
http://SP T.lip6.fr
A Model-Checking Library

Alexandre.Duret-Lutz@lip6.fr

Automata-Theoretic Model-Checking for LTL

Third-partytools···Third-party
tools·

··
Thir

d-p
art

y
to

ol
s·
··

Th
ird

-p
ar

ty

too
ls ·

· · Third-party tools · · · Third-party tools · · ·
Third-party

tools
···

SPOT · · · SPOT · · · SPOT · · ·
SPOT · · ·

SPOT · · ·
SPOT · · ·

SPOT · · ·
SPOT · · ·

SPOT · · · SPOT · · · SPOT · · · SPOT · · · SPOT
·· ·

SPO
T
···

SPO
T
···

SPO
T
···

SPO
T
···

SPO
T
···

SPOT
···SPOT

···SPOT
···SPOT···SPOT···SPOT···SPOT···SPOT···SPOT···SPOT···SPOT···SPOT···

SPOT
··
·

SP
O

T
··
·

SP
O

T
· ·
·

SP
O

T
· ·
·

SP
O

T
· ·
·

SP

OT · · ·

High-level model
M

State-space generation

State-space automaton
AM

Synchronized product
L (AM ⊗ A¬ϕ) =
L (AM ) ∩ L (A¬ϕ)

Negated formula
automaton

A¬ϕ

LTL-to-Büchi
translation

LTL formula
ϕ

Product automaton
AM ⊗ A¬ϕ

Emptiness check

L (AM ⊗ A¬ϕ)
?
= ∅

M |= ϕ

or
counter-example

Tableau Methods for LTL: States vs. Transitions
1. Develop a satisfaction tree using tableau rules

until no more rule can be applied.

formula 1st child 2nd child
¬> {⊥}
¬⊥ {>}
¬¬f {f}
f ∧ g {f, g}
f ∨ g {f} {g}

¬(f ∧ g) {¬f} {¬g}
¬(f ∨ g) {¬f,¬g}
¬X f {X¬f}
f U g {g} {f, X(f U g), P g}

¬(f U g) {¬f,¬g} {¬g, X¬(f U g)}
P g promises that g will be fulfilled eventually.

2. For each leaf of the tree, develop the X formulae
(=⇒) recursively, identifying common nodes.

3. Use subtree leaves to construct a state-based
Büchi automaton, roots to construct a (smaller)
transition-based Büchi automaton.

4. Complement each promise (P g) to define gen-
eralized acceptance sets.

{(X a) ∧ (b U¬a)}

{X a, b U¬a}

{X a, ¬a}

{a}

∅

{X a, b , X(b U¬a), P¬a}

{a, b U¬a}

{a,¬a} {a, b , X(b U¬a), P¬a}

{b U¬a}

{¬a} {b , X(b U¬a), P¬a}

¬a b

a ab

> ¬a b

{(X a) ∧ (b U¬a)}

{X a, b U¬a}

{X a, ¬a}

{a}

∅

{X a, b , X(b U¬a), P¬a}

{a, b U¬a}

{a,¬a} {a, b , X(b U¬a), P¬a}

{b U¬a}

{¬a} {b , X(b U¬a), P¬a}

¬a b

a ab

>

¬a

b

We handle Transition-based Generalized Büchi Automata (TGBA) in SPOT because they can
be used to construct shorter automata from LTL formulae. Furthermore any state-based au-
tomaton can be represented as a TGBA without growth in size (the converse is false).A Library of Reusable Bricks

Uses a Transition-based Generalized Büchi Automata interface supporting on-the-fly computations:

T
G

B
A .

Magic-Search

T
G

B
A

Synchronized
product

T
G

B
A

T
G

B
A

Synchronized
product

T
G

B
A

T
G

B
A

Read
automaton
from file

FI
L

E

Read
automaton
from file

FI
L

E

Degenerali-
zation

T
G

B
A

LTL-to-Büchi

L
T

L

This is a possible setup where the
automaton of a formula is degen-
eralized, then synchronized with
two automata read from files, and
finally checked for emptiness us-
ing the Magic Search algorithm
(which can only check degeneral-
ized automata). All computations
up to the degeneralization are per-
formed on-the-fly as needed by the
Magic Search.

Generalized
emptiness-

check

T
G

B
A

Synchronized
product

T
G

B
A

T
G

B
A

LTL-to-Büchi

L
T

L

We usually check the emptiness of
TGBA (with generalized acceptance
conditions) directly using a variation of
Tarjan’s algorithm.
The construction of the state space, or
even the synchronized product, can be
performed on-the-fly by third-party li-
braries that honor the TGBA interface.

LTL-to-Büchi

L
T

L

Generalized
emptiness-

check

T
G

B
A

Our goal is to build a
playground where
people can easily

develop and experiment
new algorithms.

Interfacing Third-Party Tools

GreatSPN
Symbolic

Reach. Graph

FI
L

E

GreatSPN
Symbolic

Sync. Product

T
G

B
A

FI
L

E

We have kept the state-space generation outside SPOT to be independent of the high-level modeling formalism
(Petri net, Promela, etc.).

To model-check some specification, you should find a tool that can read your modeling formalism and generate
its state space. Then equip this tool so it can produce TGBA (preferably on-the-fly), and connect it to SPOT.

We currently have interfaces for several flavors of GreatSPN 1 (University of Turin), which inputs well-formed
Petri nets.

• In the symbolic reachability graph, global symmetries of the Petri net are exploited to “fold” the accessibility
graph and reduce the state space.

•The symbolic synchronized product is more involved: symmetries are computed locally, for the transitions
being synchronized. The interface is here a synchronized product driven by the formula automaton.

With the authors of Quasar2 (Cedric/CNAM) we are looking how to interface their tool with SPOT. Quasar
analyses Ada programs and can perform structural reductions, as well as automatic abstractions according to
the properties to be verified.

1http://www.di.unito.it/~greatspn/
2http://quasar.cnam.fr/

CENTRE NATIONAL
DE LA RECHERCHE
SCIENTIFIQUE


