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Abstract—In myocardium segmentation of cardiac magnetic
resonance images, ambiguities often appear near the boundaries
of the target domains due to tissue similarities. To address this
issue, we propose a new architecture, called FOANet, which
can be decomposed in three main steps: a localization step, a
Gaussian-based contrast enhancement step, and a segmentation
step. This architecture is supplied with a hybrid loss function
that guides the FOANet to study the transformation relationship
between the input image and the corresponding label in a three-
level hierarchy (pixel-, patch- and map-level), which is helpful
to improve segmentation and recovery of the boundaries. We
demonstrate the efficiency of our approach on two public datasets
in terms of regional and boundary segmentations.

I. INTRODUCTION

In order to accurately segment the myocardium in cardiac

magnetic resonance (MR) images, numerous methods have

been developed by world-wide researchers. Among these

methods, the most common method is atlas-based, which

offers good accuracy for myocardium segmentation, but often

looses efficiency due to heavy calculations with the regis-

tration algorithm. Recently, methods based on deep learning

are replacing the conventional methods in the field of my-

ocardium segmentation. For example, Zabihollahy et al. [1]

proposed a novel method to segment myocardium using a U-

Net convolutional neural network (CNN)-based model, and

the algorithm-generated results demonstrated its usefulness for

myocardium segmentation. Do et al. [2] proposed a network

architecture of Monte Carlo dropout (MCD) UNet for my-

ocardium segmentation, and the MCD was mainly applied to

measure a global score of model uncertainty without using

the reference segmentation, which was valuable for automatic

quality control at production. Dangi et al. [3] proposed a

multi-task learning (MTL)-based regularization of a CNN, and

used the rich information available in the distance map of the

segmentation mask as an auxiliary task for the myocardium

segmentation network. Since each pixel in the distance map

represented its distance from the closest object boundary,

which was more redundant and robust than the per-pixel image

label directly used for segmentation. Furthermore, the distance

map contained the shape and boundary information of the

object. Therefore, predicting the distance map, as an additional

task, was beneficial to enforce shape and boundary constraints

during the process of training.

However, there are many difficulties to segment my-

ocardium from cardiac MR images, for example, the presence

of poor contrast between the segmented tissue and surrounding
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Fig. 1: Global overview of the proposed method (FOANet).

structures, the brightness heterogeneities due to blood flow,

the shape and intensity variabilities of the structures across

patients and pathologies, and so on [4]. To decrease the effect

of blood flow and accurately segment the blood pool and

myocardium from cardiac MR, Qi et al. [5] proposed a multi-

scale feature fusion (MSFF) CNN with a new weighted dice

index loss function to segment myocardium, using MSFF

modules to obtain feature maps of different scale, and then

concatenating them through short and long skip connections in

the encoder and decoder path to capture more complete context

information and geometry structure for better segmentation. To

capture the valuable dynamics of heart motion, Zhang et al. [6]

proposed a method based on recurrent neural network (RNN),

in order to take the motion of the heart into consideration, and

extract myocardium-related image features at both the low-

and high resolution levels in consecutive frames of a cardiac

cycle. Faced with variability in contrast, appearance, orien-
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Fig. 2: Architecture of our networks. Part 1 and Part 2 correspond to the components of Net.1 and Net.2 of Fig. 1, respectively.

Because the role of Net.1 is only to roughly locate the target, using Part 1 instead of Part 2 can both reduce model parameters

and improve the speed of model prediction. N denotes the number of feature map

tation, and placement of the heart between patients, clinical

views, scanners, and protocols, Davis et al. [7] proposed a

fully automatic semantic segmentation method: Omega-Net

that included three steps to segment, first, roughly located

the object on the input image; second, learned the features

based on the obtained object during the first step, which is

used to predict the parameters needed to transform the input

image into a canonical orientation; and third, the transformed

image from the second step is used to finally segment. Despite

the fact that these methods continue to improve segmentation

accuracy, a large number of mis-segmentations still exist,

which is due to the fact that they mainly pay attention to

region accuracy, more than to the quality of the boundaries.

