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ABSTRACT

Hierarchies, such as the tree of shapes, are popular representations for image simplification and seg-

mentation thanks to their multiscale structures. Selecting meaningful level lines (boundaries of shapes)

yields to simplify image while preserving intact salient structures. Many image simplification and

segmentation methods are driven by the optimization of an energy functional, for instance the cele-

brated Mumford-Shah functional. In this paper, we propose an efficient approach to hierarchical image

simplification and segmentation based on the minimization of the piecewise-constant Mumford-Shah

functional. This method conforms to the current trend that consists in producing hierarchical results

rather than a unique partition. Contrary to classical approaches which compute optimal hierarchical

segmentations from an input hierarchy of segmentations, we rely on the tree of shapes, a unique and

well-defined representation equivalent to the image. Simply put, we compute for each level line of the

image an attribute function that characterizes its persistence under the energy minimization. Then we

stack the level lines from meaningless ones to salient ones through a saliency map based on extinc-

tion values defined on the tree-based shape space. Qualitative illustrations and quantitative evaluation

on Weizmann segmentation evaluation database demonstrate the state-of-the-art performance of our

method.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In natural images, meaningful contours are usually smooth

and well-contrasted. Many authors (e.g., Caselles et al. (1999);

Cao et al. (2005)) claim that significant contours of objects in

images coincide with segments of the image level lines. The

level lines are the boundaries of the connected components de-

scribed by the tree of shapes proposed in Monasse and Guichard

(2000), and also known as topographic map in Caselles et al.

(1999). Image simplification or segmentation can then be ob-

tained by selecting meaningful level lines in that tree. This sub-

ject has been investigated in the past by Pardo (2002); Cao et al.

(2005); Cardelino et al. (2006). In Lu et al. (2007), the authors

have proposed a tree simplification method for image simplifi-

cation purpose based on the binary partition tree.
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Classically, finding relevant contours is often tackled using

an energy-based approach. It involves minimizing a two-term-

based energy functional of the form Eλs
= λsC + D, where C is

the regularization term controlling the regularity of contours, D

is a data fidelity term, and λs is a parameter. A popular exam-

ple is the seminal work of Mumford and Shah (1989). Curve

evolution methods are usually used to solve this minimization

problem. They have solid theoretical foundations, yet they are

often computational expensive.

Current trends in image simplification and segmentation are

to find a multiscale representation of the image rather than a

unique partition. There exist many works about hierarchical

segmentations such as the geodesic saliency of watershed con-

tours proposed in Najman and Schmitt (1996) and gpb-owt-

ucm proposed by Arbelaez et al. (2011) and references therein.

Some authors propose to minimize a two-term-based energy

functional subordinated to a given input hierarchy of segmen-

tations, in order to find an optimal hierarchical image segmen-
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tations in the sense of energy minimization. Examples are the

works of Guigues et al. (2006); Kiran and Serra (2014). Yet, the

choice or the construction of the input hierarchy of segmenta-

tions for these methods is an interesting problem in itself. Perret

et al. (2015) compared different choices of morphological hier-

archies for supervised segmentation.

In this paper we propose a novel hierarchical image simplifi-

cation and segmentation based on minimization of an energy

functional (e.g., the piecewise-constant Mumford-shah func-

tional). The minimization is performed subordinated to the

shape space given by the tree of shapes, a unique and equiv-

alent image representation. The basis of our proposal was ex-

posed in our previous study in Xu et al. (2013a), in which we

proposed an efficient greedy algorithm computing a locally op-

timal solution of the energy minimization problem. The basic

idea is to take into account the meaningfulness of each level

line which measures its “importance”. An example of mean-

ingfulness function that we will use through the paper is the

average of gradient’s magnitude along level lines. The order

based on these meaningfulness values allows to get very quickly

a locally optimal solution, which yields a well-simplified im-

age while preserving the salient structures. The current paper

extends this idea to hierarchical simplification and segmenta-

tion. More precisely, following the same principle but without

fixing the parameter λs in the two-term-based energy, we com-

pute an attribute function that characterizes the persistence of

each shape under the energy minimization. Then we compute

a saliency map, a single image representing the complete hier-

archical simplifications or segmentations. To do so, we rely on

the idea of hierarchy transformation via extinction value pro-

posed by Vachier and Meyer (1995) and on the framework of

tree-based shape space introduced in Xu et al. (2015b). This

scheme of hierarchy transformation has been first used in Xu

et al. (2013b) for a different input hierarchy and attribute func-

tion. Related algorithms were presented in Xu et al. (2015a).

The present paper extends on these ideas, focusing on the com-

putation of an attribute function related to energy minimization.

The main contribution of this current paper is the proposition

of a general framework of hierarchical image simplification and

segmentation method based on energy minimization subordi-

nated to the tree of shapes, contrary to the classical approaches

that are subordinated to an initial hierarchy of segmentations.

It is based on the introduction of a novel attribute functionAλs

related to energy minimization. We have tested the proposed

framework with a very simple segmentation model in this pa-

per. Despite its simplicity, we obtain results that are competitive

with the ones of some state-of-the-art methods on the classical

segmentation dataset from Alpert et al. (2012). In particular,

they are on par with Gpb-owt-ucm proposed in Arbelaez et al.

(2011) on this dataset.

The rest of this paper is organized as follows: Some back-

ground information is provided in Section 2. Section 3 is dedi-

cated to depict the proposed method, followed by some illustra-

tions and experimental results in Section 4. Section 5 compares

the proposed method with some similar works. We then con-

clude in Section 6.
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Fig. 1: An image (left) and its tree of shapes (right).

2. Background

2.1. The Tree of shapes

For any λ ∈ R or Z, the upper level sets Xλ and lower level

setsXλ of an image f : Ω→ R or Z are respectively defined by

Xλ( f ) = {p ∈ Ω | f (p) ≥ λ} and Xλ( f ) = {p ∈ Ω | f (p) ≤ λ}.

Both upper and lower level sets have a natural inclusion struc-

ture: ∀ λ1 ≤ λ2, Xλ1
⊇ Xλ2

and Xλ1 ⊆ Xλ2 , which leads to two

distinct and dual representations of an image, the max-tree and

the min-tree.

