
On-the-fly Verification of Linear Temporal Logic

Jean-Michel Couvreur

LaBRI, Université de Bordeaux I, Talence, France
couvreur@labri.u-bordeaux.fr

Abstract. In this paper we present two new practical and pragmatic
algorithms for solving the two key on-the-fly model-checking problems
for linear temporal logic: on demand construction of an automaton for a
temporal logic formula; and on-the-fly checking for whether the automata
resulting from the product of the program and the property is empty.

1 Introduction

Automatically checking whether a finite state program satisfies its linear speci-
fication is a problem that has gained a lot of attention during the last 15 years.
Linear temporal logic is a powerful specification language for expressing safety,
liveness, and fairness properties. However, the model-checking problem is known
do be PSPACE-complete [18]. In practice, model-checking methods face com-
plexity related limits: the size of the state space program, the size of the un-
derlying automaton that represents the formula, and the size of the product
automaton on which model-checking algorithms are applied. Many techniques
have been designed to avoid the state explosion problem. By representing pro-
grams and automata of formulas using binary decision diagram [1], [3], [4], it is
possible to check very large concurrent systems [5]. Another optimizing approach
is on-the-fly verification [7], [9], [11], [13], which consists in constructing the pro-
gram state space, the negation of the property, and the product automaton while
checking for the emptiness of the product automaton. An advantage of this ap-
proach is that the algorithm can give an answer before the full program state
space and the property automaton have been constructed. On-the-fly verification
can be combined with methods [10], [14], [17], [22], [23] that avoid the explo-
ration of the complete state space by performing reductions using partial order
semantics. Success stories for both methods clearly demonstrate the effectiveness
of automatic verification, even for fairly large-scale industrial applications.

In this paper we present new practical and pragmatic algorithms designed
for solving the two key on-the-fly model-checking problems for linear temporal
logic:

– Constructing on demand an automaton for a temporal logic formula;
– Checking on-the-fly whether the automaton resulting from the product of

the program and the property is empty.

Both of these problems have already been solved in an efficient way. The automa-
ton construction algorithm in [9] appears to produce reasonable sized automata

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. I, LNCS 1708, pp. 253–271, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



254 Jean-Michel Couvreur

for temporal logic formulas and it operates on-the-fly. Algorithms in [7], [11],
[12], [13] check on-the-fly for the emptiness of the product automaton.

Our new automata construction is always better than the one in [9]. It ap-
pears to produce smaller automata. From a pragmatic point of view, we build is
a variant of Büchi automata, namely transition Büchi automata. As opposed to
simple Büchi automata, which have only one set of accepting states [20], transi-
tion Büchi automata have multiple sets of accepting transitions. As was proven
in [15], ω-automata with accepting conditions on transitions are simpler than ω-
automata with accepting conditions on nodes. Automaton construction is very
similar than the one proposed in [9]. It is also based on tableau procedures [25],
[26]. The key point of our method is the use of symbolic computation, which al-
lows us to simplify expressions in a natural way and then to reduce the number
of nodes. Moreover, the implementation can be done efficiently and easily using
Binary Decision Diagrams [1], [3], [4].

The new checking algorithm is a simple variation of the Tarjan algorithm. It
has the following features:

– The algorithm is designed to run on-the-fly, that is, during the traversal of
the product automaton, failure is detected as soon as a failure component is
encountered.

– The algorithm works directly on transition Büchi automata with multiple
accepting conditions, that is, no expansion of the transition Büchi automaton
into a simple Büchi automaton is needed.

– The algorithm can be used for checking temporal properties under fairness
assumptions of the form

∧
i GFpi, without needless overhead.

Previously existing algorithms [7], [11], [13] do not have any of the interesting
properties mentioned above.

The rest of the paper starts with some preliminaries defining finite state
programs, temporal logic, and its interpretations. Section 3 presents transition
Büchi automata and the automata construction for a temporal logic formula.
Section 4 gives the model-checking algorithm. The paper finishes with some
concluding remarks.

2 Preliminaries

Let AP be a set of atomic propositions. We write as 2AP the mapping set
AP → {False, T rue} and 22AP

the mapping set 2AP → {False, T rue}. We may
note that 2AP can also be defined just as easily as the set of subsets of AP

and 22AP

as the set of propositional formulas induced by atomic propositions.
Sometimes we will consider an element p of AP as a propositional formula:
∀y ∈ 2AP p(y) ≡ (p ∈ y).

A finite state program P consists of the following components:

– S is a finite set of states;
– →⊆ S × 2AP × S is a transition relation;
– s0 is an initial state (s0 ∈ S).



On-the-fly Verification of Linear Temporal Logic 255

Intuitively, the set S represents the set of states the system may enter. The
relation → describes the actions available to states and the state transitions
that may result upon execution of the actions. AP is used to associate atomic
properties with transition relations. Without loss of generality (as in [16]), one
can add loop transition relations, labeled {Dead}, to every terminal state. In
this case every state has some enabled action. A run of P is an infinite sequence
of states

ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . .

such that for every j ≥ 0 : (sj , xj , sj+1) ∈→. We call a trace of ρ the infinite
word over the alphabet 2AP such that trace(ρ) = x0 · x1 · x2 . . .

We use linear temporal logic (LTL) for our specification language. It defines
a logic for the trace set of a program. We will say that program P fulfils a linear
temporal property iff every trace of P fulfils f . The formal syntax for LTL is
given below.

