as 8 or 12 unsigned bits,
single precision floats etc, the slots are dynamically typed.
As a consequence, all arithmetic operations in the generic
versions of our algorithms involve dynamic dispatch on the
actual numerical types of their arguments, which has a dra-
matic impact on performance.

CLOS[5, 8], the Common Lisp Object System would al-
low us to subclass the rgb class and provide (optional) static
type declarations for every slot. This, however would com-
plicate the object oriented design of the application for a
concern which is admittedly cross-cutting, since it deals with
optimization only. So instead, we choose to layer our pixel
value classes definitions.

We first define type-specific layers: value-simple-color

represents components defined on 8 bits unsigned integer,
value-bit represents binary values, etc. Within these lay-
ers, classes such as rgb can be specialized with type infor-
mation. Listing 2 describes one such specialization.

(deftype simple-color () ’(unsigned-byte 8))
(deflayer value-simple-color)

(define-layered-class rgb
:in-layer value-simple-color (value)
((red :type (simple-color))
(green :type (simple-color))
(blue :type (simple-color))))

Listing 2: Layered definition for class rgb

Provided with this layered definition, functions manipu-
lating rgb values can in turn be specialized with type infor-
mation. Listing 3 exhibits a layered definition for the make-

grayscale constructor, which creates a grayscale value
from an rgb one.

(define-layered-method make-grayscale
:in-layer value-simple-color ((rgb rgb))
(declare (optimize (speed 3) (safety 0)))
(make-instance ’grayscale

:intensity
(the simple-color

(round (the float
(+ (the float (* (red rgb)

0.299))
(the float (* (green rgb)

0.587))
(the float (* (blue rgb)

0.114))))))))

Listing 3: Layered definition for method make-grayscale

Provided with such type information, and along with ap-
propriate compiler optimization settings, this code will effec-
tively be compiled as statically (and weakly) typed code with
fully dedicated arithmetic operations. It has been shown
that the level of performance hereby achieved can be similar
to that of semantically equivalent C code[21].

Specializing the code in such a way is only a fraction of
the possibilities offered by the context-oriented approach.
In particular, one limitation to this approach is that the
object-oriented interfaces need to remain unchanged in or-
der to stay compatible with the rest of the library. The
next section presents another approach where the interfaces
themselves are modified in order to obtain further perfor-
mance improvements.

4.2 Structural Optimization: Classless Rep-
resentation

In “generic” Climb, a pixel value is an aggregation of sev-
eral color channels. In the previous section, we demon-
strated how pixel value classes can be specialized with type
information while leaving the oriented-object design of the
library unchanged.

Another approach towards performance, however, is to in-
line such values directly within the images themselves. By
default, nD images are represented with an n-dimensional
array containing indirect references to pixel values. In a
fully dedicated version however, a more efficient represen-
tation would be to use a 1-dimensional array concatenating
the image lines, and in which every cell represents one com-
ponent of a pixel value. For instance, in the case of an RGB
image, the first cell would contain the red component of the
first pixel, the second cell the green component, the third cell
the blue component etc. The advantage of this approach is a
more compact memory representation and at the same time
a more efficient pixel access (a slight arithmetic overhead for
indexation instead of using accessor functions to intermedi-
ate site-set, site and value objects). Implementing this
optimization in a contextual fashion is outlined below.

We define one layer for every possible number of color
components in an image, and as before, one layer for ev-
ery type of pixel value. For instance, there is a channel-3

layer corresponding to RGB images. Note that as soon as
we know on which particular image we’re working, we have
all the required information to activate the appropriate lay-
ers. Once activated, these layers induce the specialization

of I/O functions such as load-image, which in turn use the
appropriately optimized image memory representation.

With this optimized design in place, images no longer con-
tain references to value objects, which is normally expected
by the rest of the library. At the same time, we don’t want
to recreate such objects on the fly, only for the sake of pro-
tocol compatibility. So instead, we need to propagate those
structural changes to the whole library.

The solution we adopt here is the following. A specialized
version of the value type (not a class anymore) is defined
as a pair containing a reference to the image, and the index
of the first component of the concerned value (red for RGB
or RGBA). Provided with this new definition, we also rede-
fine methods that operate on values. Listing 4 details the
implementation of the vref method which returns one com-
ponent from a 3-components value. Note that values are not
objects in the CLOS sense anymore. On top of this func-
tion, a small layer of macrology defines direct red, green and
blue accessors by calling vref with the appropriate channel
number.

