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Résumé (French Abstract)

Ce rapport d’habilitation traite de travaux de recherche fondamentale et appliquée en
informatique, effectués depuis 2006 au Laboratoire de Recherche et Développement
de l’EPITA (LRDE). Ces travaux se situent dans le domaine des langages de pro-
grammation dynamiques, et plus particulièrement autour de leur expressivité et de
leur performance.

Plutôt que de développer en profondeur un aspect particulier de ces travaux (ce
qui serait redondant avec la publication académique correspondante déjà effectuée),
ce rapport est conçu à la fois comme une “accroche” pour les travaux existants (dans
l’espoir d’éveiller la curiosité du lecteur), et comme une “bande-annonce” du travail
futur (dans l’espoir de solliciter de nouvelles collaborations).

Le corps de ce rapport est composé 8 chapitres, correspondant chacun à un projet
de recherche en particulier. Ces projets sont plus ou moins indépendants les uns des
autres, mais traitent tous des paradigmes de programmation rendus disponibles par
le contexte dynamique. Les points abordés s’étalent sur à peu près toute la chaîne
langagière : calcul sur les types, aspects syntaxiques (comme avec les “domain-specific
languages”), aspects sémantiques (comme avec des paradigmes orientés-objet dyna-
miques de haut niveau), et aspects purement théoriques (comme avec les diagrammes
de décision binaires). Pour chaque projet, un résumé du travail déjà effectué est pro-
posé, avec mention de la publication académique correspondante. Les perspectives
d’évolution sont également décrites.
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ForewordForeword

S tarting with my Ph.D., the beginning of my career as a researcher focused on
virtual reality, artificial intelligence, and cognitive science. Since then, my scien-

tific interests have gradually shifted to programming languages, paradigms, and the
study of their expressivity and performance.

This habilitation report relates only work that has been done after that shift, that
is, after 2006. Perhaps it is worth mentioning that, due to my other (and regular)
non-scientific activities, those 14 years correspond to roughly 9 years of equivalent
full-time employment. I also wish to stress that the work related here is not mine
only, but the result of collaborations with many students, including one completed
Ph.D., 5 Masters level internships, and a dozen or so undergraduate collaborations.

With the rise of gradual typing (Siek and Taha, 2006, 2007), the distinction be-
tween statically and dynamically typed programming languages tends to blur, Racket
being probably the most advanced example to date in that regard (Tobin-Hochstadt
and Felleisen, 2006). Nevertheless, the vast majority of contemporary programming
languages are still designed around one primary type system, and I will call a language
primarily designed around a dynamic type system a dynamic programming language
(or just dynamic language for short).

When I speak of dynamic programming paradigms, I mean programming
paradigms for dynamic languages, that is, paradigms enabled by dynamic type sys-
tems. This concept is unrelated to the domain of dynamic programming (Sniedovich,
2010), which is both a mathematical and computer science method for solving po-
tentially complicated problems. Therefore, in the expression “dynamic programming
paradigms”, it is the paradigms which are dynamic, not the programming. I chose
to make the associativity explicit in the title precisely to resolve that ambiguity. In
other words, this report is about (dynamic (programming paradigms)), as opposed to
((dynamic programming) paradigms).

Under this common banner, the work accomplished until now has tackled many
different aspects of software engineering, not necessarily connected to each other,
and has lead to the publication of 1 book chapter, 4 international journal papers,
24 international conference papers, and about 30 additional publications in various
other forms. Had this report been about one aspect in particular, it would have been
redundant with at least one of the aforementioned publications. Therefore, I rather
chose to write it as an overview of both what has been done already, and what is to
come. In other words, I hope that the reader will receive the material presented here
as both a “teaser” for the existing bibliography, and a “trailer” for future work.

In order to clearly distinguish our own publications from the work of others, I
have split the usual bibliographic chapter in two (appendices A on page 39, and B on
page 41). In addition to that split, every reference to our own bibliographic material is
accompanied with a marginal note such as the one you are seeing here: Verna (2020)1. 1

Verna, D. (2020). Dynamic
programming paradigms:
Performance and
expressivity. Habilitation
Report. Sorbonne
Université.
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Chapter 1

IntroductionIntroduction

O ur research activity deals mainly with dynamic programming languages and their
associated paradigms, expressivity, and performance. We are particularly inter-

ested in such concepts as Domain-Specific Language (DSL), functional and object-
oriented programming, extensibility, reflexivity, and meta-programming.

1.1 Motivation

F rom a historical perspective, the development of industrial-scale programming lan-
guages is bottom-up: abstraction grew layer after layer, on top of imperative and

sequential programming, and the principles stated by John Von Neumann ruling the
hardware. This bias may be explained in two different ways. Theoretically speaking,
it is simpler to build on top of what already exists. Hence, the first relatively high-
level programming languages, e.g., Fortran (1977) remained close to the machine.
Practically speaking, very abstract languages designed in a top-down fashion, such
as Lisp (McCarthy, 1960), a Fortran contemporary, were not viable solutions for the
industry. The hardware or compilers (when available) failed to deliver the necessary
performance, their features were too advanced to be fully understood or even just
deemed interesting, or their “far out” design was simply perceived as too frightening.
The industry hence followed the path of more efficient languages, at the expense of a
potentially higher level of expressivity.

With the rapid growth of computing power and theoretical knowledge (particularly
in the domain of compilers), some programming paradigms known as early as in
the 60’s eventually regained momentum. Scripting languages (re)appeared in the
90’s, functional programming began to get the attention it deserved in mainstream
languages only a few years ago (see for instance the addition of anonymous functions
to C++11 and Java 8). Finally, the rise of the Web vastly contributed to putting
dynamic languages (such as PHP and JavaScript) back at the heart of industrial
preoccupations.

Today, the industry has finally acknowledged the importance of being multi-
paradigm in its applications, but the technical debt often leads to the adoption of
heterogeneous solutions, combining for example a static language at the core (for
performance), a scripting language at the user level (for suppleness), and possibly
a DSL for the non-technical end-user. The extreme diversity (and disparity) of the
software components involved may have a negative impact on the final product in
terms of evolution and maintainability. In this context, it becomes crucial to develop
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a genuine craftsmanship in multi-paradigm software engineering, perhaps in a more
unified, homogeneous, form. This concern is at the heart of our research.

1.2 Implementation

F rom a practical perspective, a technical challenge to pursue this goal is to integrate
a maximum number of different paradigms within the same environment, in order

to be able to study their interactions. As mentioned earlier, we put the emphasis on
the functional and object-oriented approaches, in addition to the classical imperative
and procedural ones. We also like to stress extensibility, hence an interest in DSLs,
reflexivity, and meta-programming. Finally, a major concern is also to study the
characteristics of the compromise between expressivity (genericity in particular) and
performance, as abstraction notoriously comes at a cost.

The next step is thus to decide on the most appropriate platform for experimen-
tation. Most of the current multi-paradigm approaches are somewhat ad hoc and
heterogeneous for the simple reason that there is in fact not a lot of choice. Object-
oriented languages such as C++ (ISO/IEC, 2017) and Java (Gosling et al., 2019) are
not (or hardly) functional. Scripting languages such as Python (van Rossum, 2012)
or Ruby (Thomas et al., 2009) are not particularly efficient —hence the existence
of projects such as PyPy (Bolz et al., 2009), providing alternative implementations.
Julia (Karpinski and Bezanson, 2019) is an interesting and more modern approach
to a dynamic (yet highly optimized) language, but the support for object orientation
is (intentionally) quasi-nonexistent. Scala (Odersky et al., 2010) is a very interesting
language when it comes to paradigm mixture (in particular functional and object-
oriented), but we find the syntax quite cumbersome, and the support for compiling
to native code rather than to the Java Virtual Machine (JVM) is still embryonic.

In this landscape, the Lisp family of languages looks particularly attractive. In the
end, the choice of a preferred language for experimentation doesn’t need to be (and
most likely never is) completely objective, as long as the produced research, on the
other hand, is scientifically legitimate. Our preference goes to Common Lisp (Ansi,
1994) for various reasons. In general we are very sensitive to the “Lisp philosophy”,
that is, mostly the minimalism of its core and its homoiconic nature (McIlroy, 1960;
Kay, 1969), which deeply relates to our aesthetic preferences (Verna, 2018a)1. We 1

Verna, D. (2018a). Lisp,
Jazz, Aikido. The Art,
Science and Engineering
of Programming Journal,
2(3).

also like the more pragmatic approach of this dialect, whereby being practical always
remains a goal, sometimes at the expense of elegance or a theoretically purer design.
Finally, Common Lisp is the only Lisp dialect to have an official, industry-level stan-
dard, which is important for two reasons. Firstly, interesting research results may be
directly tested and applied to already existing industrial applications using this lan-
guage. Secondly, having an official standard (while remaining extensible) also means
that our working environment is much more stable that the alternatives.

On more concrete and objective terms, using Common Lisp for experimentation
has various advantages. In terms of expressivity, it is both functional, object-oriented,
imperative, and procedural. It offers different typing policies, different forms of scop-
ing and evaluation. Clos, the Common Lisp Object System, is a very expressive class-
based object-oriented layer (DeMichiel and Gabriel, 1987; Bobrow et al., 1988; Keene,
1989; Gabriel et al., 1991), and surpasses the abilities of more classical approaches.
Besides, the dynamic nature of Clos allows, with relative ease, the incorporation of
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experimental object-oriented paradigms such as context orientation (Hirschfeld et al.,
2008), filtered (Costanza et al., 2008), and predicate dispatch (Ernst et al., 1998;
Ucko, 2001). Common Lisp is also a reflexive language, offering both introspection
and intercession, and for which reflexivity is both structural and behavioral (Maes,
1987; Smith, 1984): the Clos Meta-Object Protocol (Mop) (Kiczales et al., 1991;
Paepcke, 1993) and the so-called reader macros are tools allowing the programmer
to extend or modify both the syntax and the semantics of the language itself, mak-
ing it very suitable to DSL design and implementation, for instance. Its powerful
programmatic macro system offers yet another meta-programming facility.

Nevertheless, the very high level of abstraction of the language doesn’t cut the
programmer off from lower level access (e.g. bit-wise manipulation, internal repre-
sentation, foreign interfaces, etc.) or optimization (e.g. optional weak static typing,
destructive versions of normally purely functional procedures, etc.). To summarize,
Common Lisp is a language offering many different programming paradigms at the
same time, with many different levels of abstraction, and with a very high level of
extensibility. It is thus particularly well suited to our final objective.

1.3 Research Strategy

F rom an academic perspective, the research strategy we adopt is articulated around
three axes.

1. Producing innovative research in software engineering. Here, we try to
design or study the new programming paradigms that the dynamic context makes
possible, we investigate the use of existing ones to new applicative contexts, or we
generalize them and enrich them with new features. Finally, we also try to study the
comparative merits of those paradigms in terms of expressivity and/or performance,
and we analyze their interaction, notably in terms of composability and orthogonality
(Hunt and Thomas, 1999).