1. Every atomic proposition p ∈ AP is a LTL formula.
2. If f and g are LTL formulas, then so are ¬f , f ∧ g, Xf , fUg.

An interpretation for a LTL formula is an infinite word σ = x0.x1.x2 . . . over the
alphabet 2AP . We use the standard notation σ |= f to indicate the truth of a
LTL formula f for an infinite word σ. We write σi, for the suffix of σ starting at
xi. The relation |= is defined inductively as follows:

1. σ |= p if x0(p) for p ∈ AP ;
2. σ |= ¬f if ¬(σ |= f);
3. σ |= f ∧ g if σ |= f and σ |= g;
4. σ |= Xf if σ1 |= f ;
5. σ |= fUg if ∃i ≥ 0 : σi |= g ∧ (∀j < i : σj |= f).

The standard boolean operators, true and false can also be used to construct
LTL formulas. We also use the following abbreviations: Fϕ = trueUϕ, Gϕ =
¬F¬ϕ and fV g = ¬(¬fU¬g).

Remark 1. Every LTL formula can be rewritten as an equivalent LTL formula
where the ¬ unary operator is applied only to atomic propositions. In the fol-
lowing, we will consider only such formulas.

Remark 2. Programs can also be constructed using parameterized transition
systems [2]. In such programs, atomic propositions can also be associated with
states. This model is useful but does not give any extension when using LTL
formulas for the specification language: the atomic propositions of a state can
be moved to all its output transitions.



256 Jean-Michel Couvreur

3 A Tableau Construction

Our goal is to build an automaton that generates all infinite words satisfying a
given formula f . The automaton we build is a transition Büchi automaton. As
opposed to simple Büchi automata that have only one set of accepting states
[20], transition Büchi automata have multiple sets of accepting transitions.

Formally a transition Büchi automaton < Q, Acc,→, q0 >has the following
components:

– Q is a finite set of states;
– Acc is a finite set of accepting conditions;
– →⊆ S × 22AP × 2Acc × S is a transition relation;
– q0 is an initial state (q0 ∈ Q).

An infinite word σ = x0.x1.x2 . . . over the alphabet 2AP is accepted by a tran-
sition Büchi automaton iff there exists an infinite path

ρ = q0
(X0,A0)−→ q1

(X1,A1)−→ q2
(X2,A2)−→ . . .

such that ∀i ≥ 0 : ((qi, Xi, Ai, qi+1) ∈→) ∧ (∀a ∈ Acc,∀i ≥ 0, ∃j ≥ i : a ∈ Aj).
The automaton construction is very similar to the one proposed in [9]. It is

also based on tableau procedures [25], [26]. The nodes of the graph are labeled
by a set of formulas and the transitions are obtained by expanding the temporal
operators in order to distinguish what has to be true immediately from what has
to be true from the next state on. The fundamental assertions, which are used
for this expansion, are:

fUg = g + f ·X(fUg)
fV g = f · g + g ·X(fV g)

where + is the boolean ”or” operator and . is the boolean ”and” operator.
Our automata construction is based on symbolic computation over a set of

boolean variables constructed as follows:

– Every atomic proposition is a boolean variable,
– If f is a LTL formula then rf is a boolean variable,
– If fUg is a LTL formula then afUg is a boolean variable.

Intuitively, for an infinite word σ = x0 · x1 · x2 . . . over the alphabet 2AP ,
rf corresponds to f |= σ and afUg corresponds to (σ |= fUg) ∧ ¬(σ |= g). The
fundamental identities of Boolean variables rf and afUg are:

rfUg = rg + afUg · rf · rX(fUg)

rfV g = rf · rg + rg · rX(fV g)

rf∧g = rf · rg

rf∨g = rf + rg

rp = p

r¬p = ¬p



On-the-fly Verification of Linear Temporal Logic 257

Using the fundamental identities, and given a LTL formula f , variable rf can
be expressed in an expression which only uses variables of the form p, ¬p, ag

and rXg, where variables p are atomic propositions and g are subformulas of f .
Proposition 1 is the application of this property to a set of formulas F .

Proposition 1. Let F be a set of formulas. ∆(F ) =
∏

f∈F rf can be expanded
to the form:

∏
f∈F

rf =
∑

(X,Nacc,Next)∈LF


X ·

∏
g∈Nacc

ag ·
∏

h∈Next

rXh




with

LF ⊆ 22AP × {gUh ∈ Sub(f)}
× {{gUh ∈ Sub(f)} ∪ {gV h ∈ Sub(f)} ∪ {g ∈ Sub(f) : Xg ∈ Sub(f)}}.

Proof. Obvious.

A transition Büchi automaton that accepts exactly the infinite words satis-
fying formula f , is obtained by expanding formulas of the form

∏
g rg. The set

of accepting condition for the automaton is composed of the subformulas gUh
in f . The automata construction starts by each expanding variable rf . Each
implicant of this expansion defines a transition (f, X, Acc \ NAcc, Next). We
then expand

∏
g∈Next rg to produce new nodes and new transitions in the same

manner. Theorem 1 formalizes the resulting automaton.

Theorem 1. Let f be a LTL formula. Let Bu(f) be the transition Büchi au-
tomaton defined by:

– Q = {F ⊆ {gUh ∈ Sub(f)} ∪ {gV h ∈ Sub(f)} ∪ {g ∈ Sub(f) : Xg ∈
Sub(f)} ∪ {f}};

– Acc = {gUh ∈ Sub(f)};
– →= {(F, X, Acc\NAcc, Next) : (X, NAcc, Next) ∈ LF }∪{(∅, true, Acc, ∅)}
– {f} is an initial state.