However, issues often occur at indistinguishable boundaries.

To maintain region accuracy without losing the boundary

quality, we propose a focus of attention architecture that we

call FOANet, and a new hybrid loss for region- and boundary-

aware segmentation. The main contributions of our work are:

— A novel region- and boundary-aware segmentation net-

work, FOANet, which consists of a localization and a

segmentation parts.

— A novel hybrid loss that combines Categorical Cross

Entropy (CCE), Structural Similarity (SSIM) and Dice

Coefficient (DC) to guide the training process at three

levels: pixel-level, patch-level, and map-level.

— A novel Focus of Attention (FOA) that decreases the

impact of surrounding similar tissues.

— A temporal-like method that lets the FOANet take advan-

tage of the temporal information by stacking 3 successive

2D frames.

II. METHODOLOGY

A. Overview of Network Architecture

The global overview of our FOANet consists of two parts

(localization and segmentation) as depicted in Fig. 1, and the

architecture of our networks in Fig. 2. The first part (the

“localization network”) is used to localize roughly the object

position. The second part is devoted to segment the object (the

“segmentation network”).

B. Localization Network

The localization network (Net.1) is depicted in Fig. 2.

The black dotted box Part 1 is dedicated to the localization

network, it can be replaced by Part 2 to become the segmen-

tation network (Net.2). For Net.1 and Net.2, the difference

concerns only Part 1 and Part 2 as shown in Fig. 2, while

the other components of the architecture are the same. Part 1

consists of one convolutional layers with 256 or 512. First,

we rely on the original VGG16 [8] network architecture,

pre-trained on millions of natural images of ImageNet for

image classification [9]. We then discard its fully connected

layers to keep only the sub-network made of five convolution-

based “stages” (the base network). Each stage is made of

two convolutional layers, a ReLU activation function, and a

max-pooling layer. Since the max-pooling layers decrease the

resolution of the input image, we obtain a set of fine to coarse

feature maps (with 5 levels of features). Inspired by the works

in [10, 11, 12, 13], we added specialized convolutional layers



(with a 3× 3 kernel size) with K (e.g. K = 16) feature

maps after the up-convolutional layers placed at the end of

each stage. The outputs of the specialized layers show the

same resolution than the input image, and are concatenated

together. We add a 1×1 convolutional layer at the output of

the concatenation layer to linearly combine the fine to coarse

feature maps 1.

C. Segmentation Network

As mentioned above, we replace Part 1 of Net.1 with Part

2, which becomes the segmentation network (Net.2). Because

the role of Net.2 is mainly to obtain accurate segmentation

results, we use Part 2 that is more complicated than Part 1

in Fig. 2. It can capture the global information and decrease

the effect of surrounding similar tissues. Part 2 consists of

three convolutional layers with 256 or 512 dilated (dilation =

2) [14] 3×3 filters, and one layer of concatenation.

D. Hybrid Loss

To obtain high quality regional segmentation and nice

boundaries, we define ℓ as a hybrid loss: ℓ = ℓCCE+ℓSSIM+ℓDC,

where ℓCCE, ℓSSIM and ℓDC respectively denote CCE loss [15],

SSIM loss [16] and DC loss [17] respectively.

CCE [15] loss is commonly used for multi-class classifica-

tion and segmentation. It is defined as:

ℓCCE = −
∑C

i=1

∑H

a=1

∑W

b=1 yi(a,b) ln y∗
i
(a,b), (1)

where C is the number of classes of each image, H and W are

the height and width of image, yi(a,b) ∈ {0, 1} is the ground

truth one-hot label of class i in the position (a, b) and y∗
i
(a,b)

is the predicted probability of class i.