2. Contributing to the languages community in general. While we prefer
the Lisp language as our primary platform for experimentation and prototyping (for
reasons that were explained in Section 1.2 on the preceding page), we try to propagate
the obtained results to a larger community. In particular, we extract those results
that can be generalized in a purely theoretical form, and we study their applicability
to other dynamic programming languages.

3. Contributing to the Lisp community in particular. In some situations,
experimenting and prototyping in Lisp can reveal both strengths and weaknesses of
the language itself. In the cases where we consider the qualities of Lisp as crucial, we
make a point in producing an otherwise missing academic bibliographic foundation
for the language (Lisp being originally rather targeted to the industry, hence with
comparatively little academic audience or recognition). In the cases where, on the
other hand, room for improvement is found, we may be led to propose extensions to
the language, alternative implementations for features within existing compilers, or
even propose modifications to its current specification.

6 (dynamic (programming paradigms)) ;; performance and expressivity



Chapter 2

Compiler PerformanceCompiler Performance

Two Masters internships •
Two conference papers, including one best paper award •

The purpose of this project is to evaluate the performance of Lisp compilers,
comparatively to languages known for their efficiency, such as C or C++. We are

interested in evaluating the impact of dynamicity, or otherwise showing that, given
the exact same abstraction level, the resulting performance is equivalent. The

analysis of empirical results also constitutes valuable feedback for the concerned
vendors.

L ong after the standardization process (Ansi, 1994), and after people really started
to care about performance (Gabriel, 1985; Fateman et al., 1995; Reid, 1996),

Common Lisp (in fact, Lisp in general) is still widely perceived as a “slow language”.
Programmers looking for the utmost performance turn more naturally to languages
such as C (ISO/IEC, 2011) or C++, perhaps today also Go (Google, 2018) and Rust
(Klabnik and Nichols, 2018), the rationale being that statically typed languages, at
the expense of some level of expressivity, are in general more efficient.

Until about 10 years ago, existing literature on the performance of Lisp was
advertising merely 60% of that of equivalent C code (Neuss, 2003; Quam, 2005).
Such an achievement could be seen either as satisfactory, from a dynamic point
of view (Boreczky and Rowe, 1994), or as a show stopper for critical applications,
performance-wise. Hence, we considered it important to correct that view, and
demonstrate that in actuality, it would be possible to lose nothing in performance
by using Lisp, the corollary being that a lot would be gained in expressivity.

2.1 Project Description and Current Results

T his project consists of studying the comparative behavior and performance of Lisp
with benchmarks on various algorithms, paradigms, and data types or structures.

Over its duration, this project is split into different parts.
The first part deals with fully dedicated (or “specialized”) code, that is, programs

built with full knowledge of the algorithms and the data types to which they apply.
The second and third part are devoted to studying the impact of genericity, through
dynamic object orientation and static meta-programming, respectively. The rationale
here is that adding support for genericity would at best give equal performance, but
more probably entail a loss of efficiency. Consequently, if fully dedicated Lisp code is
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already unsatisfactory with respect to, say, C versions, it would be useless to try and
go further.

When it comes to comparing the performance of Lisp code against C or C++

versions, we need to emphasize that we are in fact comparing compilers as much as
languages. Moreover, speaking of “equivalent” C, C++, or Lisp code is also somewhat
inaccurate. For instance, when we write functions, we end up comparing sealed
function calls in C with calls to functions that may be dynamically redefined in Lisp.
When we measure the cost of object instantiation, we compare a C++ operator (new)
with a Lisp function (make-instance), etc. All those subtle differences mean that it is
actually impossible to compare exclusively either language, or compiler performance.

2.1.1 Part 1
In the first part of this project, which is completed today, we experimented with
a few simple image processing algorithms written both in C and Lisp. In Verna
(2006)1, we demonstrated that, given the state of the art in Common Lisp compiler 1

Verna, D. (2006). Beating
C in scientific computing
applications. In ELW’06,
3rd European Lisp
Workshop, Nantes, France.

technology, most notably, open-coded arithmetics on unboxed numbers and efficient
array types (Fateman et al., 1995, sec. 4, p.13), the performance of equivalent C and
Lisp programs are comparable; sometimes even better with Lisp. More specifically, we
demonstrated that the behavior of equivalent Lisp and C code is similar with respect
to the choice of data structures and types, and also to external parameters such as
hardware optimization. We further demonstrated that properly typed and optimized
Lisp code runs as fast as the equivalent C code, or even faster in some cases.

2.1.2 Part 2
The second part of the project deals with dynamic genericity through Clos (Keene,
1989), the object-oriented layer of Common Lisp. Our purpose here is to evaluate the
behavior and efficiency of instantiation, slot access, and generic dispatch in general,
actually splitting part 2 in three individual sub-steps. Currently, the first sub-step
(part 2.1: instantiation) is complete and has been reported in Verna (2009)2. 2

Verna, D. (2009). CLOS
efficiency: Instantiation. In
ILC’09 International Lisp
Conference, pages 76–90,
MIT, Cambridge,
Massachusetts, USA. ALU
(Association of Lisp
Users).

In this paper, studies on both C++ via Gcc and Common Lisp via three different
compilers were presented, along with cross-comparisons of interesting configurations.
We demonstrated the following points.

• When safety is privileged over speed, the behavior of instantiation is very dif-
ferent from one language to another. C++ is very sensitive to the inheritance
hierarchy and not at all to the slot type. Lisp on the other hand, is practically
immune to the inheritance hierarchy, but in the case of structures, sensitive to
the slot type.

• While turning on optimization in C++ leads to a reasonable improvement, the
effect is tremendous in Lisp. As soon as the class to instantiate is known or can
be inferred at compile-time, the instantiation time can be divided by a factor
up to one hundred in some cases, and to the point that instantiating in Lisp
becomes actually faster than in C++.

2.1.3 Feedback
In spite of these very satisfactory results, the project in its current state has also
exhibited several weaknesses of the language or its various implementations. That

8 (dynamic (programming paradigms)) ;; performance and expressivity
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information is valuable feedback for the vendors, as it provides clear and explicit
directions for improvement. Here are some of them. Note however that the following
concerns may no longer be valid, as the situation could have evolved since the study
was originally published.

It is not completely trivial to type Lisp code both correctly and minimally (that
is, without cluttering the code), and a fortiori portably. Current compilers have
a tendency to behave very differently with respect to type declarations, and provide
type inference systems of various quality. The Common Lisp standard probably leaves
too much freedom to the compilers in this area.

Another weakness of Lisp compilers seems to be inlining technology. Some simply
don’t support user function inlining, the poor performance of others seems to indicate
that inlining defeats their register allocation strategy. It is also regrettable that
none of the tested compilers are aware of the integer constant division optimization
(Warren, 2002, Chap. 10) from which inlining can greatly benefit.

On the object-oriented side, our study exhibited extremely divergent behaviors
with respect to slot :initform type checking (probably slot type checking in general),
in particular when safety is preferred over speed. Here again, it is regrettable that
the Common Lisp standard leaves so much freedom to the implementation.

2.2 Future Work

A s mentioned earlier, the project is split into three parts, and is currently halfway
through part 2. The obvious plan for future work is thus to complete the missing

bits. On top of that, several additional perspectives are worth describing in a little
more detail. They are given below.

Our current experimental results occasionally exhibit oddities or surprising be-
haviors which are not easily explained. Some of these oddities have been reported to
the concerned maintainers; some have even already been fixed or are being worked
on. The remaining ones should be further analyzed, as they would probably reveal
even more room for improvement in concerned implementations.

Currently, the project focused intentionally on micro-benchmarks for elementary
operations. In a longer term, similar experiments should be conducted on more com-
plex algorithms (with more local variables, function calls, etc.), for instance so that
we can spot potential weaknesses in the various register allocation policies, as the
inlining problem tends to suggest.

It would be interesting to measure the impact of compiler-specific optimization
capabilities, including architecture-aware ones like the presence of Single Instruction,
Multiple Data (SIMD) instruction sets, or even the state of the art in GPU access.

Until now, and because the initial focus was on elementary operations, Garbage
Collection (GC) timings were intentionally left out of the study. When comparing so
different languages however, we observe that it is difficult to avoid taking into account
the differences of expressivity, and in that particular matter, the fact that memory
management is automatic on one side, and manual on the other side. Even when
looking at the Lisp side alone, we plan on including GC timings in the benchmarks,
simply because GC is part of the language design, and also because different compilers
use different GC techniques, which adds even more potential variance to the overall
efficiency of one’s application.

9 (dynamic (programming paradigms)) ;; performance and expressivity
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Our current experimental results were obtained on a specific platform, and with
a limited number of compilers. It would be interesting to measure the behavior and
performance of the same code on other platforms, and also with other compilers. We
do have an automated benchmarking infrastructure to ease that process, although
it is still somewhat rudimentary. In the long term, it would also be nice to set up
a truly automated, web-accessible benchmarking platform, so that we can not only
collect experimental results, but also track improvements or regressions over time.

Although not part of the Ansi Common Lisp standard, some implementations
provide a certain degree of unification between structures and standard objects (for
instance, accessing structure slots with slot-value). These features have not been
tested at all, but it should be interesting to see how they behave.

Finally, when the project reaches part 3, we will likely end up comparing static
meta-programming tools such as C++ templates vs. Lisp macros to generate fully
dedicated code. Given the favorable results from part 1, comparing the performance
of the generated code is not expected to provide much more information. On the
other hand, the cost of abstraction in meta-programming lies in the compilation phase
rather than in the execution one. Thus, it will be more interesting to compare the
performance of Lisp and C++, in terms of compilation times rather than execution
ones.

10 (dynamic (programming paradigms)) ;; performance and expressivity
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DSL Design and ImplementationDSL Design and Implementation

One Masters internship •
One book chapter, two conference papers •

There exist different approaches to DSL design and implementation. One of them
consists of rewriting all or several parts of the usual language infrastructure (parser,
interpreter or compiler, etc.). Another one prefers to reuse the infrastructure of an
already existing language. The purpose of this project is to explore the advantages of

the latter approach. Through experimental studies, we also show that the obtained
performance is better with Lisp as the underlying language than with alternatives

such as Converge (Tratt, 2005), Meta-Lua, or Meta-OCaml (Kiselyov, 2014).

D
omain-specific language design and implementation is inherently a transverse
activity (Ghosh, 2010; Fowler, 2010). It usually requires knowledge and expertise

in both the application domain and language design and implementation from the
product team, two completely orthogonal areas of expertise. From the programming
language perspective, one additional complication is that being an expert developer
in one specific programming language does not make you an expert in language design
and implementation —only in using one of them. DSLs, however, are most of the
time completely different from the mainstream languages in which applications are
written. A General Purpose Language (GPL), suitable for writing a large application,
is generally not suited to domain-specific modeling, precisely because it is too general.
Using a GPL for domain-specific modeling would require too much expertise from
the end-users and wouldn’t be expressive enough for the very specific domain the
application is supposed to focus on.