Then Bu(f) accepts exactly the infinite words over the alphabet 2AP that satisfy
f .

Proof. (⇒) Let σ = x0 · x1 · x2 . . . be an infinite word accepted by Bu(f) . Let
us prove that σ satisfies formula f .

By definition, there exists an infinite path in Bu(f)

ρ = q0
(X0,A0)−→ q1

(X1,A1)−→ q2
(X2,A2)−→ . . .

such that ∀i ≥ 0 : ((qi, Xi, Ai, qi+1) ∈→) ∧ (∀a ∈ Acc,∀i ≥ 0, ∃j ≥ i : a ∈ Aj).
For each transition (qi, Xi, Ai, qi+1), consider the boolean variables r[i]g for

each LTL formula g, and boolean variable a[i]gUh for each accepting condition
gUh.



258 Jean-Michel Couvreur

Let the sets r[i]Xg = [g ∈ qi+1], r[i]p = [p ∈ xi] for p ∈ AP , a[i]gUh = [gUh ∈
Ai]. Using fundamental identities, we deduce the value of each variable r[i]g for
any LTL formula g. By the construction of Bu(f), r[i]g is true for any formula
in qi. Indeed, the initial value of the implicant associated with transition was
true, so

∏
g∈qi

r[i]g must be true.
We can establish by induction on the size of the formula that, if r[i]g is true,

then the suffix word σi satisfies g. This will conclude the first part of the proof.

– If p is an atomic proposition and r[i]p is true then p ∈ xi and then σi satisfies
p;

– If r[i]g∧h is true then r[i]g∧h = r[i]g ·r[i]h = true and by induction σi satisfies
g and h;

– If r[i]g∨h is true then r[i]g∨h = r[i]g + r[i]h = true and by induction σi

satisfies g or h;
– If r[i]gUh is true then r[i]gUh = r[i]h + a[i]gUh · r[i]g · r[i]X(gUh) = true;

if r[i]h = true then by induction σi satisfies h and thus gUh; otherwise
r[i]X(gUh) = true and r[i]g = true, by definition gUh ∈ qi+1 and then
r[i + 1]gUh = true and by induction σi satisfies g. In the latter case one can
apply the same deduction for j > i until r[j]h = true. This procedure will
eventually stop at least when a[j]gUh is false (gUh ∈ Aj).

– If r[i]gV h is true then r[i]gV h = r[i]g · r[i]h + r[i]h · r[i]X(gV h) = true; if
r[i]g = r[i]h = true then by induction σi satisfies g and h,and thus gV h;
otherwise r[i]X(gV h) = true and r[i]h = true, by definition gV h ∈ qi+1 and
then r[i+1]gV h = true and by induction σi satisfies h. In the latter case one
can apply the same deduction for j > i until r[j]g = true. This procedure
can stop or proceed infinitely; in both case, we deduce that σi satisfies gV h.

(⇐) Let σ = x0 ·x1 ·x2 . . . be an infinite word satisfying formula f . Let us prove
that σ is accepted by Bu(f).

One can construct an infinite path in Bu(f)

ρ = q0
(X0,A0)−→ q1

(X1,A1)−→ q2
(X2,A2)−→ . . .

such that ∀i ≥ 0 : Xi(xi); ∀g ∈ qi, σi satisfies g, and if σi satisfies h ∨ ¬(gUh)
then gUh ∈ Ai.

Each transition (qi, Xi, Ai, qi+1) corresponds to a true implicant in formula∏
g∈qi

rg when setting variables: rXg = [σi+1 |= g], r[i]p = [p ∈ xi] for p ∈ AP ,
agUh = (σi |= gUh)∧¬(σi |= h). Any accepting condition gUh appears infinitely
often in the path. Otherwise there exists an i > 0 and a formula gUh such that
∀j > i, σj satisfies ¬h ∧ (gUh).

Example 1. Construction of an automaton for formula f = pU(qUs)
Let g = qUs. We deduce Acc = {f, g}. The fundamental identities used in

the construction are:
rf = rg + af · p · rXf

rg = s + ag · q · rXg



On-the-fly Verification of Linear Temporal Logic 259

Firstly, one can expand variable rf :

rf = rg + af · p · rXf = s + ag · q · rXg + af .p.rXf

This expansion produces 3 transitions:

({f}, s, {f, g}, ∅)
({f}, q, {f}, {g})
({f}, p, {g}, {f})

Secondly, one has to produce the successors of states {g} and ∅. The expan-
sion of rg is immediate: rg = s + ag · q · rXg and produces transitions:

({g}, s, {f, g}, ∅)
({g}, q, {f}, {g}).

The transition for state ∅ is always (∅, true, {f, g}, ∅). Figure 1 gives the resulting
automaton.

{f}
�
�
�
�>

{g}
�
�
�
�∅

�
�
�
�

��
?

p, {g}

��6
q, {f}

��6
true, {f, g}

q, {f}@
@
@

@
@
@R

�
s, {f, g}

s, {f, g}
�

�
�
�
�

�	

Fig. 1. A transition Büchi automaton for the formula pU(qUs)

Example 2. Construction of an automaton for Formula f = GXFp
Let g = Fp. We deduce Acc = {g}.
The fundamental identities used in the construction are:

rf = rXg · rXf

rg = p + ag · rXg

First, we expand the variable rf :

rf = rXg · rXf

This expansion produces the transition ({f, true, {g}, {f, g}).