Another tree has been introduced in Monasse and Guichard

(2000) via the notion of shapes. A shape is defined as a con-

nected component of an upper or lower level set where its holes

have been filled in. Thanks to the inclusion relationship of both

kinds of level sets, the set of shapes gives a unique tree, called

tree of shapes. This tree is a self-dual, non-redundant, and com-

plete representation of an image. It is equivalent to the input

image in the sense that the image can be reconstructed from the

tree. And it is invariant to affine contrast changes. Such a tree

also inherently embeds a morphological scale-space (the parent

of a node/shape is a larger shape). An example on a synthetic

image is depicted in Fig. 1. Recently, an extension of the tree

of shapes for color images has been proposed by Carlinet and

Géraud (2015) through the inclusion relationship between the

shapes of its three grayscale channels.

2.2. Hierarchy of image segmentations or saliency maps

A hierarchy of image segmentation H is a multiscale repre-

sentation that consists of a set of nesting partitions from fine to

coarse: H = {Pi | 0 ≤ i ≤ n,∀ j, k, 0 ≤ j ≤ k ≤ n ⇒ P j ⊑ Pk},

where Pn is the partition {Ω} of Ω into a single region, and

P0 represents the finest partition of the image f . P j ⊑ Pk

implies that the partition P j is finer than Pk, which means

∀R ∈ P j,∃R′ ∈ Pk such that R ⊆ R′.

As a multiscale representation, a hierarchy of segmentation

satisfies the most fundamental principle for multiscale analysis:

the causality principle presented by Koenderink (1984). From

this principle, for any couple of scales λs2
> λs1

, the “struc-

tures” found at scale λs2
should find a “cause” at scale λs1

. In

the case of a hierarchy of segmentation, following the work

of Guigues et al. (2006), the causality principle is applied to

the edges associated to the set of partitions spanned by H: for

any pair of scales λs2
> λs1

, the boundaries of partition Pλs2
are

in a one-to-one mapping with a subset of the boundaries of Pλs1

(their “cause”). The pair (H, λs) is called an indexed hierarchy.
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A useful representation of hierarchical image segmentations

was originally introduced in Najman and Schmitt (1996) un-

der the name of saliency map. A saliency map is obtained

by stacking a family of hierarchical contours. This represen-

tation was then rediscovered independently by Guigues et al.

(2006) through the notion of scale-set theory for visualization

purposes, and it is then popularized by Arbelaez et al. (2011)

under the name of ultrametric contour map for boundary ex-

traction and comparing hierarchies. It has been proved theo-

retically in Najman (2011) that a hierarchy of segmentations is

equivalent to a saliency map. Roughly speaking, for a given in-

dexed hierarchy (H, λ), the corresponding saliency map can be

obtained by weighing each contour of the image domain with

the highest value λs such that it appears in the boundaries of

some partition represented by the hierarchy H. The low level

(resp. upper level) of a hierarchy corresponds to weak (resp.

strong) contours, and thus an over-segmentation (resp. under-

segmentation) can be obtained by thresholding the saliency map

with low (resp. high) value.

2.3. From shape-space filtering to hierarchy of segmentations

The three morphological trees reviewed in Section 2.1 and

the hierarchies of segmentations reviewed in Section 2.2 have a

tree structure. Each representation is composed of a set of con-

nected components C. Any two different elements Ci ∈ C,C j ∈

C are either disjoint or nested: ∀Ci ∈ C, C j ∈ C,Ci ∩ C j ,

∅ ⇒ Ci ⊆ C j or C j ⊆ Ci. This property leads to the defi-

nition of tree-based shape space in Xu et al. (2015b): a graph

representation GC = (C, EC), where each node of the graph rep-

resents a connected component in the tree, and the edges EC are

given by the inclusion relationship between connected compo-

nents in C. In Xu et al. (2015b), we have proposed to filter this

shape space by applying some classical operators, notably con-

nected operators on GC. We have shown that this shape-space

filtering encompasses some classical connected operators, and

introduces two families of novel connected operators: shape-

based lower/upper leveling and shaping.

Instead of filtering the shape space, another idea is to con-

sider each region of the shape space as a candidate region of

a final partition. For example, we weigh the shape space by a

quantitative attributeA. Then each local minimum of the node-

weighted shape space is considered as a candidate region of a

partition. The importance of each local minimum (i.e., each re-

gion) can be measured quantitatively by the extinction value E

proposed by Vachier and Meyer (1995). Let ≺ be a strict total

order on the set of minima m1 ≺ m2 ≺ . . ., such that mi ≺ mi+1

whenever A(mi) < A(mi+1). Let CC be the lowest lower level

connected component (defined on the shape space) that contains

both mi+1 and a minimum m j with j < (i + 1). The extinction

value for the minimum mi+1 is defined as the difference of level

of CC and A(mi+1). An example of extinction values for three

minima is depicted in Fig 2. We weigh the boundaries of the

regions corresponding to the local minima with the extinction

values. This yields a saliency map representing a hierarchi-

cal image simplification or segmentation. This scheme allows

to transform any hierarchical representation into a hierarchi-

cal segmentation. It has been firstly used in Xu et al. (2013b),
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Fig. 2: Illustration of the extinction values E of three minima.

The order is A ≺ C ≺ B. B merges with C, C merges with A.

where the input hierarchy is a minimum spanning tree and the

attribute is computed locally inspired from the work of Felzen-

szwalb and Huttenlocher (2004). For the sake of completeness,

the algorithm Xu et al. (2015a) for the extinction-based hierar-

chy transformation is presented in Section 3.4.