As a consequence, it is often taken for granted that when a DSL is part of a larger
application, it has to be completely different from the GPL of the application. But
what if this assumption were wrong in the first place? Following Fowler (2005) and
Tratt (2008, sec. 2), DSLs can be categorized in two different families.

A standalone, or external DSL is written as a completely autonomous language.
In such a case, a whole new compiler / interpreter chain needs to be implemented,
presumably with tools like Lex, Yacc, ANTLR, etc. Such an approach provides the
author with complete control (from syntax to style of execution), but leads to high
development costs, potential code bloat, and high maintenance costs (Vasudevan and
Tratt, 2011; Ghosh, 2011).

11 (dynamic (programming paradigms)) ;; performance and expressivity
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A second approach consists of reusing the capabilities of a host GPL, hence avoid-
ing the need for rewriting a complete infrastructure. This approach leads to so-called
embedded (Graham, 1993) or internal DSLs, an idea which is probably at least 50
years old (Landin, 1966). In order to implement an embedded DSL, one needs to ex-
press it in terms of the differences from the host GPL. To that aim, two possibilities
exist.

The first one consists of translating the DSL program into a host GPL one by
means of external program transformation tools such as Stratego/XT (Bravenboer
et al., 2006) or Silver (Wyk et al., 2008). As for standalone DSLs, this strategy,
leading to so-called embedded heterogeneous DSLs, is often motivated by the lack
of extensibility of the underlying GPL. An alternative view, however, is that some
GPLs are flexible enough to permit implementing a DSL merely as an extension to
themselves. The resulting DSLs are called embedded homogeneous, and in such a case,
“extension” means the ability to modify some aspects of the original GPL, in syntactic
or even semantic terms.

3.1 Project Description and Current Results

Embedded DSLs offer the advantage of lightening the programming burden by
making it possible to reuse software components from the host GPL. The purpose

of this project is to explore the specificities of the embedded homogeneous approach.
First of all, this approach has several more or less obvious advantages over the

alternatives, even more so when the DSL is not supposed to produce standalone
executables, but instead, is part of a larger application (for example, a scripting,
configuration or extension language). In such a situation, the final application, as a
whole, is written in a completely unified language. While the end-user does not have
access to the whole backstage infrastructure, and hence does not really see a difference
with the other approaches, the gain for the developer is substantial. Since the DSL is
now just another entry point for the same original GPL, there is essentially only one
application written in only one language to maintain. The second advantage is that
the DSL layer is usually very thin, because instead of implementing a full language,
one needs to implement only the differences with the original one. Finally, when there
is no more distinction between DSL and GPL code, a piece of DSL program can be
used both externally (as a public interface) and internally, at no additional cost.

What may be less obvious, however, is such questions as which language features
are critical for the embedded homogeneous approach, how they interact which each
other, and how or where exactly to use them. In Verna (2012a)1, we answer those 1

Verna, D. (2012a).
Extensible languages:
Blurring the distinction
between DSLs and GPLs.
In Mernik, M., editor,
Formal and Practical
Aspects of
Domain-Specific
Languages: Recent
Developments, chapter 1.
IGI Global.

questions and we demonstrate how, when put together in the most appropriate way,
those features (mostly related to the extensibility of the language) can blur the frontier
between GPL and DSL, sometimes to the point of complete disappearance. It is worth
mentioning that using the extensibility of a language for DSL purposes is an idea that
predates even the very concept of DSL, as demonstrated by Denert et al. (1975) and
Pagan (1979). Also, the comparative literature on language extensibility is abundant
already (van Deursen et al., 2000; Vasudevan and Tratt, 2011; Tratt, 2008; Elliott,
1999), but as is often the case, the Lisp language is unfortunately sorely missing from
it. Thus, Verna (2012a) also aims at filling this gap. In addition to that work, which
exposes mostly general considerations, we applied those ideas to a much more specific
use-case, namely to embed a LATEX layer directly in Lisp. This work was reported in
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Verna (2012c)2 and Verna (2013)3. 2
Verna, D. (2012c). Star
TEX: the next generation.
In Beeton, B. and Berry,
K., editors, TUG’12, 33rd
TEX Users Group
Conference, volume 33.
TEX Users Group.
3
Verna, D. (2013). The
incredible tale of the
author who didn’t want to
do the publisher’s job. In
Beeton, B. and Berry, K.,
editors, TUG’13, 34th
TEX Users Group
Conference, volume 34.
TEX Users Group.

Apart from expressivity, another concern in DSL design and implementation is
the performance of the resulting programs. Specifically in the case of the homoge-
neous embedded approach, a critical factor to performance is the amount of meta-
programming involved which, in turn, depends on the exact features of the host GPL.
Here again, the lack of literature motivated us to fill the gap. A preliminary study
was already conducted and demonstrated that Lisp-based DSLs performed more effi-
ciently than equivalent competitors. This study, however, is currently published only
as a Masters internship student report.

3.2 Future Work

S ince our comparative study of embedded homogeneous DSL implementations is
published only as a technical report, the first and obvious next step is to make

it up to date and polish it for academic publication. Also, a number of research areas
are still to be explored. We list the most important ones below.

As noted by Kamin (1998) and Czarnecki et al. (2004), the embedded DSL ap-
proach has a number of drawbacks, among which are sub-optimal syntax and poor
error reporting.

Since an embedded DSL is expressed in terms of differences from the original GPL,
it may indeed be a lot of work to “bend” the original syntax sufficiently towards the
desired one, if it is very different. In such a case, the amount of work could possibly
turn out to be the same as in implementing a full parser. An interesting research
topic is thus to explore, across all languages suitable to embed DSLs homogeneously,
how far the new syntax can depart from the original one, and at exactly what cost.

Error management is also an important aspect in the design and implementation
of a DSL. However well designed your DSL is, it does not necessarily prevent the end-
user from making syntactic or semantic mistakes. One problem with the embedded
approach is that the reporting of errors is usually poor, uninformative, or even con-
fusing. Indeed, in an embedded homogeneous DSL, the reported errors are naturally
related to the underlying host GPL instead of specifically those of the DSL, and may
not make any sense for the end-user.

Research on better error reporting techniques for embedded DSLs exists (Tratt,
2008), but again, is missing Lisp, in spite of potentially useful (and rather unique)
features that we would like to investigate. In particular, we have the intuition that
the Common Lisp Condition System, with its ability to distinguish condition handlers
form restart points (Seibel, 2005, chap. 19) could help improve error management in
DSLs, even more so when accompanied with the automatically embedded debugger.
On the other hand, some aspects of error reporting are likely to remain challenging,
in particular when source code information is desirable or when macro-expansion is
involved. There is still much to be done in these areas.

Some aspects of extensibility for DSL design and implementation are still contro-
versial today, and hence worthy of an in-depth investigation. Two important such
aspects are dynamic vs. static typing, and lazy vs. strict evaluation.

Grounding an embedded DSL in a dynamic language has several advantages. First
of all, it is often undesirable to clutter DSL code with type annotations, especially
from the perspective of a non programmer end-user. Even though some DSL-friendly
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static languages such as Haskell provide a type inference system that allow static types
to remain implicit to some extent, it is still much easier to implement a DSL when
static type annotations are never required. On the other hand, potential type errors
occur at run-time in a dynamic language, thus affecting the end-user, something also
undesirable. In the static camp, some research already exists around the idea of a
priori type checking for a DSL, rather than a posteriori in the host language (Taha
and Sheard, 1997). Another interesting path to follow is that of gradual typing (Siek
and Taha, 2006, 2007), such as provided in the Racket language for example, or using
an optional but strong static type system in an otherwise dynamic language, as in the
case of Shen (Tarver, 2015). Note that Racket is known to be a very good candidate
for embedding DSLs (Tobin-Hochstadt et al., 2011).

One particular aspect of purely functional languages that is known to help in DSL
implementation is laziness, or normal order evaluation (Elliott, 1999, section 8, Kise-
lyov and chieh Shan, 2009, section 5). The most frequently emphasized advantages
are the ability to define potentially infinite data structures (a gain in expressivity),
and new control primitives such as extended conditionals (which do not systemati-
cally need the values of all their arguments). On the other hand, if the DSL needs
imperative constructs and side effects, a purely functional host language will get in
the way.

In the Lisp family of languages, implementing a lazy evaluation scheme is possible,
notably at the macro level, but it certainly is less natural or straightforward than
benefiting from native laziness such as in, say, Haskell. Also, as we have already
mentioned, working at the macro level comes with its own problems, for instance in
terms of error reporting and debugging. For all these reasons, we think that there is
still room for interesting research on mixing lazy and strict evaluation schemes in the
context of DSL design and implementation.
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Context orientation is a very dynamic form of programming, in which the execution
context influences the definition and structure of the software components involved
(e.g. classes, instances, methods, etc.). In this project, we propose a novel use for

context orientation, in which this paradigm counter-intuitively serves for
optimization purposes.

G enericity aims at providing a very high level of abstraction in order, for instance,
to separate the general shape of an algorithm from specific implementation de-

tails. Reaching a high level of genericity through regular object-oriented techniques
has two major drawbacks: code cluttering (e.g. class / method proliferation) and
performance degradation (e.g. dynamic dispatch cost). In this project, we explore
the potential use of the context-oriented programming paradigm in order to maintain
a high level of genericity, without sacrificing, either the performance, or the original
object-oriented design of the application.

4.1 Project Description and Current Results

T he idea of using context orientation for optimization purposes was born as part
of a more general investigation on the compromise between genericity and perfor-

mance. Most of the time, performance-critical applications are written in static lan-
guages. When genericity is also desirable, very sophisticated static meta-programming
techniques can be used, notably through the use of templates in C++ (Géraud and
Levillain, 2008). While the resulting code, being fully dedicated, can run very effi-
ciently, it is often quite obfuscated and hence hard to write, read, and maintain. On
top of that, the obligatory distinction between the development, compilation, and
execution phases, makes that approach hardly suitable to interactive applications.

Being more into the dynamic and interactive world, we found it interesting to
explore the compromise between genericity and performance from that alternative
point of view, with the intuition that the code would be easier to work with (especially
for interactive applications), but also more challenging performance-wise. On the
other hand, with the existence of optional static type systems in some languages,
or gradual typing in others, it would also become possible to use dynamic meta-
programming techniques to generate fully dedicated code, just like in the static camp.
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The use of context orientation for optimization purposes constitutes one exploratory
path in this more general agenda.