260 Jean-Michel Couvreur

Second, we produce the successors of states {f, g}. The expansion of rf · rg

is:
rf · rg = p · rXg · rXf + ag · rXg · rXf

and produces two transitions:

({f, g}, p, {g}, {f, g})

({f, g}, T rue, ∅, {f, g})
Figure 2 gives the resulting automaton.

{f}
�
�
�
�> {g}

�
�
�
�

��
?

p, {g}

��6
true, ∅

-true, {g}

Fig. 2. A transition Büchi automaton for the formula GXFp

The implementation of this automaton construction can be done efficiently
and easily using Binary Decision Diagrams [1], [3], [4]: one only needs classical
BDD operations (Boolean operators, variable substitution) and a way to extract
the prime implicants of Boolean functions [6], [8]. The following table compares
the (previous) construction described in [9] and the one based on Theorem 1.
Formulas and results come for previous construction from [9].

Table 1. Comparing the construction described in [9] and the new construction

Formula | Acc | Previous Construction New Construction
Nodes Transitions Nodes Transitions

pUq 1 3 4 2 3

pU(qUs) 2 4 6 3 6

¬((pU(qUs)) 0 7 15 3 6

GFp ⇒ GFq 2 9 15 5 11

FpUGq 2 8 15 4 10

GpUq 1 5 6 4 6

¬(FFp ⇔ Fp) 2 22 41 3 5

The new construction is always better. This is not a surprise. One can re-
mark that the number of nodes for new construction is in O(2temporal(f)), where



On-the-fly Verification of Linear Temporal Logic 261

temporal(f) is number of temporal operators in formula f , while for the pre-
vious one, it is in O(2|f |). Moreover the use of symbolic computation makes it
possible to simplify expressions in a natural way and then reduces the number
nodes.

The new construction can be improved in some ways. For instance:

– When two nodes F , G represent equivalent formulas
(∏

f∈F f ⇔ ∏
g∈G g

)
,

one can merge them. A sufficient condition to detect such a situation is(∏
f∈F rf =

∏
g∈G rg

)
. Using binary decision diagram, this improvement is

easy to implement. One can identify each node F by the binary decision
diagram of the expanded expression of

∏
f∈F rf .

Table 2. Result of the improved construction

Formula |Acc| Improved Construction
Nodes Transitions

GFp ⇒ GFq 2 4 9

¬(FFp ⇔ Fp) 2 2 3

– The operator GF is commonly used when writing LTL formulas. The au-
tomaton construction introduces nodes with equivalent formulas GFf =
GFf ∧ Ff . An efficient way to take into account the node reduction intro-
duced by this equivalence is to add a new fundamental identity:

rGFf = rf · rXGFf + aGFf · rXGFf

As a result, for a formula
∧

i GFpi that represents some fairness properties,
one can obtain an automaton with a single node where otherwise the number
of nodes would be exponential.

The automaton construction can be used for checking the validity of an LTL
formula f for a program P [24]. We first build a transition Büchi automaton for
the negation of the formula, Bu(¬f) = (Q, Acc,→, q0). Then we compute the
product automaton P ×Bu(¬f) = (S ×Q, Acc,→, (s0, q0)) where

(s, q)
(x,A)−→ (s′, q′) ⇔

(
s

x−→ s′
∧

q
(X,A)−→ q′

∧
X(x)

)

This product automaton accepts all traces of P which fulfil ¬f . Finally, we
check whether the automaton P × Bu(¬f) is empty. If P × Bu(¬f) is empty,
we conclude that every trace of P fulfils f .

Usually programs are defined using some high level language [13]. In such
cases, one has to build the program automaton P and the transition Büchi au-
tomaton Bu(¬f), before constructing the product automaton and checking its



262 Jean-Michel Couvreur

emptiness. A classic improvement of this procedure is on-the-fly model check-
ing: construction of nodes for the program automaton and the transition Büchi
automaton is be done on demand, while constructing the product automaton
and checking its for emptiness. Thus, it is possible to stop the procedure when
a violation of the checked property is detected.

To construct all of the successors of node (s, q), one has to build for every
transition (s, x, s′) of the program, all the transitions (q, X, A, q′) of the transi-
tion Büchi automaton which match (s, x, s′), i.e x ∈ X . A simple procedure is
to build all the successors of q and then select the ones which match. However,
this procedure can be improved by just expanding ∆(F )(x), i.e. ∆(F ) where
variables of AP are bounded to Boolean value [x ∈ X ]:

∏
f∈F

rf =
∑

(X,Nacc,Next)∈LF


 ∏

g∈Nacc

ag ·
∏

h∈Next

rXh




In the underlying transition Büchi automaton this procedure considers that
every propositional formula X of each implicant is a mapping x of 2AP . As a
proof of the efficiency of this procedure, Bu (

∧
i GFpi) has a single node and

an exponential number of transitions, and only one matching transition for a
program transition (s, x, s′).