2.4. Energy-based simplification and segmentation

There exist several works of hierarchical image segmenta-

tions based on energy minimization (see Guigues et al. (2006)

and Kiran and Serra (2014)). A general formulation of these

methods involves minimizing a two term-based energy func-

tional of the form Eλs
= λsC + D. C is a regularization term, D

is data fidelity term, and λs is a parameter. Let {R} = R1⊔· · ·⊔Rn

be a partition of the image domain. If the energy functional can

be written by Eλs
=
∑

Ri∈{R}

(

λsC(Ri)+D(Ri)
)

, then Eλs
is called

an affine separable energy functional. Furthermore, if either

the regularization term C decreases or the data fidelity term D

increases, the energy Eλs
is multiscale affine separable. A pop-

ular instance of such an energy functional that we will use as an

example through this paper is the piecewise-constant Mumford-

Shah functional proposed by Mumford and Shah (1989). For an

image f , it is given by

Eλs
( f , ∂{R}) =

∫∫

{R}

( f̃i − f )2 dxdy + λs |∂{R}|, (1)

where f̃i =
1
|Ri |

∫∫

Ri
f dxdy inside each region Ri ∈ {R}, ∂{R} is

the set of contour, and | · | denotes the cardinality.

3. Hierarchical image simplification and segmentation via

level line selection

3.1. Main idea

The current proposal is a general framework of hierarchical

image simplification and segmentation based on energy mini-

mization subordinated to the tree of shapes. It extends a pre-

liminary version of this study in Xu et al. (2013a) that selects

salient level lines based on Mumford-Shah energy functional

minimization. We review this non-hierarchical version in Sec-

tion 3.2, using a more general multiscale affine separable en-

ergy. The hierarchical version proposed in the current paper is

achieved thanks to:

• the introduction of a novel attribute function Aλs
for each

level line related to the energy regularization parameter λs,
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Fig. 3: Suppressing the node τ makes the “region” Rτ (covered

with red oblique lines) merge with Rτp
; the result (depicted in

the right image) is a simplified image.

• and the idea of hierarchy transformation based on extinc-

tion values and on a tree-based shape space.

This is detailed in Section 3.3. Section 3.4 provides algorithms

for the whole process.

3.2. Image simplification by salient level line selection

For a given tree of shapes T composed of a set of shapes

{τi}, any two successive shapes of T are related by an edge

reflecting the inclusion relationship, also known as the parent-

hood between nodes of the tree. This tree structure T provides

an associated partition of the image {RT } = Rτ1
⊔ · · · ⊔ Rτn

,

where Rτ = {p | p ∈ τ, p < Ch(τ)} with Ch(τ) representing all

the children of the shape τ. We denote by Eλs
( f ,T ) the energy

functional (see Section 2.4) subordinated to the tree by consid-

ering its associated partition {RT }. This energy minimization is

given by:

min
T ′

Eλs
( f ,T ′), (2)

where T ′ is a simplified version of T by removing some shapes

from T and by updating the parenthood relationship.

The basic operation of the energy minimization problem

given by Eq. (2) is to remove the contours of some shapes {τ}

included in their corresponding parents {τp}, which triggers the

update of R′τp
= Rτp

∪ Rτ for each shape τ. The parent of its

children τc1, . . . , τck should also be updated to the τp. Fig. 3

shows an example of a such merging operation.

Observe that the minimization problem of Eq. (2) is a combi-

natorial optimization. The computation of the optimum has an

exponential complexity. Hence a greedy algorithm is usually

applied to compute a local optimum instead of a global opti-

mum (see also Ballester et al. (2007)). It iteratively removes

the shapes to decrease the energy functional. The greedy algo-

rithm stops when no other shape can be removed that favors a

decrease of the energy. The removability of a shape τ is de-

cided by the sign of the energy variation ∆Eτ
λs

while τ is sup-

pressed. For the multiscale affine separable energy described in

Section 2.4, ∆Eτ
λs

is given by:

∆Eτλs
= D(R′τp

)−D(Rτ)−D(Rτp
)−λs

(

C(Rτ)+C(Rτp
)−C(R′τp

)
)

.

(3)

Taking the piecewise-constant Mumford-Shah functional given

by Eq. (1) as an energy example, and let S ( f ,Ri) be the sum of

value of all the pixels inside Ri, Then the functional variation

∆Eτ
λs

is given by:

∆Eτλs
=

S 2( f ,Rτ)

|Rτ|
+

S 2( f ,Rτp
)

|Rτp
|
−

S 2( f ,R′τp
)

|R′τp
|
− λs|∂τ|. (4)

Fig. 4: Illustration of causality principle violation. Left: input

image; Middle and right: randomly colorized simplified image

with λs1
= 100 and respectively λs2

= 500. The orange shape

on top middle of the right image (surrounded by a black circle)

is preserved for λs2
= 500, while it is removed for λs1

= 100 in

the middle image.

If ∆Eτ
λs

is negative, which means the suppression of τ de-

creases the functional, then we remove τ. According to Eq. (3),

the removability of a shape τ depends only on Rτ and Rτp
. As

the suppression of the shape τ triggers the update of Rτp
, the

removal of τ impacts also the removability of its parent, its chil-

dren and siblings. So the order of level line removal is critical.

In Xu et al. (2013a), we proposed to fix the order by sorting the

level lines in increasing order of a quantitative meaningfulness

attributeA (e.g., the average of gradient’s magnitude along the

level lineA∇).

Meaningful contours in natural images are usually well-

contrasted and smooth. Indeed, the minimization of energy

functional in Eq (1) favors the removal of level lines having

small contrast (by data fidelity term) or being complex (by reg-

ularization term). So the shapes having small (resp. great) at-

tribute A∇ are easier (resp. more difficult) to filter out under

the energy minimization process of Eq. (2). Consequently, the

level line sorting based on attribute A∇ provides a reasonable

order to perform the level lines suppression that makes the en-

ergy functional decrease. Indeed, initially, each region Rτ has

only several pixels. At the beginning, many “meaningless” re-

gions are removed, which forms more proper regions in Eq. (3)

for the “meaningful” regions. The removal decisions for these

“meaningful” regions based on the sign of Eq. (3) are more ro-

bust.

3.3. Hierarchical salient level line selection

The parameter λs, in the multiscale affine separable energy,

controls the simplification/segmentation degree for the method

described in Section 3.2, which is however not hierarchical. Be-

cause some level line τ may be removed with a parameter λs1
,

but preserved for a bigger λs2
> λs1

. This contradicts the causal-

ity principle for hierarchical image simplification/segmentation

described in Section 2.2. An example is given in Fig. 4. Note

that the simplification algorithm of Ballester et al. (2007) is not

hierarchical either.