In order to ground the research into a realistic application domain, we chose the
field of image processing, as it is already an area of expertise in our lab (Levillain
et al., 2010). To that aim, we started by developing a first prototype, called Climb,
the Common Lisp Image Manipulation Bundle (Senta et al., 2012)1. Although still 1

Senta, L., Chedeau, C.,
and Verna, D. (2012).
Generic image processing
with Climb. In ELS’12,
5th European Lisp
Symposium, Zadar,
Croatia.

experimental, the library not only provides an extensible core of data structures and
algorithms, but also a DSL and a graphical modeling language, in order to ease the
writing of complex processing chains.

The idea behind genericity is to be able to write algorithms only once, indepen-
dently of the data types to which they may be applied. In the context of image
processing, being fully generic means being independent from the image formats,
pixel types, storage schemes etc. To this aim, Climb provides different abstractions,
among which are the following. A site is an abstract view of a pixel location. Image
sites may be 2, 3, or nD coordinates, and the grids need not be rectangular (for ex-
ample, some images types have hexagonal grids). A site set represents a collection of
sites (a whole image, a neighborhood, etc.) over which it is possible to iterate. Climb
also has abstract pixel values such as Boolean (for black and white images or masks),
RGB, RGBA, etc. Values can in turn be encoded in different forms (integers, floats,
etc.). Finally, image processing algorithms can be written on top of a core of abstract
primitives such as site iterators, generic value accessors etc.

This very high level of abstraction makes it trivial to work on peculiar kinds of
images such as graph-based ones, that is, images where the pixel adjacency relation
is represented by a graph instead of a grid. Graph nodes are just a special kind of
site, site iterators and value accessors work on them out of the box, so that any image
processing algorithm written in Climb will also work on graph-based images with no
modification to the code.

In Verna and Ripault (2015)2, we added support for context-oriented programming 2
Verna, D. and Ripault, F.
(2015). Context-oriented
image processing. In
COP’15,
Context-Oriented
Programming Workshop.

in Climb, and we demonstrated how this paradigm could be used, in a somewhat
counter-intuitive manner, to optimize the algorithms otherwise written in a highly
generic fashion. The general idea is that instead of cluttering the design with a
proliferation of classes and hierarchies for every single type of grid, site, or value,
contextual layers will automatically switch the object-oriented model according the
characteristics of the image currently being processed. Two examples of contextual
optimization are given below, one behavioral, one structural.

One example of behavioral optimization lies in the handling of static type anno-
tations in Clos. Instead of providing a whole hierarchy of say, RGB values, one for
each kind of value type (e.g. fixnum, float, etc.), it becomes possible to provide a
single, layered, RGB value class, each layer adding the appropriate type annotation to
the slots. In a similar fashion, all methods performing arithmetic operations on these
slots can in turn be equally layered and annotated, so that with full optimization, we
end up with fully dedicated, static code instead of generic one.

One example of structural optimization lies in the storage scheme for pixel values.
In the fully generic version, nD images are stored in n-dimensional arrays of values,
the values being in turn instances of different classes, such as the aforementioned RGB
one. This abstract representation is not efficient, as a lot of indirections and accessor
calls are involved for pixel access. Suppose, however, that we know in advance that
the image is a 3D rectangular grid of RGB fixnum values. A much more compact and
iteration-friendly storage scheme is to use a single 1D vector of inlined fixnum triplets
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(one for each channel). Here again, a carefully designed set of layers makes it possible
to automatically switch the internal image storage scheme to the most appropriate
representation, depending on the context, and also to switch the implementation of
all methods accessing that storage.

Preliminary performance measurements were conducted on several cases of either
behavioral, or structural contextual optimization. They were reported in Verna and
Ripault (2015) and show promising results.

4.2 Future Work

O ur experiments with context-oriented optimization use ContextL (Costanza and
Hirschfeld, 2005) as the underlying infrastructure. We currently don’t know the

potential performance impact of the infrastructure itself. ContextL goes through
the Clos Mop to dynamically generate classes that represent combined layers, and
dynamically dispatches on layered functions. Consequently, even in the optimized
versions, an overhead is to be expected for every layered function call, the order of
magnitude being that of a multi-method dispatch. This overhead could end up being a
real problem for very short layered functions called very often, as is frequently the case
in the image-processing domain. Another potential problem is with context switches.
Even though layer activation can be implemented efficiently (Costanza et al., 2006), it
is nevertheless possible that the cost becomes proportionally important in cases where
we would end up doing a lot of dynamic context switches. We plan to investigate these
issues in the future.

Despite promising preliminary results, we have encountered several limitations
that we intend to address in the future as well. Some of them are outlined below.

In ContextL, layers are defined only as symbols and do not retain state per se.
This, in our opinion, limits their expressivity. In order to compensate, we had to
define layered functions to obtain information about the currently activated layers in
Climb (“layered closures” in some sense). Ideally, layers should be stateful, perhaps
Clos objects.

Another related concern is the modeling of relations between layers, in particu-
lar, joint activation logic. ContextL provides no mean to express logical relations
between layers. Hence, layers supposed to be active at the same time need to be
all (de)activated manually, and it is possible to put the library in an illogical state,
resulting in run-time errors.

We also quickly faced the well-known “coercion problem”. For example, some im-
age processing chains may involve parallel branches in which different optimizations
are active. When two or more parallel branches are joined back together, data com-
ing from different contexts need to be “reunited”, and there is currently no clean /
automatic way to coerce objects from one context to another. On top of that, we still
have to investigate the use of both different threads and different contexts for parallel
branches, if that is even possible.

Context-oriented programming is one possible answer to a general question we
have been investigating: expressing optimization as a cross-cutting concern, that is,
without losing either genericity or the original design.

The contextual solution described here is not the only possible answer to this
problem, although it seems quite convenient so far. For example, instead of pre-
compiling the processing chains equipped with a context-oriented infrastructure, we
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can also wait for an image being loaded, and then generate, compile, and execute
a fully dedicated program. In the long term, we plan to incorporate this approach,
along with other paradigms in the study, and provide an in-depth comparison of their
respective merits.

Aspect-oriented programming (Kiczales et al., 1997) is a related paradigm which
has been used for optimization already (loop fusion, memoization, pre-allocation of
memory, etc.). Mendhekar et al. (1997) details a case-study of aspect-oriented pro-
gramming for an image processing library. We also intend to compare with a mixins
approach (Smaragdakis and Batory, 2001), and a purely functional one. Research
comparing aspects, mixins and monads already exist (Hofer and Ostermann, 2007;
Oliveira, 2009).

Finally, we also intend to investigate the use of more recent paradigms enabled
in dynamic object-oriented environments, such as predicate (Ernst et al., 1998; Ucko,
2001) or filtered dispatch (Costanza et al., 2008).
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In dynamic languages, sequences such as lists and vectors may hold values of
arbitrary types. In this project, we explore a way to express the fact that such a

sequence may still present regularities in the types of the contained values. We also
explore the idea of destructuring such a sequence by pattern-matching, and the

potential applications of such a facility.

P rogramming languages support sequences of values in various forms, such as
lists (notably in functional languages) and vectors or arrays. In the specific

case of dynamic languages, sequences may contain values of any type. We call these
heterogeneous sequences. Even when a sequence is heterogeneous, there can be some
regularity in the sequence of value types. For example, a property list alternates
names (say, symbols), and values of any type. An interesting problem is how to
express, in a declarative way, the regular structure of such sequences. This project
explores one possible path to answer this question, and the consequences of such a
feature in terms of expressivity and performance.

5.1 Project Description and Current Results

I n dynamic languages allowing it, static type annotations provide clues for the
compiler to make optimizations in performance, space, safety, debuggability, etc.

Because type information is available at run-time, application programmers may as
well make explicit use of types within their programs, for example, to dispatch poly-
morphic behavior by hand, based on the type of a value (one central feature of the
object-oriented paradigm).

This project was born out of an observed weakness of the Common Lisp type sys-
tem, when it comes to sequences, such as lists or vectors. So-called specialized arrays
are a special kind of arrays, the values of which are of a restricted type (Ansi, 1994,
Section 15.1.2). Thus, it is possible to express that a vector is general (may contain
anything), homogeneous (for example, a vector of floats), but not heterogeneous with
some regularity (for example, a vector rigorously alternating strings and numbers),
and neither an irregular but known list of elements types. In a similar way, the cons
type specifier (Ansi, 1994, System Class cons) allows restricting the types of its car
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and cdr, but there is no standard way to declare the types (whether homogeneous,
heterogeneous, regular or not) for all the elements of a list.

5.1.1 Features
This project introduces the concept of rational type expression for abstractly describ-
ing patterns of types within sequences. The concept is envisioned to be intuitive to
the programmer in that it is analogous to patterns described by regular expressions
(Hopcroft et al., 2006, Chapters 3 & 4). Just as the characters of a string may be
described by a rational expression such as (a · b∗ · c), matching strings such as "ac",
"abc", and "abbbbc", the rational type expression (string · number∗ · symbol) will
match vectors like #("hello" 1 2 3 world) and lists like ("hello" world). While
rational expressions match character constituents of strings according to character
equality, rational type expressions match elements of sequences by type.

In addition to the concept of rational type expression, which is a theoretical for-
malism, this project also introduces an S-Expression based, prefix denotation for it,
called regular type expression. For example, the regular type expression (:1 string
(:* number) symbol) corresponds to the rational type expression (string ·number∗ ·
symbol).

Rational type expressions are plugged into the Common Lisp type system by way
of a specific type called rte, parameterized by a regular type expression. The members
of such a type are all the sequences matching the given regular type expression. For
example, it becomes possible to declaratively check that the type of value is a list of
two numbers by writing (typep value (and list (rte (:1 number number)))).
Contrast this with programmatically accessing the two elements and checking for their
types.

Such a declarative system to describe patterns of types within sequences has great
utility for program logic, code readability, and type safety. Rational/regular type
expressions were presented in Newton et al. (2016)1 and Newton and Verna (2018a)2, 1

Newton, J. E., Demaille,
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AGH University of Science
and Technology, Krakow,
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2
Newton, J. E. and Verna,
D. (2018a). Recognizing
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In Meta’18,
Meta-Programming
Techniques and Reflection
Workshop, Boston, MA,
USA.

along with several preliminary use cases. We briefly describe them below.
Because Common Lisp strings are sequences of characters, it is possible to use an

rte type to perform traditional regular expression pattern matching on strings. The
performance of rte for this task can even be better than that of Perl-Compatible
alternatives such as cl-ppcre (Weitz, 2015), at the expense of being less expressive,
because limited to what rational expressions can do.

Common Lisp specifies different kinds of lambda lists, used in different contexts.
Ordinary lambda lists, defining the regular function call syntax, are slightly different
from macro lambda list, or from the ones used in destructuring-bind. Lambda list
syntax can be tricky or confusing at times, so rte can be used as a type checker, both
for validation and warning about common mistakes.