4 Checking Algorithm

To check whether the transition Büchi automaton P ×Bu(¬f) is nonempty, one
has to check whether there exists a failure cycle in P ×Bu(¬f), that is a cycle
that contains at least one transition for each accepting condition and which is
reachable from the initial state (s0, q0). Note that it is not necessary to consider
all possible cycles of P ×Bu(¬f): it is sufficient to check if P ×Bu(¬f) contains
a failure component, that is a strongly connected component that is reachable
from the initial state and which includes at least one transition for each accepting
condition.

Searching for maximal strongly connected components can be done with the
Tarjan algorithm [19], [21]. This algorithm is based on a depth-first search. It uses
two additional variables with each node NFNUMBER and LOWLINK: NFNUM-
BER gives the order of the first visit of a node and LOWLINK characterizes roots
of strongly connected components as nodes with NFNUMBER=LOWLINK.
During the depth-first search, values of NFNUMBER and LOWLINK are up-
dated. When a node with NFNUMBER=LOWLINK is reached by backtracking,
a strongly connected component is computed and removed from the graph. Any
property on a strongly connected component can be checked when it is removed.
The main problem of this algorithm is that a strongly connected component
is first completely traversed before it is checked. The algorithm cannot detect
graph failures in the fly, that is, stop the algorithm when the traversed graph
contains a failure cycle.



On-the-fly Verification of Linear Temporal Logic 263

The new checking algorithm presented in the section is a simple variation of
the Tarjan algorithm. The LOWLINK node variables are replaced by a stack of
the NFNUMBER values of the roots of strongly connected components of the
traversed graph. Each NFNUMBER value of the root stack is associated with
the set of accepting conditions of its connected component. During the depth-
first search, this stack is updated and then the sets of accepting conditions of
strongly connected components of the traversed graph are always known. The
algorithm detects graph failures in the fly, and one can stop the computation
when the traversed graph contains a failure component.

A description of the new algorithm is given in Figure 3. The data structure
we use for representing transition Büchi automata contains sufficient information
for the checking algorithm:

– S0 is the initial node,
– ACC is the accepting condition set,
– RELATION ⊆ S × ACC × S is the transition relation (only accepting

conditions are used for the checking algorithm).

The additional data structures of the new algorithm are:

– Num gives the number of nodes of the current graph; it is used to set the
order of the first visit of a node,

– Hash is a hash table of pairs (node, integer); it is used to store visiting
nodes. The node component is the search key and the integer component
gives the node order. When the order order(v) of a node v is null, it means
that node v has been already visited and is removed from the graph.

– Root is a stack of pairs (integer, accepting condition set); it stores the root
number of strongly connected components of the current graph and its ac-
cepting condition set.

– Arc is a stack of accepting condition sets; it gives the accepting condition
set of the arcs which connect strongly connected components of the current
graph.

During the execution of the algorithm, one can consider

– the removed graph: the subgraph containing nodes store in table Hash with
order null,

– the current graph: the sub-graph of the traversed graph containing nodes
store in table Hash with order non null,

– the search path: the path in the graph induces by the depth-first search.

The new algorithm is designed to preserve the following properties each time a
transition is traversed or a new node is visited.

Property 1. The removed graph is a union of nonfailure strongly connected
components of the full graph;

Property 2. Stack Root contains only nodes of the search path in the same order;



264 Jean-Michel Couvreur

1 Check(){

2 Num = 1 ;

3 Hash.put(S0,1)

4 Root.push(1,EMPTYSET) ;

5 Arc.push(EMPTYSET) ;

6 Explore(S0,1) ;

7 }

8 Explore(Node v,int vorder){

9 for all (A,w) such that (v,A,w) in RELATION do {

10 (b,wo) = Hash.get(w) ;

11 if not(b) then {

12 (* w is a new explored node *)

13 Num = Num+1 ;

14 Hash.put(w,Num) ;

15 Root.push(Num,EMPTYSET) ;

16 Arc.push(A) ;

17 Explore(w,Num) ;

18 }

19 else if (worder <> 0) then {

20 (* w is a node of the current graph *)

21 (i,B) = Root.pop() ; B = B union A ;

22 while i>worder do {

23 A = Arc.pop() ; B = B union A ;

24 (i,A) = Root.pop() ; B = B union A ;

25 }

26 Root.push(i,B) ;

27 If B == ACC then report erreur ;

28 }

29 }

30 (i,B) = Root.top() ;

31 if vorder == i then {

32 (* v is the root of a strongly connected component *)

33 Num = vi-1 ;

34 Root.pop() ;

35 Arc.pop() ;

36 Remove(v) ;

37 }

38 }

39 Remove(Node v){

40 b=Hash.testset0(v) ;

41 if b then

42 for all w such that (v,A,w) in RELATION do

43 Remove(w) ;

44 }

Fig. 3. Checking algorithm



On-the-fly Verification of Linear Temporal Logic 265

A

�
�
�
�> B

�
�
�
�

C

�
�
�
�

D

�
�
�
� E

�
�
�
�

F

�
�
�
� G

�
�
�
�

H

�
�
�
�

I

�
�
�
� J

�
�
�
�

K

�
�
�
�

L

�
�
�
�

-

{a}
@
@

@
@

@
@I 6

-
?

6

-{b}

-�{b}

-�{a}

6

?

{b}
�
�

�
�
�

�	

-

6�
�
�
�
�
�	

6

?