Instead of fixing the parameter λs in the energy functional

(e.g., λs in Eq (1)), we propose to compute an individual λs for

each shape of the tree following the same principle of the en-

ergy minimization. For a given λs, the removability of a shape

τ is based on the sign of energy variation ∆Eτ
λs

in Eq. (3), which

is a linear decreasing function w.r.t. λs (e.g., the Eq (4) for the

piecewise-constant Mumford-Shah functional). When λs is big-

ger than some value λsmin
, ∆Eτ

λs
will be negative, which implies

the removal of this shape decreases the energy functional. Thus
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λsmin
is a value of the transition for the removal decision of the

underlying shape. Let us denote this value of transition as the

attribute functionAλs
, which is given by:

Aλs
(τ) =

D(R′τp
) − D(Rτ) − D(Rτp

)

C(Rτ) +C(Rτp
) −C(R′τp

)
, (5)

For the piecewise-constant energy functional in Eq. (1), it is

given by:

Aλs
(τ) =

(S 2( f ,Rτ)

|Rτ|
+

S 2( f ,Rτp
)

|Rτp
|
−

S 2( f ,R′τp
)

|R′τp
|

)

/ |∂τ|. (6)

Note that for a given shape τ, the attribute function Aλs
(τ)

defined in Eq (5) depends on Rτ and Rτp
, which means Aλs

(τ)

is decided by the shape τ itself, its parent, its siblings, and its

children. Because the attribute functionAλs
is computed under

the hypothesis that the shape τ under scrutiny is suppressed, we

also need to update Rτp
, and update the parenthood relationship

for its children to its parent. These update operations will also

affect the computation of Aλs
for the parent, children and sib-

lings of τ. So the computation order is again important. We

follow the same principle as described in Section 3.2 to com-

puteAλs
, which is detailed as below:

step 1: Compute Aλs
for each shape τ ∈ T supposing that

only the shape under scrutiny is removed, and sort the set of

shapes {τ | τ ∈ T } in increasing order of shape meaningfulness

indicated by an attributeA (e.g.,A∇).

step 2: Propagate the sorted shapes in increasing order, and

remove the shape one by one. Compute the new value Aλs
for

the underlying shape τ, and update it if the value is greater than

the older one. Update also the parenthood relationship and the

corresponding information for Rτp
.

This attribute function Aλs
is related to the minimization of

the energy functional. It measures the persistence of a shape to

be removed under the minimization problem of Eq (2). A big-

gerAλs
(τ) means that it is more difficult to remove the shape τ.

Thus the attribute functionAλs
is also some kind of quantitative

meaningfulness deduced from the energy minimization.

We use the inverse of the attribute Aλs
described above as

the final attribute function: A
↓

λs
(τ) = max

τ′∈T

(

Aλs
(τ′)
)

− Aλs
(τ).

The local minima of the shape space weighted by this attribute

function correspond to a set of candidate salient level lines. We

make use of the scheme of hierarchy transformation described

in Section 2.3 to compute a saliency map ME. This saliency

map ME represents hierarchical result of level line selections.

Each thresholding of this map ME selects salient (of certain

degree) level lines from which a simplified image can be recon-

structed.

An example of the proposed scheme on a synthetic image

is illustrated in Fig. 5. The input image in Fig. 5 (a) is both

blurred and noisy. This blurring is also visible in Fig. 5 (b)

that illustrates the evolution of the average of gradient’s mag-

nitude A∇ along the contours of shapes starting from regions

inside the triangle, pentagon, and square regions to the root of

the tree. The evolution of the initial values of the AttributeAλs

obtained at step 1 on the same branches of the tree are provided
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Fig. 5: An example of the proposed scheme on a synthetic im-

age. (b-d): Evolution of attribute value starting from leaf re-

gions (left end of each curve) inside the triangle (red), pentagon

(green), and squares (blue) to the root of the tree (right end of

each curve). Note that the length of these three branches is

different (it explains that the root node appears at different ab-

scissas.)

in Fig. 5 (c). It is not surprising that those initial valuesAλs
are

not effective to measure the importance of the shapes: indeed,

this is due to the very small size of each region in {RT }. The

evolution of the final values of the attribute Aλs
(of step 2) is

depicted in Fig. 5 (d). We can see that the significant regions

are highlighted by Aλs
. This experiment also demonstrates the

relevance of the increasing order of average of gradient’s mag-

nitude along the contourA∇ as a criterion to update the value of

Aλs
. The saliency mapME using the attribute Aλs

and one of

the possible segmentations that can be obtaiend by thresholding

ME are depicted in Fig. 5. (e) and (f).

3.4. Implementation

The proposed method is composed of three main steps: 1)

Construction of the tree of shapes and computation of the at-

tribute function Aλs
; 2) Computation of the extinction values

E; 3) Computation of the saliency mapME.

Once we have the tree structure T represented by the par-

enthood image parent, and the corresponding information A

for each node of the tree, we are able to compute the attribute

function Aλs
. Note that the information A can be the area A,

the sum of gray levels S f , the contour length L, or the sum of

gradient’s magnitude along the contour S ∇. The computation

of this attribute functionAλs
is performed while computing the

tree, and is detailed in Algorithm 1. We start by computing the

initial values of attribute AλS
according to Eq (6) by consid-

ering that only the underlying shape is removed (see line 11).