SSIM loss can assess image quality [16], and can be used to

capture the structural information, which will decrease the mis-

segmentation rate of surrounding similar tissues. Therefore,

we integrated it into our training loss to learn the differences

between the segmented domain and similar tissues around the

segmented domain. Let S and G be the predicted probability

map and the ground truth mask respectively, the SSIM of S

and G is defined as:

ℓSSIM = 1 −
(2µSµG + C1)(2σSG + C2)

(µ2
S + µ2

G + C1)(σ2
S + σ2

G + C2)
, (2)

where µS, µG and σS, σG are the mean and standard deviations

of S and G respectively, σSG is their covariance, C1= 0.012

and C2= 0.032 are used to avoid a division by zero.

DC [17] loss is used to measure the similarity between two

sets as defined in Eq. 3. But for the multi-class segmentation

task, Eq. 3 is not suitable due to the class imbalance problem

in such cases. Therefore, we extend the definition of the DC

loss to multiclass segmentation in the following manner:

dicei = (ǫ+ 2
∑Ni

n=1 y
i
n y∗

i
n) / (ǫ+

∑Ni

n=1 (y
i
n + y∗

i
n)) (3)

ℓDC = 1 −
∑C

i=1 dicei/ (Ni + ǫ), (4)

1Note that we designed our network’s architecture to work with any input
shape.

(a) Original image (b) FOA

(c) After locating (d) ωFOA (e) FOA after locating

Fig. 3: Focus of attention (FOA).

where Ni denotes the numbers of class i and ǫ is a smooth

factor.

E. Focus of Attention

The image of Fig. 3a is from the MICCAI 2019 left ventricle

(LV) Full Quantification Challenge dataset2 (LVQuan19) [18,

19]. The red box denotes the object domain, here the LV. There

are a large number of similar tissues around it, highlighted by

the blue ellipses. Even after a localization procedure, these

tissues are still present. To decrease the impact of similar

tissues on segmentation results, we built on the biological

visual system, which concentrates on certain image regions

requiring detailed analysis [20]. We define the FOA as:

IFOA(a, b) = I(a, b)ωFOA(a, b), where I(a, b) denotes the

image intensity at location (a, b) and ωFOA(a, b) is a Gaussian

weighted function defined by

ωFOA(a, b) = α exp(−|(a, b)− (a∗, b∗)|2 / δ2 ), (5)

where (a∗, b∗) denotes the object center, α is a normalization

constant, δ is a scale parameter.

If we used IFOA(a, b) on each original image, we would

probably miss the object of interest. Therefore, we must first

localize the domain of interest; then we use IFOA(a, b) to focus

on the object. This methodology is depicted in Fig. 3e, where

similar tissues are less visible when compared to Fig. 3c.

III. EXPERIMENTAL RESULTS

A. Dataset Description

We evaluated our method on two datasets: LVQuan19

and Multi-Modality Whole Heart Segmentation 3 (MM-

WHS2017). The aim of LVQuan19 is to segment the my-

ocardium of the left ventricle and estimate a set of clinical

significant LV indices such as regional wall thicknesses, cavity

dimensions, and cardiac phase and so on. It contains the

processed SAX MR sequences of 56 patients. For each patient,

20 temporal frames are given and cover a whole cardiac cycle.

2https://lvquan19.github.io
3http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs17/index.html



All ground truth (GT) values of the LV indices are provided for

every single frame. The pixel spacings of the MR images range

from 0.6836 mm/pixel to 1.5625 mm/pixel, with mean values

of 1.1809 mm/pixel. The LV dataset includes two different

image sizes: 256×256 or 512×512 pixels. MM-WHS2017 [21]

aims to segment 7 substructures of the whole heart. Although

it contains 20 cardiac MRI and 20 CT images, we only use the

MRI modality. The slice spacings of MRI volume range from

0.899 mm/pixel to 1.60 mm/pixel, while in-plane resolution

ranged from 0.78 mm/pixel to 1.2 mm/pixel. The average

sizes: 324×325×171 pixels.