The aforementioned destructuring-bind macro allows some form of pattern
matching on lists, provided that their structure is known. When the said list can
have different forms, it is necessary to programmatically check for the list structure,
and issue different calls to destructuring-bind accordingly. By using a combination
of typecase on rte types and destructuring-bind, it is possible to provide a new
construct, which we call destructuring-case, doing both the list structure check
and the destructuring at the same time.
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5.1.2 Implementation
The implementation of rte uses well known techniques founded in rational language
theory, with some peculiarities due to the fact that we are working on types.

In order to determine whether a given sequence matches a particular regular type
expression, we conceptually execute a Deterministic Finite Automaton (DFA) with
the sequence as input. Thus, we must convert the regular type expression to a DFA,
which needs only be done once, and can often be done at compile time (the rte type
is often available statically; only the actual sequences usually appear at run-time).

There are various known techniques for converting rational expressions into DFAs,
notably the Rational Language Derivative approach of Brzozowski (1964) and Owens
et al. (2009), and that of Xing (2004). We chose the former because it allows more
expressive rational expressions.

In order to work on Common Lisp types, a number of specificities need to be taken
into account. The set of sequences of Common Lisp objects is not a rational language.
The mapping of a sequence of objects to a sequence of types is not unique, which, in
particular, led us to develop an algorithm for converting a set of Lisp types into an
equivalent set of disjoint types. These problems and the workarounds are described
in Newton et al. (2016).

Constructing the DFA can be extremely expensive (Hromkovič, 2002), so it is
important to be able to do it at compile-time. Once a DFA is generated, there are
basically two approaches for execution: we can either use a general function, accepting
any DFA as input and running it, or generate specialized code for every single DFA
we have. The latter approach is chosen for performance reasons. The advantage of a
specialized function is that the number of states encountered at execution is equal or
less than the number of elements in the target sequence. Thus, the time complexity
is linear in the number of elements in the sequence, and is independent of the number
of states in the DFA (which can be very large). Again, because most of the time, the
rte types are available at compile-time, we effectively end up with only an additional
O(n) cost to the run-time.

5.2 Future Work

T he rational type expression formalism is purely theoretical, hence potentially
applicable to any language offering support for heterogeneous sequences. As

such, we would like to study its applicability to languages such as Python, Ruby, Lua
(Ierusalimschy, 2013), Julia, or Javascript. Because type information is available at
run-time in dynamic languages, converting a (declarative) regular type expression into
the corresponding (programmatic) type-checker function is not expected to cause any
problem. It is not obvious, however, whether we can reach the same performance as
we do in Lisp. Indeed, our DFA execution functions make heavy use of very low-level,
imperative constructs, such as block and go, allowing for very efficient native code.

Another aspect of this research has a much less obvious outcome, however, namely,
the insertion of rte types into the native type system of the concerned language. In
Common Lisp, rte types are defined using the satisfies type specifier, essentially
allowing the type-checker to call any user-defined procedure. How to mimic this
functionality, or even just whether it is feasible in other languages remains to be seen.
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In the traditional object-oriented approach, methods are specialized to the types
(or classes, since it is generally equivalent) of their argument(s). In that model, it
may thus be possible to specialize a method on list’s or vector’s, but not on their
potentially regular structure. We would like to study the idea of plugging rte types
into the object-oriented dispatch mechanism to make this possible. If successful,
a study on the performance of such a mechanism alone will be conducted. Also,
it would then be interesting to explore its integration with even more generalised
dispatch mechanisms, such as predicate (Ernst et al., 1998; Ucko, 2001) or filtered
dispatch (Costanza et al., 2008).

Finally, note that rte was originally intended to deal with sequences (in other
words, sets with an order relation). Consider however that other kinds of aggregates
can be regarded as sequences if we add an order relation to them (for example, classes
and structures with the slots ordered by lexical definition). We would like to explore
the idea of using rte for matching class or structure instances based on the types
of the slot values. In such a situation, an instance would turn out to be of two
different types: its corresponding class or structure, but also of a specific rte type. In
fact, doing this establishes some kind of bridge between structural and nominal typing
(Pierce, 2002), and we can see potential applications, notably in terms of serialization.
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Contemporary Lisp compilers use the native S-Expressions of the language directly
to represent types along with ad hoc and imperfect techniques for type calculus (type

checking, sub-typing computation, etc.). We propose the use of BDDs as an
alternative way to represent types, and compare the respective merits of both

approaches. We also propose optimization techniques for several language primitives,
along with a re-implementation of subtypep, a predicate of critical importance in

type calculus.

T he performance of type-related computation is of critical importance in dynamic
languages for several reasons. First of all, a lot of it (notably type checking)

happens at run-time instead of compile-time, so it has a direct impact on the efficiency
of program execution. On top of that, type calculus is not restricted to the internals of
the language; the programmer can also work directly on types, since the information
is available at run-time. Finally, providing a facility for static type annotation in
an otherwise dynamic language opens a large window to type-calculus optimization.
This project deals with various performance aspects of type calculus. It is a direct
consequence of the work on rational type expressions (Section 5 on page 19), but it
is presented separately because its potential applications are much wider than just
rational type expressions.

6.1 Project Description and Current Results

C ommon Lisp programs which manipulate type specifiers have traditionally used
S-Expressions as the programmatic representation of types (Ansi, 1994, Section

4.2.3). Such a choice of an internal data structure offers advantages, such as ho-
moiconicity (McIlroy, 1960; Kay, 1969), making the internal representation human
readable (in simple cases), making programmatic manipulation intuitive, and enabling
the direct use of Common Lisp primitives, such as typep and subtypep.

However, this approach presents some challenges and weaknesses that we faced,
in particular when working on regular type expressions. As mentioned in Chapter 5
on page 19, one step in the process of constructing a DFA for matching a regular type
expression consists of converting a set of overlapping types into a set of disjoint ones,
which we call the Maximal Disjoint Type Decomposition (MDTD) Problem. When
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working on this specific problem, we ran into two major obstacles. First, working
with type specifiers denoted by S-Expressions has a dramatic impact on performance.
Next, the subtypep primitive, which is at the core of the MDTD algorithm, is in
general not implemented efficiently, and worse, doesn’t necessarily provide correct or
meaningful answers. We hence had to explore alternative representations for type
specifiers, and alternative implementations of subtypep.

6.1.1 An Alternative Representation for Type Specifiers
In Newton et al. (2017)1, we propose the use of BDDs (Akers, 1978; Bryant, 1986) as 1
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an alternative internal representation for Common Lisp types. BDDs have interesting
characteristics such as representational equality (it can be arranged that equivalent
expressions or equivalent sub-expressions are represented by the same object). While
techniques to implement BDDs with these properties are well documented, their ap-
plication to the Common Lisp type system presents obstacles which are also analyzed
and presented.

In order to evaluate the pros and cons of BDDs as an alternative to S-Expressions
for representing type specifiers, we provide two different algorithms for the MDTD
problem, using either representation (hence a total of four variants). Performance
measurements show that BDDs are a promising path, although not a definitive winner,
and not necessarily in all situations.

6.1.2 An Alternative Implementation of subtypep

As mentioned earlier, our implementations of the MDTD problem make extensive
use of subtypep, a Common Lisp predicate function for introspecting sub-typing
relationships.

Every invocation of (subtypep A B) either returns the values (T T) when A is
a sub-type of B, (NIL T) when not, or (NIL NIL) when the predicate could not
(or failed to) answer the question. The latter can happen when the type specifier
(satisfies P) (representing the type {x|P (x)} is involved. For example, given two
arbitrary predicate functions F and G, there is no way subtypep can answer the
question (subtypep ’(satisfies F) ’(satisfies G)). However, some implemen-
tations abuse the permission to return (NIL NIL). For example, in SBCL, (subtypep
’boolean ’keyword) returns (NIL NIL), thus violating the standard which indeed
requires a correct answer for all primitive types. The definition of the keyword type
is in fact responsible for this failure (at least in that implementation, it involves the
satisfies type specifier).

The inaccuracy of subtypep has a direct impact on our work with BDDs as an
alternative representation for type specifiers. Indeed, as BDDs can be quite large, the
predicate is used extensively to reduce the BDDs to the so-called Reduced Ordered
Binary Decision Diagram (ROBDD) form (Gröpl et al., 1998). Using the ROBDD
form ensures that there are no duplicate sub-trees in the BDD, and may affect the
performance of the DFA’s execution function. The unreliability of subtypep leads to
many lost BDD reductions and therefore to the generation of sub-optimal code.

In Valais et al. (2019)2, we present a new implementation of subtypep, based on 2
Valais, L., Newton, J. E.,
and Verna, D. (2019).
Implementing baker’s
subtypep decision
procedure. In ELS’19,
12th European Lisp
Symposium, pages 12–19,
Genova, Italy.

initial work by Baker (1992). In this paper, Baker provides guidelines to obtain an
implementation that is supposedly more accurate than, and as efficient as the average
one. He does not, however, provide any serious implementation and his guidelines
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are sometimes obscure. Along with our new implementation, we try to clarify several
parts of his description and fill in some of its gaps or omissions. We also argue in favor
of or against some of his choices, and present our alternative solutions. We further
provide some proofs that might be missing in his article, and some early efficiency
results.

6.1.3 typecase Optimization
A direct consequence of our work with BDDs and a more accurate version of subtypep
is in potential optimizations of the typecase macro expansion, a user-level facility
that we also use extensively in our work on regular type expressions. The typecase
macro is a multi-branch conditional checking the type of its argument rather than
its value. The conditional type specifiers may go from simple type names such as
fixnum, to more expressive types involving the satisfies predicate, or even logical
combinations of types.

Naive typecase implementations may lead to sub-optimal code for at least three
reasons. When different conditional branches overlap, the same type checks could
end up being performed multiple times (and at run-time). The specification suggests
but does not require that the compiler issue a warning if a branch is unreachable
(being completely shadowed by earlier ones). Therefore, implementations are free to
leak unreachable code. Finally, if it can be determined that the provided branches
perform a full type coverage, then the last one can be turned into a default branch,
hence removing one (run-time) type check completely.

In Newton and Verna (2018b)3, we contrast two approaches to optimizing 3
Newton, J. E. and Verna,
D. (2018b). Strategies for
typecase optimization. In
ELS’18, 11th European
Lisp Symposium, pages
23–31, Marbella, Spain.

typecase accordingly. The first one is based on heuristics intended to estimate the
run-time performance of certain type checks. The second one makes use of ROBDDs
as an alternate representation of type specifiers. Both approaches allow us to iden-
tify unreachable code, test for exhaustiveness of the clauses, and eliminate redundant
checks. One critical aspect of the heuristic approach is to be able to re-order the dif-
ferent branches without breaking the semantics of the original code, something which
may not be trivial in the presence of side-effects. Doing this reordering requires work-
ing on disjoint types, and is thus deeply connected to the MDTD problem mentioned
earlier.