Then we sort the shapes by increasing order of the average of
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1 COMPUTE ATTRIBUTE(parent, T ,A)
2 for all τ ∈ T do
3 AR(τ)← A(τ), S f ,R(τ)← S f (τ);
4 if τ , parent(τ) then Ch(parent(τ)).insert(τ);
5 for all τ ∈ T do
6 if τ , parent(τ) then
7 AR

(

parent(τ)
)

← AR(parent
(

τ)
)

− A(τ);
8 S f ,R

(

parent(τ)
)

← S f ,R(parent
(

τ)
)

− S f (τ);
9 for all τ ∈ T do

10 A∇(τ)← S ∇(τ)/L(τ), τp ← parent(τ);

11 Aλs
(τ)←

( S 2
f ,R

(τ)

AR(τ)
+

S 2
f ,R

(τp)

AR(τp)
−

(S f ,R(τp)+S f ,R(τ))2

AR(τp)+AR(τ)

)

/L(τ);

12 RT ← SORT NODES(T ,A∇)
13 for i← 0 to NT do
14 τ← RT (i), τp ← parent(τ);

15 λt ←
( S 2

f ,R
(τ)

AR(τ)
+

S 2
f ,R

(τp)

AR(τp)
−

(S f ,R(τp)+S f ,R(τ))2

AR(τp)+AR(τ)

)

/L(τ);

16 if λt > Aλs
(τ) thenAλs

(τ)← λt;
17 Ch(τp).remove(τ);
18 for all τc ∈ Ch(τ) do
19 parent(τc)← τp;
20 Ch(τp).insert(τc);
21 AR(τp)← AR(τp) + AR(τ);
22 S f ,R(τp)← S f ,R(τp) + S f ,R(τ);
23 returnAλs

Algorithm 1: Computation of attribute function Aλs
. During

the tree computation, we also compute four attribute informa-
tion A: region size A, region’s contour length L, sum of gray
level S f inside the region, and sum of gradient’s magnitude
along the region contour S ∇.

gradient’s magnitude along the shape contour A∇. We process

the shapes in this order. For each underlying shape τ, we com-

pute a new value according to Eq (6) (see line 15), and update

the value Aλs
(τ) if the new value is greater. Then we remove

the shape τ from the tree and update the tree structure as well

as the corresponding information.

The second step is to compute the extinction values E for the

local minima of the tree-based shape space weighted by the at-

tributeA
↓

λs
. This is achieved thanks to a min-tree representation

TT constructed on the tree-based shape space. The algorithm

is described in Algorithm 2. The image original min tracks the

smallest local minimum inside a lower level connected compo-

nent CC of the tree-based shape space. For each local minimum

shape τ, the lowest CC that contains τ and a smaller minimum is

the lowest ancestor node whose smallest local minimum shape

is different from τ.

To compute the final saliency map, we rely on the Khalim-

sky’s grid, proposed by Khalimsky et al. (1990), and depicted in

Fig. 6; it is composed of 0-faces (points), 1-faces (edges) and 2-

faces (pixels). The saliency mapME is based on the extinction

values, where we weigh the boundaries (0-faces and 1-faces)

of each shape by the corresponding extinction value E. More

precisely, we weigh each 1-face e (resp. 0-face o) by the max-

imal extinction value of the shapes whose boundaries contain

e (resp. o). The algorithm is given in Algorithm 3. It relies

on two images appear and vanish defined on the 1-faces that

are computed during the tree construction. The value appear(e)

encodes the smallest regionNa in the tree whose boundary con-

tains the 1-face e, while vanish(e) denotes the smallest region

Nv that contains the 1-face e inside it.

1 COMPUTE EXTINCTION VALUE(T ,A)
2 (parentT ,RT )← COMPUTE TREE(A);
3 for all τ ∈ T do original min(τ)← undef;
4 for i← 0 to NT do
5 τ← RT (i), τp ← parentT (τ);
6 if original min(τ) = undef then original min(τ) = τ;
7 if original min(τp) = undef then
8 original min(τp)← original min(τ);
9 else

10 if A(original min(τp)) > A(original min(τ)) then
11 original min(τp)← original min(τ);
12 for all τ ∈ T do
13 if τ is not a local minimum then
14 E(τ)← 0;
15 else
16 τp ← parentT (τ);
17 while original min(τp) = τ & τp , parentT (τp)

do
18 τp ← (parentT (τp));
19 E(τ)← A(τp) −A(τ);
20 return E

Algorithm 2: Computation of extinction values E on a tree-
based shape space weighted by an attribute A. The image
original min tracks the smallest local minimum shape inside a
connected component of TT . Note that parentT encodes the
min-tree TT constructed on the shape space.

Fig. 6: Materialization of pixels with 0-faces (blue disks), 1-

faces (green strips), and 2-faces (red squares). The original pix-

els are the 2-faces, the boundaries are materialized with 0-faces

and 1-faces. The contour of the cyan region is composed of

black 1-faces and 0-faces.

We refer the reader to Najman and Couprie (2006); Berger

et al. (2007); Carlinet and Géraud (2014); Géraud et al. (2013)

for details about the tree construction, and to Xu et al. (2015a)

for details about the efficient computation of some information

A (namely A, S f , L, and S ∇).

4. Illustrations and experiments

In this section, we illustrate our proposed general frame-

work with a simple segmentation model: piecewise-constant

Mumford-Shah model. Using some more evolved energy func-

tional will be one of our future work. For generic natural im-

ages, contours of significant objects usually coincide with seg-

ments of level lines. Our proposed method yields a hierarchical

simplification rather than a hierarchical segmentation. So only

qualitative illustrations are depicted in Section 4.1 for some im-

ages taken from the BSDS500 dataset introduced in Arbelaez

et al. (2011). For the Weizmann segmentation database pro-

posed by Alpert et al. (2012), the objects’ contours coincide

with almost full level lines. Our method provides a hierarchical

segmentation. Quantitative results using the associated evalua-

tion framework are depicted in Section 4.2.
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1 COMPUTE SALIENCY MAP( f )
2 (parent,T ,A)← COMPUTE TREE(f);
3 Aλs

← COMPUTE ATTRIBUTE(parent, T ,A);

4 λM
s ← 0;

5 for all τ ∈ T do λM
s ← max

(

λM
s ,Aλs

(τ)
)

;

6 for all τ ∈ T doA
↓

λs
← λM

s −Aλs
(τ);

7 E ← COMPUTE EXTINCTION VALUE(T ,A
↓

λs
);

8 for all 1-face e doME(e)← 0;
9 for all e do

10 Na ← appear(e),Nv ← vanish(e);
11 while Na , Nv do
12 ME(e)← max

(

E(Na),ME(e)
)

, Na ← parent(Na);
13 for all 0-face o do
14 ME(o)← max

(

ME(e1),ME(e2),ME(e3),ME(e4)
)

;
15 returnME

Algorithm 3: Computation of saliency map ME represent-
ing a hierarchical result of level line selections. The 1-faces
e1, e2, e3, e4 are the 1-faces adjacent to o.