Fig. 4. A simple product transition Büchi automaton with Acc = {a, b}

Property 3. If Root = (o1, A1)(o2, A2) . . . (op, Ap) then o1 = 1 and the strongly
connected components Ci of the current graph are exactly

∀i < p : Ci = {v ∈ current graph/oi ≤ order(v) ≤ oi+1 − 1}
and

Cp = {v ∈ current graph/op ≤ order(v) ≤ Num}

Property 4. Given Arc = B1 · B2 . . . Bp, the strongly connected components
are only connected in the current graph with the transitions (order−1(o1 −
1), Bi, order−1(oi)) with i > 1. B1 is the accepting condition set of an artifi-
cial transition which is connected to the initial nodes, it is always set to ∅.

Example. A simple execution of the checking algorithm.
In order to illustrate all of the parts of the checking algorithm, let us apply

it to the automaton in Figure 4. Unlabelled transitions mean that the corre-
sponding accepting condition set is empty. Table 3 gives the values of the data
structures at different steps of the checking algorithm. Notice that the properties
1-4 defined below are always fulfilled.

1. The initial part of the algorithm, Lines 2-6, is executed and Explore(A, 1)
is running.

2. The transition A → B is traversed. B is a new node (Hash.get(B) return
(false, undefined)) and then Lines 12-17 are executed. Node B defines a
new strongly connected component of the current graph: its order is push in
Root and the accepting condition set of transition A → B is pushed in Arc.

3. The transition B → C is traversed. C is also a new node and Lines 12-17
are executed.

4. The transition C → A is traversed. A is a node with order 1 (Hash.get(A) re-
turns (true, 1)) and then Lines 20-27 are executed. Root and Arc are popped
until the head of Root is less or equal to 1. This operation merges compo-
nents {A}, {B} and {C} in one strongly connected component {A, B, C}.



266 Jean-Michel Couvreur

Moreover the accepting condition set of this component is updated to {a}.
At Line 27, {a} 6= {a, b} and so no error is reported.

5. The transition C → D is traversed. D is also a new node and Lines 12-17
are executed.

6. The transition D → E is traversed. E is also a new node and Lines 12-17
are executed.

7. The transition E → D is traversed. D is a node with order 4 and then Lines
20-27 are executed. Root and Arc are popped until the head of Root is less
than or equal to 4. This operation merges components {D} and {E} into
one strongly connected component.

8. All the successor transitions of Node E have been already traversed. Lines
30-31 check whether Node E is a root of a strongly connected component.
This is not the case and the Node E are just backtracked.

9. All the successor transitions of Node D have been already traversed. Lines
30-31 check if Node D is a root of a strongly connected component. It is the
case and then Lines 32-36 are executed: this operation removes the strongly
connected component {D, E} from the current graph. In the calling proce-
dure Remove (Lines 39-44), Hash.testset0(v) return false if the order of v
is 0 (v is already removed) else sets the order of v to 0 and return true.

10. The transition C → F is traversed. F is a new node and Lines 12-17 are
executed.

11. The transition F → G is traversed. G is a new node and Lines 12-17 are
executed.

12. The transition G → F is traversed. F is a node with order 4 and then Lines
20-27 are executed. Root and Arc are popped until the head of Stack Root is
less or equal to 4. This operation merges components {F} and {G} into one
strongly connected component {F, G}. At this point, the accepting condition
set is updated to {b}.

13. The transition G → H is traversed. H is a new node and Lines 12-17 are
executed.

14. The transition H → F is traversed. F is a node with order 4 and then Lines
20-27 are executed. Root and Arc are popped until the head of Stack Root is
less than or equal to 4. This operation merges components {F, G} and {H}
in one strongly connected component {F, G, H}. The accepting condition
set is updated to {a, b}. At Line 27, an error is reported and the algorithm
stops: {F, G, H} is a failure connected component.

Theorem 2. If there exists at least one failure connected component in a tran-
sition Büchi automaton, the checking algorithm will report an error. Moreover,
the checking algorithm reports an error as soon as the traversed graph contains
a failure component.

Proof. The proof is simple but tedious. One has simply to verify the assertion
properties 1-4 set on lines:

– Line 8 : before Procedure Explore is called
– Line 9 : before selecting a transition



On-the-fly Verification of Linear Temporal Logic 267

Table 3. Execution of the checking algorithm

Node Transition Root Arc Hash

1 A.1 1.∅ ∅ A.1

2 A.1 A→B 1.∅, 2.∅ ∅ ∅ A.1, B.2

3 B.2 B→C 1.∅, 2.∅, 3.∅ ∅ ∅ a A.1, B.2, C.3

4 C.3 C→A 1.{a} ∅ A.1, B.2, C.3

5 C.3 C→D 1.{a}, 4. ∅ ∅ ∅ A.1, B.2, C.3, D.4

6 D.4 D→E 1.{a}, 4.∅, 5.∅ ∅ ∅ ∅ A.1, B.2, C.3, D.4, E.5

7 E.5 E→D 1.{a}, 4.{b} ∅ ∅ A.1, B.2, C.3, D.4, E.5

8 E.5 1.{a}, 4.{b} ∅ ∅ A.1, B.2, C.3, D.4, E.5

9 D.4 1.{a} ∅ A.1, B.2, C.3, D.0, E.0

10 C.3 C→F 1.{a}, 4.∅ ∅ {b} A.1, B.2, C.3, F.4, D.0, E.0

11 F.4 F→G 1.{a}, 4.∅,5.∅ ∅ {b} ∅ A.1, B.2, C.3, F.4, G.5, D.0, E.0

12 G.5 G→F 1.{a}, 4.{a} ∅ {b} A.1, B.2, C.3, F.4, G.5, D.0, E.0

13 G.5 G→H 1.{a}, 4.{a}, 6.∅ ∅ {b} ∅ A.1, B.2, C.3, F.4, G.5, H.6, D.0, E.0

14 H.6 H→G 1.{a}, 4.{a,b} ∅ {b} A.1, B.2, C.3, F.4, G.5, H.6, D.0, E.0

– Line 18 : after visiting of a new node
– Line 27 : after visiting of a current node
– Line 28 : after checking for a failure component
– Line 30 : after visiting all the successor transitions
– Line 37 : after removing a possible non-failure strongly connected component
– Line 38 : at the end of Procedure Explore

0

�
�
�
�>

1

�
�
�
�2

�
�
�
�

�
�
�


��
?