B. Preprocessings

Since the VGG-16 network’s input is an RGB image, we

propose to take advantage of the temporal information by

stacking 3 successive 2D frames: to segment the nth slice,

we use the nth slice of the MR volume, and its neighboring

(n−1)th and (n+1)th slices, as green, red and blue channels,

respectively. This new image, named “temporal-like” image,

enhances the area of motions, here the heart, as shown in

Fig. 4.

Let us remind what we call Gauss normalization: for each

(2D+t)-image I corresponding to a given patient, we compute

I := (I − µ)/σ where µ is the mean of I and σ its standard

deviation (σ is assumed not to be equal to zero). There are

then two different pre-processing steps as depicted in Fig. 1.

1) The first pre-processing (see Prepro.1 in Fig. 1) begins

with a Gauss normalization. Then, for each n, we created the

width×height×3 pseudo-color (“temporal-like”) image where

R,G,B correspond respectively to the n− 1, n, n+1 frames

and we concatenate them (we do not detail the cases n = 1
and n = nend, the first and last slice of the volume, because

of lack of space).

2) The second pre-processing (Prepro.2 in Fig. 1) follows

five steps: (1) data augmentation using rotations and flips for

the LVQuan19 dataset (only for the training phase), but it is not

used on the MM-WHS2017 dataset, (2) resizing with a fixed

pixel-spacing (0.65mm), (3) FOA, (4) Gauss normalization,

and (5) pseudo-color concatenated image like above. Such a

use of a pseudo-color image in the context of 3D medical

imaging has been proven effective in [22] to segment brain

structures and in [23] to extract white matter hyperintensities

in brain volumes.

C. Postprocessing

Let us assume that we crop an initial volume of T frames

of size T ×W ×H into an image of size T ×w×h (where

the crop is due to the localization procedure, and W and H
are the initial width and height of a slice). After Prepro.2 we

obtain a T×w×h×3 image. Then we filter the ouput of the

segmentation network, of size T×w×h, by keeping only the

greatest connected component, in order to get back the initial

pixel-spacing. Finally, we add a padding of zeros to get back

a T×W×H image.

(a) Slice n− 1. (b) Slice n. (c) Slice n+ 1.

(d) RGB concatenation at n.

Fig. 4: Illustration of our “temporal-like” procedure.

D. Implementation and Experimental Setup

We implemented our experiments on Keras/TensorFlow

using a NVidia Quadro P6000 GPU. For the localization

network, we used the multinomial logistic loss function for

a one-of-many classification task, passing real-valued pre-

dictions through a softmax to get a probability distribution

over classes. We used an Adam optimizer (batchsize = 1,

β1 = 0.9, β2 = 0.999, ε = 0.001, lr = 0.002) and we did

not use learning rate decay. We trained the network during 10

epochs. For this step, we merged all the classes into the object

class to obtain a binary segmentation. For the segmentation

network, we used the same optimizer and parameters detailed

previously. We used the hybrid loss as loss function. For

this task, we considered three different classes (background,

myocardium, cavity) for LVQuan19 and eight different classes

(background, myocardium, left atrium, left ventricle, right

atrium, right ventricle, ascending aorta and pulmonary artery)

for MM-WHS2017.

E. Evaluation Methods

Three measures are used to evaluate our method: DC given

in Eq. 3, 95% in the Hausdorff distance (95HD) [24] and

Boundary of Dice Coefficient (BDC) to quantitatively evaluate

the boundaries. As many diseases appear in the myocardium

wall, we chose to quantitatively evaluate the precision of the

segmentation on boundaries.

For the BDC evaluation method, given a segmentation map

M , we first convert the class i to a binary mask, M i
bm. Then,

we obtain the mask of class i of its one pixel wide boundary

by conducting an XOR(M i
bm, M i

erd) operation where M i
erd is

the eroded binary mask of M i
bm. The same method is used to

get the GT mask boundaries, M i
g . Then the DC is calculated

on the boundaries of the GT and segmentation masks to obtain

the BDC.