(define-layered-method vref :in-layer channel-3
(value &optional (channel 0))

(declare (optimize (speed 3) (safety 0)))
(let ((img (car value))

(index (cadr value)))
(declare (type fixnum index channel))
(aref (image-raw-data img)

(+ channel index))))

Listing 4: Implementation of vref in the channel-3 layer

A similar optimization can be achieved on the site hier-
archy. For classical nD images, sites boil down to a set of
nD coordinates, and, as mentioned before, we don’t want to
recreate fully generic site objects on the fly, only for the
sake of protocol compatibility with the rest of the library.
So for instance, we define a 2d-coordinates layer, in which
sites are now represented by a pair of x and y coordinates.
This structural change impacts the rest of the library, and
functions such as iref (image sites accessor) are layered in
order to take into account both the optimization on values
and the specialization on sites.

5. PERFORMANCE RESULTS
In order to get an idea on the performance improvements

entailed by the contextual optimizations described in the
previous section, we analyze various low-level aspects of the
library, plus one particular example of a more general im-
age processing chain, depicted in listing 5. In this example,
we load an image, convert it to a gray-scale one, apply the
Sauvola binarization algorithm [15] and finally save the re-
sult back to a file.

(let* ((original (image-load "rgb.bmp"))
(grayscale

(make-image (image-domain original)
:initfunc (lambda (site)

(make-grayscale
(iref original site)))))

(binary (sauvola grayscale (box2d 1))))
(image-save binary "bw.jpg"))

Listing 5: Example of an image processing pipeline

In this particular case, the original is a 2D RGB image, so
the optimized version activates the channel-3 and value-

simple-color layers, as described earlier. Note that turning

Gray conversion Green accessor
0

5

10

15

20

22.7

9.1

14.9

9.2

ex
ec

u
ti

o
n

ti
m

e
[s

]

Default Optimized

Figure 5: Performance with contextual types

optimizations on is done by activating a special layer (which,
in turn, triggers the activation of the other ones), so no
change to the code of listing 5 is necessary.

We first analyze the performance gain achieved with con-
textual static types, and then with structural changes. The
benchmarks presented in this section have been conducted
on an Intel Core 2Duo (3GHz) with 4GB of RAM, using
Debian 3.2. The compiler used is SBCL 1.0.57.

5.1 Improvements with Static Types
Figure 5 shows the performance improvement achieved

with the optimizations exposed in section 4.1. Two meth-
ods are analyzed: make-grayscale, the implementation of
which has been detailed in listing 3 and the green accessor,
which accesses the green component of an RGB value. These
functions were called 100 million times. We notice that the
specialized version of make-grayscale runs 1.5 times faster
than the generic one. The green accessor, however, does not
benefit from any performance improvement.

These results are to be expected. make-grayscale in-
volves arithmetic operations so it is normal to witness some
performance improvement when dynamic typing (hence poly-
morphism) is removed in favor of static (and weak) arith-
metic types, as fully dedicated operations are now used.

As mentioned earlier, a specificity of image processing is
the abundance of very short methods (like pixel-wise opera-
tions) called a huge number of times. This explains the rel-
atively modest improvement observed for make-grayscale,
as this function not only spends time on arithmetics, but on
value access as well. It also explains the total lack of im-
provement for the green accessor. Even though contextual
types may help the compiler unbox and inline values, the
impact of this is still negligible compared to the time spent
traversing generic object through their various accessors.

5.2 Improvements with Classless Representa-
tion

Figure 6 details the execution time and and memory usage
improvement with the optimizations exposed in section 4.2.

In listing 6b, results are presented with the unit“Mega cons”,
which represents a million “consing” operations, that is, the
primitive allocation facility for objects in Common Lisp.
sref is the generic site access method for site sets. This

function is called 1 million times on a 128×128 site-set-

box and we notice a huge performance improvement both
in terms of execution time and memory usage. Replacing
CLOS objects with pairs in order to describe coordinates has
a very beneficial impact on the performance of the library.
This performance improvement also impacts image traversal
facilities such as do-sites (called 500 times on a 128×128
image) and value access on images with iref (called 500
times on a 128×128 image). Finally, high level algorithms
such as sauvola, and pipeline, which is the function pre-
sented in listing 5 are 3.5 times faster, with a similar gain
on memory consumption (each algorithm is called once on
a 128×128 image).