¬a

��6
¬b

a
@
@
@

@
@
@R

�
b

true

�
�
�

�
�
��

Fig. 5. Counter automaton

The previous algorithms [7], [13], [11] work an on-fly-way only for sim-
ple Büchi automata (one accepting condition). They consist of two depth-first
searches. In the nicest and lastest version, the magic algorithm [11], each time an
accepting state is backtracked by the first search, the second search checks if the
accepting state is reachable from itself through a nontrivial path (see [11] for a
complete presentation of this algorithm). This algorithm reduces the size of the
required memory and is compatible with efficient partial verification techniques



268 Jean-Michel Couvreur

such as bit-state hashing techniques [12]. However it needs some adaptation in
order to manipulate multiple accepting conditions, which increases the size of
the graph (linear time in the number of accepting conditions). Moreover, if a
part of the traversed graph contains a failure, this algorithm does not necessary
detect it immediately.

A0

�
�
�
�> B0

�
�
�
�

C0

�
�
�
�

D0

�
�
�
� E0

�
�
�
�

F0

�
�
�
� G0

�
�
�
�

H0

�
�
�
�

I0

�
�
�
� J0

�
�
�
�

K0

�
�
�
�

L0

�
�
�
�

C1

�
�
�
� F1

�
�
�
�

-��

?��

6

-
?

6

-

-�

-��

?� �

6

?

�
�

�
�
�
�	

-

6�
�
�
�
�
�	

6

?

A1

�
�
�
� B1

�
�
�
�

D1

�
�
�
�E1

�
�
�
�

G1

�
�
�
�

H1

�
�
�
�

I1

�
�
�
� J1

�
�
�
�

K1

�
�
�
�

L1

�
�
�
�

D2

�
�
�
�

�
�
�


F2

�
�
�
�

�
�
�


-
@

@
@
@
@

@I 6

-
?

6

�-

6

-��

6

-�

6

?

�

-

6�
�
�
�
�
�	

6

?

�-

6

-�

� �-

Fig. 6. Expansion of the product transition Büchi automaton

Example To apply the magic algorithm [11] to the transition Büchi automaton
presented in Figure 4, one need first to expand it in a simple Büchi automaton
(only one accepting condition associated with states, that is, a set of accepting
states). This can be done by synchronizing it with the counter automaton (Figure
5). Figure 6 gives the resulted product Büchi automaton.

Table 4 traces the execution of the first depth-first search of the magic al-
gorithm [11]. The second depth-first search starts when F2 is backtracked and
detects the failure cycle F2 → G0 → F1 → G1 → H1 → F2. At Step 13 of
the execution of first search, all the transitions of the nontrivial path have been
traversed and the magic algorithm does not immediately detect the failure.



On-the-fly Verification of Linear Temporal Logic 269

Table 4. First depth search of the magic algorithm

Node Transition Hash

1 A0 A0

2 A0 A0→B0 A0,B0

3 B0 B0→C1 A0,B0,C1

4 C1 C1→A1 A0,B0,C1,A1

5 A1 A1→B1 A0,B0,C1,A1,B1

6 B1 B1→C1 A0,B0,C1,A1,B1,C1

7 B1 B1→F1 A0,B0,C1,A1,B1,C1,F1

8 F1 F1→G1 A0,B0,C1,A1,B1,C1,F1,G1

9 G1 G1→F1 A0,B0,C1,A1,B1,C1,F1,G1

10 G1 G1→H1 A0,B0,C1,A1,B1,C1,F1,G1, H1

11 H1 H1→F2 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2

12 F2 F2→G0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0

13 G0 G0→F1 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0

14 G0 G0→H0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0

15 H0 H0→F0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0

16 F0 F0→G0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0

17 F0

18 H0

19 G0 G0→I0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0

20 I0 I0→J0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0,J0

21 J0 J0→K0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0,J0,K0

22 K0 K0→I0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0,J0,K0

23 K0 K0→L0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0,J0,K0,L0

24 L0 L0→K0 A0,B0,C1,A1,B1,C1,F1,G1, H1,F2,G0,H0, F0,I0,J0,K0,L0

25 L0

26 K0

27 J0

28 I0

29 G0

30 F2

5 Concluding Remarks

We have presented two new practical and pragmatic algorithms designed for
solving the two key on-the-fly model-checking problems for linear temporal logic.
The new automata construction has the same nice characteristics than the one in
[9]: it is simple, it appears to produce reasonablly-sized automata and it operates
on-the-fly. The new construction is always better: in that it produces smaller
automata. The key point of our method is the use of symbolic computation. It
allows us simplify expressions in a natural way and thus to reduce the number of
nodes. A simple and efficient implementation can be done using Binary Decision
Diagrams.