TABLE I: Ablation study; Dice values are for the myocardium.

Ablation Configurations DC 95HD BDC

Architecture

a: B. + ℓCCE 0.842 3.186 0.269

b: B. + L. + ℓCCE [13] 0.867 2.209 0.281

c: BLP + ℓCCE 0.877 2.019 0.303

Loss
d: BLP + ℓSSIM 0.873 2.094 0.297

e: BLP + ℓDC 0.871 2.193 0.295

FOA (our) i: BLP + FOA + ℓCSD 0.879 1.826 0.306

UNet [25] - 0.862 3.976 0.291

“B.” means “baseline” (Net.1) [26, 27]; “L.” means “localiza-
tion”; “P2.” means “Part 2”(Net.2); “BLP” means “baseline +
localization + Part2”.
Note: ℓCSD = ℓCCE + ℓSSIM + ℓDC

image ℓCCE (c) ℓSSIM (d)

GT ℓDC (e) FOA (i)

Fig. 5: The comparative results trained with our FOANet on

different losses.

Fig. 6: Box plots of dice scores for the 56 patients. The red

dotted line represents the average value, and a, b, c, etc. on

the abscissa correspond to the methods of Tbl. I

Fig. 7: Box plots of 95HD for the 56 patients. The red dotted

line represents the average value, and a, b, c, etc. on the

abscissa correspond to Tbl. I

F. Ablation Study

To validate the influence of each component used in our

method, we conducted the ablation study that includes three

parts (architecture, loss and FOA) on the LVQuan19 dataset

with 5-fold cross-validation. Results are shown in Tbl. I.

Architecture ablation: To demonstrate the effects of our

FOANet, we compared the results of our method with other

related frameworks. We took a network used in our previous

works [26, 27] as baseline network (Net.1). First, we added a

localization module (as shown in Fig. 1) based on the baseline;

with this module, we obtained a mean improvement of 1.89%

in terms of DC, 0.9772 on 95HD, which meant that reducing

the proportion of the background in the image is beneficial

to improve segmentation accuracy. This architecture was the

one we presented for the Challenge LVQUAN19 [13]. Further,

we added the Part 2 module, so Net.1 was changed to Net.2

(Baseline+Part2) as shown in Fig. 2. We learned from our

comparison results that, when using dilated convolution and

capturing the global information in the feature maps of high

level, we could refine the segmentation results, which meant

further improvement of 1.70% in terms of DC, 0.1893 on

95HD. Loss ablation: To prove the effects of our hybrid loss,

we conducted comparative experiments over different losses

based on our method. The results in Tbl. I illustrate that the

proposed hybrid loss helps to improve the performance, and,

compared with other combinations, that loss function based on

three-level hierarchy (pixel-, patch- and map-level) can fully

guide the network to study the transformation relationship

between the input image and the corresponding label. FOA

ablation: As shown in Fig. 5, without FOA, the surrounding

similar tissues are mis-segmented, meaning that the segmen-

tation results are disturbed by these similar tissues, and mis-



TABLE II: Comparison of our method and other challengers

on the MM-WHS2017 MRI training dataset for segmenting

the myocardium.

Method DC (train) DC (test) Computation time
Data

augmentation

Our (best) 0.851 ? < 2s No

Best [28] 0.796 0.781 < 2min No

Second-best [29] 0.752 0.778 - Yes

UB2 [30] ? 0.811 ? Yes

segmented parts are connected to the ground truth, which is

very difficult to remove. Therefore, by using our FOA module,

we decrease the impact of the surrounding similar tissues, and

the segmentation results are better.