4.1. Hierarchical color image pre-segmentation

In Fig. 7, we test our method on color images in the seg-

mentation evaluation database proposed in Alpert et al. (2012).

Each image contains two objects to be segmented. We use the

color tree of shapes proposed by Carlinet and Géraud (2015),

where the input image f in Eq (1) is a color image. A high

parameter value λs = 8000 is used, and the grain filter pro-

posed in Monasse and Guichard (2000) is applied to get rid of

too tiny shapes (e.g., smaller than 10 pixels). Less than 100

level lines are selected, which results in a ratio of level line se-

lection around 1157. These selected level lines form less than

200 regions in each image. The simplified images illustrated in

Fig. 7 are obtained by taking the average color inside each re-

gion, where the boundaries between salient regions remain in-

tact. Finding an actual segmentation becomes a lot easier with

such a pre-segmentation. The extinction-based saliency maps

ME using the attribute A
↓

λs
are depicted on the bottom of this

figure. They represent hierarchical pre-segmentations.

Some illustrations of the extinction-based saliency mapME
applied on images in the dataset of BSDS500 Arbelaez et al.

(2011) are also shown in Fig. 8. Again, the input image f is

a color image, and the color tree of shapes is used. As shown

in Fig. 8, salient level lines are highlighted in ME employing

the attribute A
↓

λs
. Hierarchical image simplification results can

then be obtained by thresholding ME. The saliency maps for

all the images in the dataset of BSDS500 is available on http:

//publications.lrde.epita.fr/xu.hierarchymsll.

We have also tested our method on some cellular images,

where the method is applied on the color input image f . As

illustrated in Fig. 9, the cellular image is strongly simplified,

which almost leads to a uniform background. Finding an actual

cellular segmentation result would become much easier.

4.2. Evaluation in context of segmentation

We have also evaluated our hierarchical image simplifica-

tions in context of segmentation on Weizmann segmentation

evaluation database in Alpert et al. (2012). For the 100 im-

ages containing 2 objects in this database (See Fig. 7 for sev-

eral examples), the saliency maps are thresholded with a fixed

Fig. 7: Some pre-segmentation results obtained with our

proposed method on the segmentation evaluation database

in Alpert et al. (2012). Top: input images; Middle: pre-

segmentations obtained with the simplification method; Bot-

tom: inverted saliency maps for hierarchical simplifications.

thresholding value to yield a partition result. And we filter out

the regions whose area is less than 100 pixels. Note that, in

order to perform a fair comparison with the state-of-the art, the

saliency maps are constructed using grayscale tree of shapes

computed by Géraud et al. (2013) on grayscale versions of the

input images f . We performed two tests as presented in Alpert

et al. (2012) based on F-measure and number of fragments. For

a segmentation Seg and a ground truth segmentation of the ob-

ject GT, the F-measure is defined by F = 2 × precision ×

recall/(precision+recall), where precision = |Seg∩GT|/|Seg|,

recall = |Seg∩GT|/|GT|. The number of fragments is the num-

ber of regions selected from a partition to form the object seg-

mentation result Seg.

In the first test, for each foreground object, we select the

segment that fits it the best based on F-measure score. The

results of this single segment coverage test is depicted in Ta-

ble 1 (See Alpert et al. (2012) for implementation details on

the settings for the other methods). In this test, our method

achieves F-measure score on par with the state-of-the-art meth-

ods, especially when replacing, in the attribute A∇, the clas-

sical grayscale gradient with the (learned) gradient computed

(on the grayscale input image f ) by Dollár and Zitnick (2015)

(see “Our2”). By using another gradient, we change the order

in which the nodes of the tree are processed; thus this result

highlights the importance of the sorting step in our algorithm.

In Table 1, note that Gpb-owt-ucm without texture denotes the

method of Gpb-owt-ucm computed without taking into account

the texture information in the Gpb part. More precisely, in this

case, the Gpb is computed using only brightness and color gra-

dients. Note also that our method does not explicitely use any

texture information either.

In the second test, a combination of segments whose area

overlaps considerably the foreground objects is utilized to as-

sess the performance. For each union of segments, we measure
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(a) Input image. (b) Saliency map. (c) Slightly simplified. (d) Moderately simplified. (e) Strongly simplified.

Fig. 9: Illustration of the proposed hierarchical pre-segmentations on a cellular image.

Fig. 8: Illustration of the hierarchical image simplification us-

ing the attribute functionA
↓

λs
, applied on some images from the

dataset of BSDS500 proposed by Arbelaez et al. (2011). From

top to bottom: input images; inverted saliency maps; slight sim-

plification; moderate simplification; strong simplification.

the F-measure score and the number of segments composing

it. This test is a compromise between good F-measure and low

number of fragments. The results of this fragmentation test is

given in Table 2. In this test the averaged F-measure of dif-

ferent methods is fairly similar. However, our method, as a pre-

segmentation method without using any texture information has

a relatively high number of fragments.

The saliency maps for these images containing two objects in

the Weizmann dataset is available on http://publications.

lrde.epita.fr/xu.hierarchymsll.

Table 1: Results of single segment coverage test using F-

measure on the two objects dataset in Alpert et al. (2012).

“Our2” stands for our method with the attribute A∇ using the

gradient computed by Dollár and Zitnick (2015).