Both approaches have pros and cons. We demonstrate that the first approach is
sensitive to the number of branches, and is not always able to remove redundant type
checks. On the other hand, the second approach won’t miss redundant checks, but
may leave unnecessary ones behind.

6.1.4 destructuring-case Optimization
In the general area of conditional branching on types, related optimization techniques
may also be applied to the destructuring-case macro that we introduced in Section
5 on page 19, as an application example of regular type expressions. Recall that
destructuring-case pattern-matches structurally different lambda-lists, and then
performs destructuring on the appropriate one. A risk of inefficiency associated with
a naive implementation of destructuring-case is that the candidate expression
being examined may be traversed multiple times, once for each clause whose format
fails to match, and finally once for the successful one.

In Newton and Verna (2019a)4, we provide an implementation which encodes 4
Newton, J. E. and Verna,
D. (2019a). Finite
automata theory based
optimization of conditional
variable binding. In
ELS’19, 12th European
Lisp Symposium, pages
26–33, Genova, Italy.
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the lambda-lists into rte types, uses DFAs to compile the type checking code, but
also merges all the DFAs together, so as to share states into a single automaton.
The resulting execution function has the property to avoid multiple traversals of the
candidate expression.

6.2 Future Work

B ecause the BDD approach is not clearly better than the S-Expression one, we
need to work on heuristics for predicting in which situation one approach is

better than the other. Ideally, the two approaches should co-exist and be selected
appropriately. It is known that algorithms using BDDs tend to trade space for speed.
Our implementation is not much optimized yet, apart from ideas taken from Andersen
(1999). Castagna (2016) suggests a lazy version of the BDD data structure which may
reduce the memory footprint. We could also probably benefit from the expertise of
the CUDD developers in BDD optimization (Somenzi, 2016).

Our re-implementation of subtypep is still under active development. It cur-
rently targets SBCL only, and focuses almost entirely on result accuracy. It supports
primitive types, user-defined types (via deftype, classes, and structures), member /
eql type specifiers, and ranges (e.g. (integer * 12)). The plan is, of course, to
complete the implementation. After that, we also intend to optimize it, even though
encouraging results on efficiency have already been observed, without any particular
work on that aspect.

For future extensions to this research we would like to experiment with extend-
ing the subtypep implementation to allow application level extensions, and thereby
examine run-time performance when using rte based declarations within function
definitions.

As far as the typecase optimization is concerned, the heuristics used by the
first approach are still simplistic. It is thus desirable to find more accurate ones,
notably taking into account how computationally intensive certain type specifiers are
to manipulate. While typecase is a user-level macro, it is also used by the compilers
themselves. There are some limitations to a portable implementation of it, notably
the lack of a standard expander for user-defined types, so this, as well, is an interesting
topic for future research.

As far as the destructuring-case optimization is concerned, there is still work
to be done in improving our handling of DFAs. The simplification algorithm we use to
eliminate equivalent states is not optimal. There is also the question of DFA merging
by synchronized cross-product. Currently, the merged DFAs are sub-optimal, so an
open question is whether to improve the input DFAs before doing the cross-product,
only simplify the resulting cross-product, or doing both.

Because all dynamic languages reify types at run-time and offer at least introspec-
tive access to them, it would be interesting to study the efficiency of type calculus
in those languages (e.g. Python, Ruby, Lua, Julia, and Javascript), and maybe try
to apply our original ideas to them, notably the use of BDDs, and alternative imple-
mentations for the equivalent of subtypep and other type-related primitives.
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Worst-Case BDD StudyWorst-Case BDD Study

One defended Ph.D. •
One journal paper •

BDDs are a very simple data structure, yet useful in a very wide range of
applications. Although simple to implement, their dynamic behavior, notably in
terms of number of nodes, shape, and memory footprint is neither obvious, nor
intuitive. This project contributes new theoretical, statistical, and experimental

analysis of the dynamic behavior of BDDs, in typical and worst-case scenarios. This
knowledge helps making more pertinent decisions about their usefulness in specific

applications.

O ut of a concern for performance, the development of rational type expressions
(Section 5 on page 19) led us to envision the use of BDDs as an alternative data

structure for reifying Common Lisp type specifiers and reason about them. The pre-
liminary performance experiments contrasting BDDs with S-Expressions (the native
type representation) were neither very conclusive, nor easy to interpret. It was thus
deemed important to get a better perspective on the behavior and performance of
BDDs, independently from any concrete use.

7.1 Project Description and Current Results

B inary Decision Diagrams are a data structure useful for representing Boolean ex-
pressions, integrated circuit design, type inferencers, model checkers, and many

other applications. Decision diagrams have been defined in various forms in currently
available literature. Colange (2013) provides a succinct historical perspective, includ-
ing BDDs (Bryant, 1986), Multi-Valued Decision Diagrams (Srinivasan, 2002), Inter-
val Decision Diagrams (Strehl and Thiele, 1998), Multi-Terminal BDDs (Clarke et al.,
1997), Edge-Valued Decision Diagrams (Lai and Sastry, 1992), and Zero-Suppressed
Binary Decision Diagrams (Minato, 1993).

The particular variant we investigate in this project is the ROBDD. When we use
the term ROBDD, we mean, as the name implies, that the BDD has been reduced
(R) and its variables ordered (O) in specific ways. It is worth noting that there is
variation in the terminology used by different authors. For example, Knuth (2009)
and Bryant (2018) both use the unadorned term BDD for what we call ROBDD.
Even though the ROBDD is a lightweight and very simple data structure, some of its
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behavior regarding the amount of necessary memory allocation may not be obvious
in practice.

In Newton and Verna (2019b)1, we convey an intuition of the expected sizes and 1
Newton, J. E. and Verna,
D. (2019b). A theoretical
and numerical analysis of
the worst-case size of
reduced ordered binary
decision diagrams. ACM
Transactions on
Computational Logic,
20(1).

shapes of ROBDDs from several perspectives. We explore (experimentally, statisti-
cally, and theoretically) the typical and worst-case ROBDD sizes in terms of number
of nodes. We define the “residual compression ratio” as the ratio between the number
of nodes in the reduced form and the un-reduced one (hence, the smaller the ratio,
the better).

First, we provide an analysis of the explicit space requirements of ROBDDs. This
analysis includes an exhaustive characterization of the sizes of ROBDDs of up to
four Boolean variables, and an experimental random-sampling approach to provide
an intuition of size requirements for ROBDDs of more variables. We additionally
provide a rigorous prediction for the worst-case size of ROBDDs of n variables. We
use this size to predict the residual compression the ROBDD provides. While the
size itself grows unbounded as a function of n, the residual compression ratio shrinks
asymptotically to zero. That is, ROBDDs become arbitrarily more efficient for a
sufficiently large number of Boolean variables.

In order to perform our experiments, we designed an algorithm for generating a
worst-case ROBDD for a given number of variables. This algorithm may be useful to
projects deciding whether the ROBDD is the appropriate data structure to use, and
in building worst-case examples to test their code.

While our theoretical results are not surprising, as they are in keeping with previ-
ous literature, we believe our method contributes to the current body of research by
our experimental and statistical treatment of ROBDD sizes. Our approach for this
development is different from what we have found in current literature, in that while
it is mathematically rigorous, and at the same time, highly based on intuitions gained
from experimentation.

7.2 Future Work

T here are several shortcomings to our intuitive evaluation of statistical variations
in ROBDD sizes. For example, our random-sampling measurements led us to

believe that when the number of variables grows, the difference between the average
and worst-case ROBDD sizes becomes negligible, an observation which seems related
to the Shannon Effect (Gröpl et al., 1998). We would like to continue this investigation
to better justify this guess.

The number of samples we took in our statistical experiments were constrained
by the computation time at our disposal. To get an idea of the figures involved, com-
puting approximately 3000 samples of 10-variable ROBDDs takes around 50 hours.
We would like to extend our platform to work in a multi-threaded environment, thus
exploiting more cluster nodes for shorter periods of time. It may also be possible to
exploit other Common Lisp features such as dynamic extent objects, or weak hash
tables to better manage the memory footprint of our computations, thus achieving
more ROBDDs computed per unit of time.

Our current implementation for constructing many ROBDDs while preserving
structural identity is to memoize them in a hash table. This hash table can become
extremely large, even if its lifetime is short. We have characterized the worst-case size
of an ROBDD as a function of the number of Boolean variables. This characterization
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ignores the transient size of the hash table, so one might argue that our size estima-
tions are misleading in practice. We would like to continue our experimentation and
analysis to provide ways of measuring or estimating the hash table size, and potential
ways of decreasing the incurred burden, perhaps getting inspiration from CUDD and
the cache management system described by Brace et al. (1990). For example, we
suspect that most of the hash table entries are in fact never re-used. We would like
to experiment with weak hash tables as well: once all internal and external references
to a particular hash table entry have been abandoned, that hash table entry can be
removed, thus potentially also freeing the child nodes. Measuring the effectiveness of
weak hash tables is ongoing research.

Minato (1993) suggests that using the BDD variant called 0-Sup-BDD is well
suited for sparse Boolean equations. We see potential applications for 0-Sup-BDDs in
type calculations, especially when types are viewed as sets, as is the case in Common
Lisp. In such a situation, the number of types is large, but each type constraint
equation scantly concerns few types. We would like to experiment with 0-Sup-BDD-
based implementations of our algorithms, and contrast the performance results with
those found thus far.

It is known that algorithms using BDDs tend to trade space for speed. A question
naturally arises: can we implement a fully functional BDD which never stores calcu-
lated values. The memory footprint of such an implementation would potentially be
smaller, while incremental operations would become slower. It is not clear whether
the overall performance would be better or worse. Castagna (2016) suggests a lazy,
more memory-friendly version of the BDD data structure, which would have a pos-
itive effect on our BDD based algorithms. This approach suggests dispensing with
the excessive heap allocation necessary to implement Andersen’s approach (Andersen,
1999). Moreover, our implementation (based on the Andersen model) contains addi-
tional debugging features which increase memory usage. We would like to investigate
which of these two approaches gives better performance, or allows us to solve certain
problems. It seems desirable to attain heuristics to describe situations in which one
or the other optimization approach is preferable.

Even though both Andersen (1999) and Minato (1993) claim the necessity to
enforce structural identity, it is not clear whether, in our case, the run-time cost
associated with this memory burden, outweighs the advantage gained by structural
identity. Furthermore, the approach used by Castagna (2016) seems to favor laziness
over caching, lending credence to our suspicion.