Statistical analysis Fig. 6 shows the box plots of the

evaluation on different framework configurations for dice

scores. Compared with others configurations, the segmentation

results obtained by our method (configuration:i) have a small

standard deviation, which shows that our method is more

stable on region segmentation. Fig. 7 shows the box plots of

the evaluation for 95HD. Compared with others configurations,

based on the median quantile of box plots and the average of

56 patients, most of the values of our method are low, which

shows that our method optimizes the boundary quality.

Fig. 8 shows several localization and segmentation results

of our FOANet on LVQuan19. Fig. 8a indicates that we

started with finding the smallest rectangular box for each slice

of the patient’s heart, ensuring that each box contained the

segmentation object. Then we found the biggest rectangular

box on the basis of these smallest rectangular boxes; and based

on its shape, we cropped a new 3D volume from the original

3D volume as shown in the segmentation module of Fig. 1.

Thanks to the localization results of Fig. 8a, we knew that the

object was contained in/by the box, which greatly increased

the proportion of objects in the image and reduced class

imbalance. Fig. 8b compares ground truth and prediction, and

we can see that the differences mainly are near the boundaries.

G. Comparison with State-of-the-Art Methods

We continued to test our method on the MM-WHS2017

challenge with 5-fold cross-validation and we obtained seg-

mentation results for each class. As we focus in this article

on the myocardium segmentation, we will only present our

results for this structure. For the comparison with state-of-the-

art methods, we choose to compare our results with the results

of the first and second prizes of the challenge, who respectively

get dices of 0.87 and 0.863 in average for all classes. We

reported their results on the training and on the testing sets.

We also add a comparison with a late submission on the testing

set only (scores on the training set are not available), having

the best actual score of the challenge [30, 31]. As shown

in Tbl. II, compared with the first and second prizes of the

MM-WHS2017 challenge, without using data augmentation,

our method outperformed them for the segmentation of the

myocardium of the left ventricle. Furthermore, our method

needs less time to compute the prediction, which further

(a) Some localizations of the LV (in blue) of the 9th patient. The red dotted
box denotes that we extend next to the box by a size equal to 10 pixels to
ensure that the whole LV is included into the bounding box.

(b) Different comparisions between ground truth and prediction
corresponding to (a); yellow denotes the difference.

Fig. 8: Localization and segmentation of our FOANet on

LVQuan19.

validates the results in LVQuan19. We are still waiting for

the quantitative results on the testing dataset to be able to

compare our method fairly with [30]. Fig. 9 shows some

localization and segmentation results. Concerning the whole

heart segmentation, the class imbalance causes a lot of damage

without the localization module, because the seven structures

of the heart do not always appear at the same time in a slice

of the same 3D volume of a same patient. Without the FOA

module and Part 2, the network can confuse one class with

another: the RA can be confused with the RV, the LV can

be confused with the LA, and so on. Accordingly, a good

segmentation requires to capture the global information by



(a) Some localization results in one patient.

(b) Seven structures of the whole heart. Myo: myocardium, LA: left atrium,
LV: left ventricle, RA: right atrium, RV: right ventricle, AO: ascending aorta,
PA: pulmonary artery.

(c) Some segmentation results in one patient corresponding to (a).

Fig. 9: Localization and segmentation of our FOANet on MM-

WHS2017.

dilated convolutions and to enhance contrast using the FOA

module.

IV. CONCLUSION

In this paper, we propose a new focus of attention net-

work framework, FOANet, and present a new hybrid loss for

boundary-aware segmentation. FOANet is able to prevent the

interferences of surrounding similar tissues, while the hybrid

loss guides it at several levels. Both generate a better capture

not only of large-scale information but also of fine structures to

produce segmentations with nice boundaries. The computation

time of the entire pipeline is less than 2 seconds for an entire

3D volume, making it usable for clinical practice. In our future

work, we will continue to study the impact of the hybrid

loss by weighting differently the segmentation loss and the

boundary loss. Furthermore, we will add constraints on shapes

in the network.
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