Method Average Larger Smaller

Our2 0.80 0.79 0.81

Gpb-owt-ucm 0.79 0.80 0.78

Our 0.77 0.77 0.76

Gpb-owt-ucm without texture 0.76 0.76 0.75

Gpb in Alpert et al. (2012) 0.72 0.70 0.75

Method in Alpert et al. (2012) 0.68 0.70 0.65

SWA in Sharon et al. (2006) 0.66 0.74 0.57

MeanShift 0.61 0.65 0.58

N-Cuts 0.58 0.66 0.49

5. Comparison with similar works

The tree of shapes has been widely used in connected op-

erators, filtering tools that act by merging flat zones for im-

age simplification and segmentation. The simplification and

segmentation relies on relevant shapes extraction (i.e., salient

level lines), usually achieved by tree filtering based on some

attribute function. A detailed review of tree filtering strategies

can be found in Salembier and Wilkinson (2009). In all these

strategies, the attribute function A characterizing each node

plays a very important role in connected filtering. The classi-

cal connected operators make filtering decisions based only on

attribute function itself or the inclusion relationship of the tree

(e.g., Xu et al. (2015b)). They are usually performed by remov-

ing the nodes whose attributes are lower than a given thresh-

old. The method we propose in this paper combines this idea

of classical connected operators with the energy minimization

problem of Eq (2). It also makes use of the spatial information

of the original image from which the tree is constructed. This

might give more robust filtering decision.

In this paper, we focus particularly on hierarchical relevant

shapes selection by minimizing some multiscale affine separa-

ble energy functional (e.g., piecewise-constant Mumford-Shah

functional). The closely related work is the one in Guigues

et al. (2006), where the authors proposed the scale-set theory,

including an efficient greedy algorithm to minimize this kind

of energy on a hierarchy of segmentations. More precisely, the

authors use dynamic programming to efficiently compute two
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Table 2: Fragmented coverage test results for the two objects dataset proposed by Alpert et al. (2012): compromise between good

F-measure and low number of fragments. Our results are comparable to the state-of-the-art. “Our2” stands for our method with the

attributeA∇ using the gradient computed by Dollár and Zitnick (2015).

Method
Averaged Larger object Smaller object

F-measure #fragments F-measure #fragments F-measure #fragments

SWA in Sharon et al. (2006) 0.88 3.13 0.91 3.88 0.84 2.37

Our2 0.86 2.40 0.85 3.00 0.86 1.81

Method in Alpert et al. (2012) 0.85 1.67 0.87 2.00 0.84 1.33

N-Cuts in Shi and Malik (2000) 0.84 2.64 0.88 3.34 0.80 1.93

Gpb reported in Alpert et al. (2012) 0.84 2.95 0.87 3.60 0.81 2.30

Our 0.83 3.16 0.85 4.10 0.81 2.23

Gpb-owt-ucm in Arbelaez et al. (2011) 0.82 1.57 0.84 1.79 0.81 1.35

Gpb-owt-ucm without texture 0.81 2.72 0.82 3.32 0.80 2.12

MeanShift in Comaniciu and Meer (2002) 0.78 3.65 0.85 4.49 0.71 2.81

scale parameters λ+s and λ−s for each region R of the input hier-

archy H, where λ+s (resp., λ−s ) corresponds to the smallest pa-

rameter λs such that the region R ∈ H belongs (resp.. does

not belong) to the optimal solution of segmentation by mini-

mizing Eλs
, we have λ−s (R) = min

R′∈H,R⊂R′
λ+s (R′). There may exist

some regions R such that λ−s (R) ≤ λ+s (R), which implies that

the region R ∈ H does not belong to any optimal cut of H by

minimizing the energy Eλs
. One removes these regions from

the hierarchy H and updates the parenthood relationship which

yields a hierarchy H′, a hierarchy of global optimal segmen-

tations on the input hierarchy. This work has been continued

and extended by Kiran and Serra (2014). These methods work

on an input hierarchy of segmentations, which is very different

from the tree of shapes (a natural and equivalent image repre-

sentation). Indeed, each cut of the tree of shapes is a subset

of the image domain, while each cut of the hierarchy of seg-

mentations forms a partition of the image domain; see Ronse

(2014). This basic difference prohibits the direct use on the tree

of shapes of the classical works which find optimal hierarchi-

cal segmentations by energy minimization. In this sense, our

approach can be seen as an extension of the scale-set theory

proposed in Guigues et al. (2006) to the tree of shapes.

Another related work is the one in Ballester et al. (2007). It

also selects meaningful level lines for image simplification and

segmentation by minimizing the piecewise-constant Mumford-

Shah functional. For this method, at each step the level line is

selected which inflicts the largest decrease of functional. As

a consequence, the iterative process of Ballester et al. (2007)

requires not only computing a lot of information to be able

to update the functional after each level line suppression, but

also to find at each step, among all remaining level lines, the

one candidate to the next removal. Consequently, the optimiza-

tion process has a O(N2
T

) time complexity w.r.t. the number

of nodes NT of the tree. A heap-based implementation may

improve the time complexity, but since at each removal, one

has to update the corresponding energy variation for its chil-

dren, parent, siblings, maintaining the heap structure is a costly

process. In practice, the gain using heap-based implementa-

tion is relatively insignificant. Hence Ballester et al. (2007) is

computationally expensive. We propose to fix that issue thanks

Table 3: Comparison of computation times on seven classical

images. The size for image “House” and “Camera” is 256×256,

and 512 × 512 for the other images.

Image Depth #Nodes
Time (s)

Ballester et al. (2007) Our

House 126 23588 4.11 0.22

Camera 126 24150 4.19 0.23

Lena 141 84699 27.77 0.92

Peppers 176 97934 48.18 0.93

Boat 255 100518 87.24 0.94

Barbara 131 106285 51.87 0.99

Mandrill 185 153029 200.22 1.34

to a reasonable ordering of level lines based on their quantita-

tive meaningfulness measurement (e.g., the average of gradi-

ent’s magnitude along the level line A∇). The time complex-

ity of our optimization process is linear w.r.t. the number of

nodes NT . We have implemented the method of Ballester et al.

(2007) using the same tree construction algorithm and the same

data structure based on heap. We have compared the running

time on 7 classic images on a regular PC station. The compar-

ison is detailed in Table. 3. Our proposal is significantly faster

than that of Ballester et al. (2007). Our approach is almost lin-

ear w.r.t. the number of nodes in the tree. Yet, the method

of Ballester et al. (2007) seems to depend also on the depth of

the tree. In Ballester et al. (2007), the authors proposed apply-

ing the simplification scheme successively with a set of aug-

menting parameters λs so that to construct the input hierarchy.