Somenzi (2016) uses a data structure called DdNode to implement different fla-
vors of BDDs, including Algebraic and Zero-Suppressed ones. We have already ac-
knowledged the need to experiment with other BDD flavors to efficiently represent
run-time decisions on types, for example, to perform simplification of type-related
logic at compile-time (Newton et al., 2017; Newton and Verna, 2018b). The work of
Lozhkin and Shiganov (2010) and Shannon (1949) may give insight into how much
improvement is possible, and hence whether it is worth dedicating compilation time
to it.
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Dynamic Object OrientationDynamic Object Orientation

Two journal papers, one conference paper •

All sorts of interesting aspects to object orientation arise in the context of a
dynamically typed language, in interaction with other paradigms such as the

functional one, when both introspection and intercession are available, and when the
object layer is built out of a Mop. While the project dealing with context-oriented
optimization (Chapter 4 on page 15) focused on a particular use of dynamic object

orientation, this project seeks to make the very paradigm continue to evolve.

T here is no such thing as an “object-oriented” paradigm, as Nierstrasz (2010) com-
plained about, in an enjoyably sardonic fashion. What mainstream industrial

languages call “object-oriented” today is hardly what Alan Kay had in mind (Kay,
2003) when he designed Smalltalk (Kay, 1993) and coined the term. The classical ap-
proach tends to view object orientation as hierarchies of inheritable classes for state,
and polymorphic methods for behavior. On the other hand, languages such as Self
(Ungar and Smith, 1987) and JavaScript rather use prototypes and delegation (Ungar
et al., 91; Lieberman, 1986). Even within one family, such as the class-based one, a
diversity of approaches is to be found. For example, inheritance can be extremely
limited, as in Julia (which, to be honest, does not really claim to be fully object-
oriented). The dynamic dispatch can be implemented in the form of message-passing
as in Smalltalk, or via multi-methods (Castagna et al., 1992; Castagna, 1996) as in
Clos, etc.

8.1 Project Description and Current Results

F acing this “object-oriented jungle”, we are interested in the following questions.
Can we contribute to putting some order in it, and how? What are the specificities

of the object-oriented paradigm when mixed with the other ones we are interested in?
Is this paradigm as expressive as it will ever get?

In Verna (2008)1 and Verna (2010b)2 we follow the footsteps of Norvig (1996) and 1
Verna, D. (2008). Binary
methods programming: the
CLOS perspective. Journal
of Universal Computer
Science, 14(20):3389–3411.
2
Verna, D. (2010b).
Revisiting the visitor: the
just do it pattern. Journal
of Universal Computer
Science, 16(2):246–271.

Bruce et al. (1995), and address, from the perspective of paradigm mixture, two clas-
sical object orientation problems: design patterns (Gamma et al., 1994; Buschmann
et al., 1996) and binary methods. Those problems are interesting because they un-
derline, either the deficiencies of the classical object-oriented approach (in the case of
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binary methods), or the influence of the general expressivity of the target language
(in the case of design patterns).

Some of the points we make are well known already, and are merely restated in
a new and hopefully interesting setting. In particular, we emphasize why multiple-
dispatch on methods external to classes increases the Separation of Concerns (SOC) by
clearly separating inheritance from polymorphism. We also stress how dynamically
typed object orientation makes it possible to lighten the object-oriented design of
the application by getting rid of traits often associated with the object paradigm,
whereas in fact being merely static typing idiosyncrasies (e.g. abstract classes). We
also contrast the use of objects and methods, as opposed to (first-class) functions and
lexical closures, to implement stateful behavior.

Some other points we make, however, are probably much less frequent in the ex-
isting literature, probably because not many languages offer the necessary paradigms
to raise them. In fact, most of them involve reflexivity (both intercession and intro-
spection), and the existence of a Mop.

The first point consists of bridging the gap between the functional and object-
oriented paradigms. In Verna (2010b) for example, we observe that the visitor pattern
is essentially a form of mapping (originally a functional concept), only structural, since
it involves traversing the components of an aggregate object rather than a sequence
of values. Nevertheless, the introspective capabilities of the object system make it
possible to implement a universal structural mapper, not requiring any preliminary
knowledge of its argument type. On top of that, we demonstrate that it is also possible
to fully integrate it with the built-in facilities of the language. The result is in fact
a unified “traversal” facility, acting like a transparent visitor pattern on objects, and
like a regular functional map on sequences.

The second point we never cease to make is to fight against the general idea that
dynamic languages are unsafe or too permissive (an idea often propagated by the
advocates of static typing). In Verna (2008) for example, we do not stop at a simple
implementation of binary methods which would make the concept merely available.
On the contrary, we also show how the Mop allows us to design and implement
a very secured version of it. In particular, we show how to establish two different
levels of protection. The first one enforces a correct usage of binary methods, by
automatically checking that any call to a binary function is made with two arguments
of the exact same type. The second one enforces a correct implementation of binary
methods, by automatically checking that all existing methods in fact specialize on
two arguments of the same type, and also that no necessary method implementation
is missing (what we call “binary completeness”). Note that these safeguards behave
exactly like a strong yet dynamic typing system: it becomes impossible to misuse or
misimplement a binary function, but the safeguards are triggered as late as possible
(something that dynamic typing detractors may still call “unsafe”). In doing so, we
do have a completely secure system, while preserving dynamic flexibility, such as the
ability to add or remove binary methods at run-time.

In addition to these considerations on paradigm mixture, the question of extend-
ing the expressivity of dynamic object orientation even more was also raised more
recently. Several attempts at generalizing object-oriented concepts already exist, no-
tably regarding polymorphic dispatch (Ernst et al., 1998; Ucko, 2001). Recently, we
started to work on a new generalization of polymorphic dispatch, based on a facility
which is already available in Clos, although in a somewhat embryonic and ill-defined
state.
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In traditional object-oriented languages, the dynamic dispatch algorithm is sim-
plistic and hardwired: a polymorphic call triggers the most specific method only.
Any other method call must be programmed explicitly. Clos generalizes the dis-
patch algorithm through the concept of method combinations: when several methods
are applicable, it is possible to select several of them, decide in which order they will
be called, and how to combine their results. Method combinations are programmable
and are specified in a declarative way, which greatly improves the SOC. Indeed, when
in need for a non-conventional method call chain, the chaining code can be expressed
outside of the methods themselves.

Although a powerful abstraction, method combinations are unfortunately under-
specified, and the specification sources (either the Common Lisp standard, or the
Clos Mop) are even sometimes contradictory. The first step of this research was
hence to clean up the concept, which we did in in Verna (2018b)3. More specifically, 3

Verna, D. (2018b). Method
combinators. In ELS’18,
11th European Lisp
Symposium, pages 32–41,
Marbella, Spain.

we pointed out the caveats of their current specification, and exhibited the conse-
quences, notably showing inconsistencies in otherwise conformant implementations.
We also proposed a new Mop for a cleaned up version of the concept, called method
combinators, along with a prototype implementation.

As a direct consequence of this work, one first generalization of dispatch was
achieved. Method combinations are normally attached to a generic function in a way
that makes it very impractical to change them (most of the time, it is simpler to
create a brand new generic function). With our new implementation, on the other
hand, it becomes trivial to call a generic function with alternative combinators, even
a different one for every call. In some sense, the way applicable methods are combined
becomes completely separate from the generic function itself. This, however, is only
the first step in a bigger agenda.

8.2 Future Work
Specifically on method combinators, there is still some work left to do. They are
currently provided as a prototype and a proof of concept only. Their API still needs
to be stabilized, and their implementation made as portable as possible. Portability
is expected to pose some difficulties, as it involves modifying the internals of the
Mop itself. To be more precise, it is possible to implement them in a completely
portable fashion, but the impact on performance is prohibitive. The second difficulty
is that our proposed Mop for method combinators not only provides a new API, but
also contains improved or fixed versions of “official” functions specified in the Mop
standard (Kiczales et al., 1991). Although the Mop itself is not part of the Ansi
specification of the language, updating it is not expected to be easily accepted by
existing vendors.

As mentioned earlier, our work on method combinators is the first step in a bigger
plan. The plan is in fact to increase yet again the degree of SOC in the dynamic dis-
patch mechanism. Generic functions clearly separate behavior (polymorphism) from
structure (inheritance). Predicate or filtered dispatch, along with multi-methods,
generalize the method selection process. A fully functional concept of method combi-
nators such as the one we propose (and especially the ability to specify a combinator
at function call time) helps separating the method(s) execution process from the
method(s) selection one.

In this context, we believe there is no more reason for methods to belong to
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a single generic function at a time (as required by the Common Lisp standard).
Consequently, we propose the concept of “standalone methods”. With such a design,
we believe to have pushed the SOC on step further in the dynamic dispatch facility.
Method combinators exist as global objects, so do methods and generic functions,
which simply become mutable sets of shareable methods. Note that this idea has
not been explored at all yet, but we are eager to study the implications in terms
of expressivity, the potential limitations, and perhaps more importantly, how it can
interact with filtered or predicate dispatch.

Let us end this section with two ideas regarding future projects around dynamic
object orientation. These two ideas do not fit anywhere else, neither have they been
investigated at all yet, but it is our intention to explore them sooner or later, so we
thought we might as well put them down here.

The first one deals with the segregation between the class-based and the prototype-
based approach. In the current object-oriented landscape, it seems that the segre-
gation holds, although some level of co-existence is possible, especially in dynamic
languages (prototype systems are known to have been implemented on top of class-
based ones, for example). There also seems to be a lot of confusion between the two
approaches, notably when it comes to the implementation of the concepts. For in-
stance, Python claims to be a class-based language, but the way object properties are
looked up definitely sounds like a prototype-based approach more than a class-based
one. To paraphrase Castagna (1995), we suspect that the class vs. prototypes debate
is in fact a “conflict without a cause”, and we would like to explore potential ways to
re-unite the two approaches, hopefully in a formal way, with a calculus of some sort.

The second prospective idea we want to explore some time in the future is related
to the tight integration between types and classes that practically all class-based
object-oriented languages suffer from. The sub-typing / sub-classing equivalence is
an old and well-known deficiency of the traditional approach (America, 1987; Liskov
and Wing, 1994). To the best of our knowledge, the only two programming languages
to have ever attempted to separate types from classes are POOL (America, 1991) and
Cecil (Chambers, 92; Dean et al., 1996), maybe also with its successor Diesel. We are
very interested in exploring this idea in the context of Clos, all the more than the
re-implementation of subtypep that we are working on (cf. Chapter 6 on page 23)
may provide us with the hooks that we need into the Common Lisp type system.
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Exception-Oriented ProgrammingException-Oriented Programming

No publication yet •

In this project, we want to explore the opportunities offered by extended exception
handling mechanisms, such as the ones of Common Lisp and Dylan. Most of the

time, languages with explicit support for exceptions focus on error management and
recovery. The extended exception handling systems we are interested in not only
provide more expressive error management, but can also be bent to address other

problems, unrelated to error management or even exceptions.