It is important to realize that even if this approach in-
troduces structural changes to the library, only low level
components (such as sref and iref) are affected. High level
algorithms such as sauvola are not modified in any way and
yet, benefit a great deal from these contextual optimizations.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a possibly unusual use

for context-oriented programming: performance optimiza-
tion in an image processing library. This study is in its
very early stages, and the image processing domain is ad-
mittedly an excuse to study the more general idea of con-
textual optimization. Yet, even at this early stage, the re-
sults described here are very encouraging. We demonstrated
that it is possible to use contexts for providing both behav-
ioral and structural specializations to the library’s building
blocks, resulting in important performance improvement, all
of this without sacrificing either the genericity of the user-
level programming interface, or the general design of the
library.

6.1 Directions with Contexts
Note that we currently don’t know the potential perfor-

mance impact of the ContextL infrastructure itself. Con-
textL goes through the CLOS meta-object protocol (MOP)
[10, 14] to dynamically generate classes that represent com-
bined layers, and dynamically dispatches on layered func-
tions. Eventhough it is possible to efficiently implement
layer activation [3], it is nevertheless possible that the cost
becomes proportionally important in cases where we would
end up doing a lot of context switches. We plan to investi-
gate this in the future.

Despite the encouraging results presented here, we have
already encountered several limitations that we intend to
address in the future as well. Some of them are outlined
below.

In ContextL, layers are only defined as symbols and do
not retain state per se, which, in our opinion, limits their
expressiveness. In Climb, we had to define layered functions
to obtain information about the currently activated layers:
for instance, the function get-value-type is necessary to
introspect the currently active pixel value type (e.g. bit

when the layer value-bit is activate). Ideally, layers should
be stateful, perhaps objects or even first-class citizens.

Another related concern is the modelization of relations
between layers, in particular, joint activation logic: in Climb,

sref do-sites iref sauvola pipeline
0

10

20

30

4.7

25

30.5

3.6 4

0.1

2.5
3.6

0.9 1.2

ex
ec

u
ti

o
n

ti
m

e
[s

]

Default Optimized

(a) Execution time

sref do-sites iref sauvola pipeline
0

2,000

4,000

6,000

914

6,553
6,815

822 838

2

1,179
1,441

301 312

ex
ec

u
ti

o
n

ti
m

e
[M

eg
a

co
n
s]

Default Optimized

(b) Memory consumption

Figure 6: Performance and memory usage with contextual structures

the layer specialized “contains” all contextual optimiza-
tions by encapsulating layers that describe the type and
the number of components of a pixel value. This is how-
ever not explicit in the code because ContextL provides no
mean to express logical relations between layers. Hence, lay-
ers supposed to be active at the same time need to be all
(de)activated manually, and it is possible to put the library
in an illogical state resulting in run-time errors.

Finally, we also faced the well-known “coercion problem”.
As mentioned earlier, some image processing chains may
involve parallel branches (figures 3 and 4) in which differ-
ent optimizations are active. When two or more parallel
branches are joined back together, data coming from differ-
ent contexts need to be “reunited”, and there is currently no
clean / automatic way to coerce objects from one context to
another.

6.2 Directions with Other Paradigms
Context-oriented programming is one possible answer to a

general question we have been investigating: expressing op-
timization as a cross-cutting concern, that is, without losing
either genericity or the original design. On the long term,
we plan to incorporate other paradigms in this study, and
provide an in-depth comparison of their respective merits.

Aspect oriented programming [9] is a related paradigm
which has been used for optimization already (loop fusion,
memoization, pre-allocation of memory etc.). [13] details
a case-study of aspect-oriented programming for an image
processing library. We also intend to compare with a mixins
[16] approach, a purely functional one. Research comparing
aspects, mixins and monads already exist [7, 4].

Finally, we also intend to investigate on more recent paradigms
enabled in dynamic object-oriented environments, such as
predicate or filtered dispatch [20, 1].

7. REFERENCES
[1] P. Costanza, C. Herzeel, J. Vallejos, and T. D’Hondt.

Filtered dispatch. In Proceedings of the 2008

Symposium on Dynamic Languages, DLS 2008, July
8, 2008, Paphos, Cyprus, page 4, 2008.