Then they employed the scheme of scale-set theory proposed

by Guigues et al. (2006) on the obtained hierarchy to achieve

a final hierarchy of optimal segmentations. In our case, rather

than using a fixed parameter λs or a set of fixed parameters, we

propose to assign a measure related to λs to each shape as an

attribute function. Then we use the hierarchy transformation

(reviewed in Section 2.3) based on extinction values and on a

tree-based shape space to compute a hierarchical salient level

lines selection.

It is worth noticing that the minimization of Mumford-Shah-

like functional has also been applied to shape analysis in Tari
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and Genctav (2014). It consists of adding a non-local term,

which is the squared average of the field in the energy func-

tional. Its minimization tends to form negative field values on

narrow or small parts as well as on protrusions, and positive

field values on central part(s) of the input shape. The negative

and positive regions inside the input shape yield some saddle

points at which a crossing of a level curve occurs. This leads to

a binary partition hierarchy Hb of the shape. Then a probability

measure based on the obtained field values inside the shape is

assigned to each node of the partition hierarchy Hb. A set of hi-

erarchical representations of the shape is obtained by removing

some nodes from Hb and update the parenthood relationship.

Each candidate hierarchical representation is assigned with a

saliency measure given by the products of the probability mea-

sure of the removed nodes. These hierarchical representations

of the shape associated with the global saliency are used to an-

alyze the shape. Our proposal is different from this framework

in terms of the use of energy minimization. In Tari and Genc-

tav (2014), the energy minimization is used to create an image

with negative and positive regions for a given shape. Then one

constructs a binary hierarchy of partitions of the created image

via its saddle points, and weighs each node based on the ob-

tained image values. In our case, the energy minimization is

performed on an input image subordinated to its hierarchical

representation by the tree of shapes. This yields a quantita-

tive meaningfulness measure Aλs
for each node of the tree of

shapes.

6. Conclusion

In this paper, we have presented an efficient approach of

hierarchical image simplification and segmentation based on

minimizing some multiscale separable energy functional on

the tree of shapes, a unique and equivalent image representa-

tion. It relies on the idea of hierarchy transformation based

on extinction values and on a tree-based shape space to com-

pute a saliency map representing the final hierarchical image

simplification and segmentation. The salient structures in im-

ages are highlighted in this saliency map. A simplified im-

age with preservation of salient structures can be obtained by

thresholding the saliency map. Some qualitative illustrations

and quantitative evaluation in context of image segmentation

on a public segmentation dataset demonstrate the efficiency of

the proposed method. A binary executable of the proposed ap-

proach is available on http://publications.lrde.epita.

fr/xu.hierarchymsll.

In the future, we would like to explore some applications em-

ploying a strongly simplified image as pre-processing step. We

believe that this could be useful for analyzing high-resolution

satellite images and images with texts, where the contours of

meaningful objects in images usually coincide with full level

lines. Besides, as advocated in Table 1 for Gpb-owt-ucm, the

texture provides important information for image segmentation.

An interesting perspective is to incorporate texture information

in our proposed framework. Since the tree of shapes is a natu-

ral representation of the input image, a possible way to integrate

texture information might consist in replacing the original im-

age with a new grayscale image incorporating texture features.

Although this is not directly appicable to our case, probabil-

ity map incorporating region features, such as proposed in Bai

and Sapiro (2009), are worth exploring. Computing the tree

of shapes of such probability maps has already been proved

valuable (see Dubrovina et al. (2014)). In another direction, it

would be interesting to investigate some other energy function-

als for some specific tasks. Examples are the rate distortion op-

timization used in image or video compression coding system

(see Salembier and Garrido (2000); Ballester et al. (2007)) and

the energy based on spectral unmixing used for hyperspectral

image segmentation in Veganzones et al. (2014). The energy

functionals in these works are affine separable, which straight-

forwardly allows to use them in our proposed framework. Last,

but not the least, given that using a learned gradient improves

the results, a major research avenue is to combine our approach

with learning techniques.
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Géraud, T., Carlinet, E., Crozet, S., Najman, L., 2013. A quasi-linear algo-

rithm to compute the tree of shapes of nD images, in: Proc. of International

Symposium on Mathematical Morphology, Springer. pp. 98–110.

Guigues, L., Cocquerez, J.P., Le Men, H., 2006. Scale-sets image analysis.

International Journal of Computer Vision 68, 289–317.

Khalimsky, E., Kopperman, R., R Meyer, P., 1990. Computer graphics and

connected topologies on finite ordered sets. Topology and its Applications

36, 1–17.

Kiran, B.R., Serra, J., 2014. Global-local optimizations by hierarchical cuts

and climbing energies. Pattern Recognition 47, 12–24.



11

Koenderink, J.J., 1984. The structure of images. Biological Cybernetics 50,

363–370.

Lu, H., Woods, J.C., Ghanbari, M., 2007. Binary partition tree analysis based

on region evolution and its application to tree simplification. IEEE Transac-

tions on Image Processing 16, 1131–1138.

Monasse, P., Guichard, F., 2000. Fast computation of a contrast-invariant image

representation. IEEE Transactions on Image Processing 9, 860–872.

Mumford, D., Shah, J., 1989. Optimal approximations by piecewise smooth

functions and associated variational problems. Communications on Pure

and Applied Mathematics 42, 577–685.

Najman, L., 2011. On the equivalence between hierarchical segmentations and

ultrametric watersheds. Journal of Mathematical Imaging and Vision 40,

231–247.

Najman, L., Couprie, M., 2006. Building the component tree in quasi-linear

time. IEEE Transactions on Image Processing 15, 3531–3539.

Najman, L., Schmitt, M., 1996. Geodesic saliency of watershed contours and

hierarchical segmentation. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence 18, 1163–1173.

Pardo, A., 2002. Semantic image segmentation using morphological tools, in:

Proc. of IEEE International Conference on Image Processing, pp. 745–748.

Perret, B., Cousty, J., Ura, J.C.R., Guimarães, S.J.F., 2015. Evaluation of
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Xu, Y., Carlinet, E., Géraud, T., Najman, L., 2015a. Efficient computation of at-

tributes and saliency maps on tree-based image representations, in: Proc. of

International Symposium on Mathematical Morphology, Springer. pp. 693–

704.
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