270 Jean-Michel Couvreur

The new checking algorithm has the following features:

– The algorithm is designed to run on the fly, i.e., as soon as the traversed
product automaton contains a failure component, the failure is detected.

– The algorithm works directly on transition Büchi automata with multiple
accepting conditions, i.e, no expansion of the transition Büchi automaton
into a simple Büchi automaton is need.

– The algorithm can be used for checking temporal properties under fairness
assumptions of the form

∧
i GFpi, without needless overhead: a program

running under a fairness assumption introduces accepting conditions (i.e. a
program is viewed as a transition Büchi automaton) and the product au-
tomaton will still have the same size with new accepting conditions.

Previously existing algorithms [7], [11], [13] do not have any of the interesting
properties mentioned above. However the new algorithm is not compatible with
efficient partial verification as bit-state hashing technique [12]. For exhaustive
verification, the storage of an additional integer with each state is not a problem
in practical cases: usually the space to store a program state which is many
order of magnitude larger than the space to store an integer. We claim that our
algorithm is compatible with partial order methods [10], [17], [22], [23]. It does
not need any modification as does the magic algorithm [14]. Moreover, our model-
checking algorithm can be adapted in order to solve a classical partial order
technique problem: When building a reduced state space, one has to assume some
fairness properties in the construction. Informally an action must be executed if
it is enabled forever; otherwise safety and liveness properties are not preserved.

References

[1] B. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27(6):509–
516, 1978.

[2] A. Arnold. Finite transition systems. Semantics of communicating systems.
Prentice-Hall, 1994.

[3] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient Implementation of a
BDD Package. In 27th ACM/IEEE Design Automation Conference, pages 40–45,
Orlando, Florida, June 1990. ACM/IEEE, IEEE Computer Society Press.

[4] R. Bryant. Graph based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[5] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state concurrent
systems. Lecture Notes in Computer Science, 803, 1994.

[6] O. Coudert and J. C. Madre. Implicit and incremental computation of primes
and essential implicant primes of boolean functions. In Proceedings of the 29th
ACM/IEEE Design Automation Conference, pages 36–39, 1992.

[7] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory efficient
algorithms for the verification of temporal properties. Formal Methods in System
Design, 1:275–288, 1992.

[8] Y. Dutuit and A. Rauzy. Exact and truncated computations of prime implicants
of coherent and non-coherent fault trees within aralia. Reliability Engineering and
System Safety, 58:127–144, 1997.



On-the-fly Verification of Linear Temporal Logic 271

[9] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. 15th Work. Protocol Specification,
Testing, and Verification, Warsaw, June 1995. North-Holland.

[10] P. Godefroid. Partial-Order Methods for the Verification of Concurrent Systems.
Springer, Berlin, 1996.

[11] P. Godefroid and G. J. Holzmann. On the verification of temporal proper-
ties. In Proc. 13th Int. Conf on Protocol Specification, Testing, and Verification,
INWG/IFIP, pages 109–124, Liege, Belgium, May 1993.

[12] G. J. Holzmann. An improved protocol reachability analysis technique. Software,
Practice & Experience, 18(2):137–161, February 1988.

[13] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
Englewood Cliffs, New Jersey, 1991.

[14] G. J. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In The Spin Verification System, pages 23–32. American Mathematical Society,
1996. Proc. of the Second Spin Workshop.

[15] B. Lessaec. Etude de la reconnaissabilité des langages de mots infinis. PhD thesis,
Université Bordeaux I, 1986.

[16] O. Lichtenstein and A. Pnueli. Checking the finite-state concurrent programs
satisfy their linear specifications. In popl85, pages 97–107, 1985.

[17] D. Peled. All from one, one from all: on model checking using representatives. In
Proceedings of the 5th International Conference on Computer Aided Verification,
Greece, number 697 in Lecture Notes in Computer Science, pages 409–423, Berlin-
Heidelberg-New York, 1993. Springer.

[18] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logic. Journal of the Association for Computing Machinery, 32(3):733–749, July
1985.

[19] R. E. Tarjan. Depth-first search and linear algorithms. SIAM J. Computing,
1(2):146–160, 1972.

[20] W. Thomas. Automata on infinite objects. In Handbook of theoretical computer
science, Volume B : Formal models and semantics, pages 165–191. Elsevier Science
Publishers, 1990.

[21] J. D. Ullman, A. V. Aho, and J. E. Hopcroft. The Design and Analysis of Com-
puter Algorithms. Addison-Wesley, 1974.

[22] A. Valmari. Stubborn sets for reduced state space generation. Lecture Notes in
Computer Science, 483:491–515, 1990.

[23] A. Valmari. On-the-fly verification with stubborn sets representatives. In Pro-
ceedings of the 5th International Conference on Computer Aided Verification,
Greece, number 697 in Lecture Notes in Computer Science, pages 397–408, Berlin-
Heidelberg-New York, 1993. Springer.

[24] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-
gram verification. In Proceedings of the First Symposium on Logic in Computer
Science, pages 322–331, Cambridge, June 1986.

[25] P. Wolper. Temporal logic can be more expressive. Information and Control,
56(1–2):72–99, 1983.

[26] P. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, (110–111):119–136, 1985.


	Introduction
	Preliminaries
	A Tableau Construction
	Checking Algorithm
	Concluding Remarks