[2] P. Costanza and R. Hirschfeld. Language constructs
for context-oriented programming: An overview of
ContextL. In Proceedings of the 2005 Symposium on
Dynamic Languages, DLS’05, pages 1–10, New York,
NY, USA, 2005. ACM.

[3] P. Costanza, R. Hirschfeld, and W. D. Meuter.
Efficient layer activation for switching
context-dependent behavior. In JMLC’06: Proceedings
of the Joint Modular Languages Conference, pages
84–103. Springer, 2006.

[4] B. C. d. S. Oliveira. The different aspects of monads
and mixins, 2009. Draft Paper. Last Update:
04/03/2009. Submitted to ICFP 2009.

[5] R. P. Gabriel, J. L. White, and D. G. Bobrow. Clos:
integrating object-oriented and functional
programming. Communications of the ACM,
34(9):29–38, 1991.

[6] R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
Technology, 7(3):125–151, 2008.

[7] C. Hofer and K. Ostermann. On the relation of aspects
and monads. In Proceedings of the 6th Workshop on
Foundations of Aspect-oriented Languages, FOAL ’07,
pages 27–33, New York, NY, USA, 2007. ACM.

[8] S. E. Keene. Object-Oriented Programming in
Common Lisp: a Programmer’s Guide to Clos.
Addison-Wesley, 1989.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin.
Aspect-oriented programming. In ECOOP.
SpringerVerlag, 1997.

[10] G. J. Kiczales, J. des Rivières, and D. G. Bobrow. The
Art of the Metaobject Protocol. MIT Press,
Cambridge, MA, 1991.

[11] R. Levillain, Th. Géraud, and L. Najman. Why and

how to design a generic and efficient image processing
framework: The case of the Milena library. In
Proceedings of the IEEE International Conference on
Image Processing (ICIP), pages 1941–1944, Hong
Kong, Sept. 2010.

[12] R. Levillain, Th. Géraud, and L. Najman. Une
approche générique du logiciel pour le traitement
d’images préservant les performances. In Proceedings
of the 23rd Symposium on Signal and Image
Processing (GRETSI), Bordeaux, France, Sept. 2011.
In French.

[13] A. Mendhekar, A. Mendhekar, G. Kiczales,
G. Kiczales, J. Lamping, and J. Lamping. RG: A
case-study for aspect oriented programming. Technical
report, Xerox Parc, 1997.

[14] A. Paepcke. User-level language crafting – introducing
the Clos metaobject protocol. In A. Paepcke, editor,
Object-Oriented Programming: The CLOS Perspective,
chapter 3, pages 65–99. MIT Press, 1993.
Downloadable version at http://infolab.stanford.

edu/~paepcke/shared-documents/mopintro.ps.

[15] J. Sauvola and P. M. Adaptive document image
binarization. Pattern Recognition, 33:225–236, 2000.

[16] Y. Smaragdakis and D. Batory. Mixin layers: An
object-oriented implementation technique for
refinements and collaboration-based designs, 2001.

[17] P. Soille. Morphological Image Analysis: Principles
and Applications. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2 edition, 2003.

[18] G. L. Steele. Common Lisp the Language, 2nd edition.
Digital Press, 1990. Online and downloadable version
at http://www.cs.cmu.edu/Groups/AI/html/cltl/

cltl2.html.

[19] Ansi. American National Standard: Programming
Language – Common Lisp. ANSI X3.226:1994
(R1999), 1994.

[20] A. M. Ucko. Predicate dispatching in the common lisp
object system, 2001.

[21] D. Verna. Beating C in scientific computing
applications. In Third European Lisp Workshop at
Ecoop, Nantes, France, July 2006.

http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://infolab.stanford.edu/~paepcke/shared-documents/mopintro.ps
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html
http://lisp-ecoop06.bknr.net/home
http://www.emn.fr/x-info/ecoop2006

	Introduction
	Generic Image Processing
	Image Definition
	Sites
	Values
	Algorithms

	Graph Images
	Description
	Usage

	Processing Chains

	Contextual Image Processing
	Image Specificities
	Contextual Image Properties

	Contextual Optimization
	Behavioral Optimization: Static Types
	Structural Optimization: Classless Representation

	Performance Results
	Improvements with Static Types
	Improvements with Classless Representation

	Conclusions and Future Work
	Directions with Contexts
	Directions with Other Paradigms

	References