W ith the notable exceptions of Go and Rust, many contemporary high-level
programming languages offer some support for structured exception handling

(Goodenough, 1975). This is true of both statically typed languages such as C++ or
Java, and dynamic ones such as Python, Ruby, or Julia.

Except for small variations, some of them inherent to the very nature of the
concerned languages (e.g. statically vs. dynamically typed), support for exception
handling is almost always the same, based on the classical try-catch/throw duet (try-
except/raise in Python, rescue/raise in Ruby). A try block executes code that
may throw an exception, disrupting the normal flow of control, yet it is possible to
catch and handle them gracefully instead of just aborting the execution.

More expressive exception handling mechanisms do exist, however, and although
they are not very common, we believe that they still have some unexplored expressivity
potential.

9.1 Project Description and Current Results

T he benefits of language-level support for exception handling are well known today.
Without such support, one ends up using specific return values to indicate an

error, which is not always possible, cf. the “semi-predicate” problem (Norvig, 1992,
p. 127). One can otherwise resort to global variables, such as errno, or even reserve
return values for indicating state, and passing in-out arguments by reference to the
callee, to be filled in with results. All such idioms are commonly encountered in the
POSIX (2018) system calls API for example (note that C doesn’t have any exception
handling mechanism, although it is possible to build one on top of setjmp/longjmp).

On the other hand, language-level support for exception handling has many advan-
tages. First of all, the more declarative shape of code dealing with reified exceptions
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increases the SOC: the code for normal execution becomes separate from that deal-
ing with “abnormal” behavior. The second advantage of native exception handling
is that exceptions do not have to be caught and processed exactly where they occur.
For example, errors may be raised at a low level in the code, while being treated
only at a higher application level. The third advantage is that, when exceptions are
reified, it is possible to provide a rich error ontology, with at least a hierarchy of
built-in ones, upon which the programmer can act. Moreover, and this is the fourth
advantage, first-class exceptions, which is the case when they are implemented in an
object-oriented fashion, are usually extensible. Programmers can hence define their
own sub-hierarchies, for example by subclassing std::exception in C++, Exception
in Java or Python, and StandardError in Ruby (in Julia, one would also derive from
Exception, but creating user-level exception hierarchies is not possible because all
concrete types are final).

The classical try-catch/throw model suffers from a number of limitations, rarely
acknowledged by the community (probably because it is so widespread nowadays that
we simply take it for granted).

First of all, there is a frequent confusion between “exception” and “error”, as no-
ticeable in the official Java tutorials (Oracle, 2019) or Ruby documentation (Ruby,
2019), where the two terms are used interchangeably. This means that even if that
is not strictly the case (for example, Ruby has an exception class for Unix signals),
there is a clear bias towards considering exception handling mostly as error manage-
ment. This bias is unfortunate because we think that a properly designed exception
management model can also be useful for handling non-problematic, if exceptional,
behavior. The exploration of this idea is one first aspect of this project. In fact, we
also think that this idea can even go further, in the sense that exceptions do not even
need to be exceptional (in the sense of not occurring frequently). In other words,
applying language-level support for exceptions to normal and even frequent behavior
is worth revisiting.

A second limitation of the classical model is its 2D-only SOC. As mentioned
earlier, language-level support for exception handling increases the SOC, by clearly
separating the code that may throw exceptions from the code that will handle them.
Unfortunately, there is one more step towards orthogonality that the classical model
misses. In this model, the catch part actually does two different things: catching the
exception, and handling it locally. Again, this lack of orthogonality is unfortunate for
two reasons. First of all, the place where an exception is caught should not necessarily
be the place where it is handled. Secondly, apart from the catching location, there
could even be several places where the exception could be handled, maybe in different
ways. By making this additional distinction, that is, by indicating catching places
and handling places separately, we achieve one more degree of SOC in our exception
handling model.

The third limitation, arguably a corollary to the second one, is related to stack
management. In the traditional model, when an exception is caught, the stack is
effectively unwound to that particular location. Such systems are often said to have
termination semantics (Shalit et al., 1996). Unwinding the stack means that a large
part of the dynamic execution context is lost. This context could nonetheless contain
useful information for further handling of the caught exception. On the other hand, if
we preserve the entirety of the stack when an exception is thrown and caught (a.k.a.
calling semantics), we can potentially establish handlers anywhere between those two
points, hence “propagating” the exception back down the stack. That is why this
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limitation is in fact the most important of the three, as lifting it will make it much
easier to find interesting applications of a 3D separation of concerns.

The Common Lisp condition system (Seibel, 2005, chapter 19) is probably the most
prominent advocate of a stack-preserving, 3D SOC exception management system
(the one in Dylan was modelled after it). Although nothing is published yet, we have
started to explore the idea of using it for applications unrelated to error (or even
just exception) management, and in accordance with our initial intuition, we already
have some preliminary results. In particular, we have demonstrated that it can be
used, in a somewhat unexpected fashion, to emulate a (still) rudimentary form of
coroutines, a very old and useful paradigm which suffered from a general disinterest
before surfacing again in languages such as Lua or Go. As Common Lisp lacks native
coroutines support, the idea is worth exploring. In some sense, by handling coroutine
return values as exceptions, we use an error management system for the exact opposite
of its original goal: to handle events which are neither errors, nor exceptional.

9.2 Future Work

T o the best of our knowledge, the idea of a condition-based coroutine support is
novel. How far we can really go with it remains unclear, however. What we

currently have is more or less the equivalent of CLU iterators (Liskov et al., 77): our
pseudo-coroutines are not first-class objects, and they can be invoked only one at a
time. On the other hand, we have not used the Common Lisp condition system to its
full power yet, and we already have a number of paths to explore. Here are the most
important ones.

Our prototype currently uses a single condition, called yield, to emulate the
return value of a coroutine. Symmetric coroutines have the ability to decide where
they want to transfer control to, which we could reproduce by installing different
simultaneous handlers for a whole hierarchy of subconditions. A coroutine can then
decide where it wants to yield by signalling a specific sub-class of yield. Note that
it has been demonstrated that full asymmetric and symmetric coroutines can be
expressed in terms of each other (de Moura and Ierusalimschy, 2009).

One feature of the Common Lisp condition system that we haven’t used yet is the
ability for a handler to decline handling a condition. A handler is considered having
handled a condition when it performs a non-local transfer of control (such as invoking
a restart). However, if a handler returns normally, it is said to have declined, and the
search for another handler continues. Although somewhat of a “dirty trick”, nothing
prevents a handler from performing side-effects before declining (such a handler would
in fact only pretend it declined). Now suppose that several such handlers are active
at the same time. What we obtain is essentially a coroutine, broadcasting its yielded
values to several callers simultaneously. Although this is definitely not a normal
property of actual coroutines, we can already see a potential benefit, notably in terms
of composability.

Another feature that we haven’t explored yet is the ability to invoke a restart
with arguments. Yielding and restarting with arguments establishes a full two-way
communication between coroutines and their callers, and could potentially be used
for more complex dispatch schemes than what we have today.

Finally, our current prototype, along with its accompanying examples, uses the
restart-case macro only. Just like handler-case, this macro imposes some stack
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unwinding: when a restart is invoked, the result of its function is automatically used
as the return value of the whole restart-case. On the other hand, a lower level
construct, restart-bind (analogous to handler-bind) does not behave like that: the
function of a restart will return normally. The implications of using restart-bind
to our condition-based coroutine implementation remain to be explored.

At some point, we will obviously want to publish our results, and contrast them
with existing literature. In particular, as far as coroutine emulation is concerned, we
need to contrast our ideas with well know techniques such as using continuations or
threads with channels and mailboxes, both in terms of expressivity and performance.
Note that this work is likely to be of interest only in the particular case of Common
Lisp, as continuations are not very well supported either. Coroutine emulation is
much easier with native continuations, such as in Scheme or Racket. Previous work
on continuation support through exceptions (Sekiguchi et al., 2001) may also help us
and needs to be investigated.

We previously mentioned that the exception handling system in Dylan was mod-
elled after that of Common Lisp. The intent, however, was not only to copy it, but to
improve it. In particular, and contrary to Common Lisp, the Dylan restarts are them-
selves implemented in terms of conditions. We currently don’t know the implications
of this in terms of expressivity.

Finally, coroutine emulation is just the first, somewhat unusual, application of the
condition system that occurred to us. It remains to be seen whether a more general
concept of “Exception-Oriented Programming” is worth pursuing.
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Chapter 10

ConclusionConclusion

I n this report, we have exposed our original motivations, our general academic re-
search strategy, and we have given a brief overview of height more-or-less distinct

research projects, all but one related to the performance and expressivity of (dynamic
(programming paradigms)). We hope that the reader was teased enough to read the
complete literature we produced on the aspects that he or she has found interesting.
In the case the reader is a potential Ph.D. candidate, we are looking forward to future
collaboration on any part of the material presented in this report.

Several aspects of our work are either slightly less academic, or more marginal, and
hence were not deemed worthy of a full chapter. We still feel compelled to mention
them here.

In addition to the one successfully defended Ph.D. that we mentioned several times
already, another one lasted a year, but was interrupted due to the student resigning.
The purpose of this Ph.D. was the development of a new system for statistical analysis
of financial flows, with interactivity, efficiency, and extensibility in mind. That Ph.D.
was set up in partnership with a private financial investment company, which is still
interested in reviving our aborted collaboration.

Our work has sometimes “diverged” towards horizons broader than the sole field
of programming paradigms, in the form of more transversal research, and published
as essays rather than technical papers. We already mentioned one such essay (Verna,
2018a). The reader interested in, or at least a bit curious about the field of biology
may also enjoy reading our thoughts on the biological aspects of software evolution,
as exposed in Verna (2010a)1 and Verna (2011a)2. 1

Verna, D. (2010a). Classes,
styles, conflicts: the
biological realm of LATEX.
In Beeton, B. and Berry,
K., editors, TUG’10, 31st
TEX Users Group
Conference, volume 31,
pages 162–172. TEX Users
Group.
2
Verna, D. (2011a).
Biological realms in
computer science. In
Onward!’11: the ACM
International Symposium
on New Ideas, New
Paradigms, and
Reflections on
Programming and
Software Proceedings,
pages 167–176. ACM.

In line with the third axis of our academic strategy (contributing back to our main
community), but in terms of pure engineering rather than academic research, let us
quickly mention a number of activities that still led to some form of publication. In
particular, we have 3 so-called “CDRs”, that is, proposals for modifications, clarifica-
tions, or extensions to the Common Lisp standard (Verna, 2011b,c, 2012b). Quickref,
a global documentation repository of generated reference manuals for Lisp libraries is
also a notable achievement (Verna, 2019b,a).

Finally, we wish to express our satisfaction in view of the success of the European
Lisp Symposium, which we helped create 13 years ago, and has become since then
the major academic event for the community, with an ACM status.
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