Spot’s Temporal Logic Formulas

Alexandre Duret-Lutz|<adl@lrde.epita.fr>
compiled on August 4, 2018, for Spot 2.6.1

[1._Reasoning with Infinite Sequences
1.1. Finite and Infinite Sequences|

1.2. Usagein Model Checking|

[2._Temporal Syntax & Semantics|

[2.2. Atomic Propositions| L
22.1. Examples|

[2.3. Boolean Operators (for lemporal Formulas)|

[2.3.2. 'Trivial Identities (Occur Automatically)|
[2.4. Temporal Operators|
24.1. Semantics|

[2.4.2. 'Irivial Identities (Occur Automatically)|
[25. SERE Operators|

251. Semanticsl
2.5.2. SyntacticSugar|
2.5.3. ‘lIrivial Identities (Occur Automatically)|
[2.6. SERE-LIL Binding Operators|
R61. Semanticsl
2.6.2. SyntacticSugar|
2.6.3. Trivial Identities (Occur Automatically)|

B._Grammar]
[3.1. Operator precedence|

[Properties|

4.1. Pure Eventualities and Purely Universal Formulas|.
4.2. Syntactic Hierarchy Classes|

|§ _Rewrltmgs|

5.2. LILsimplifier]
5.3. Negative normalform| o o
5.4. Simplifications|.
5.4.1. Basic Simplifications| Lo o
5.4.2. Simplifications for Eventual and Universal Formulas|
5.4.3. Simplifications Based on Implications|

w W

O O XTI IIOOONUT G Pd

—_

mailto:adl@lrde.epita.fr

|A. Defining LTL with only one of U, W, R, or M

IB. Syntactic Implications|

26
28
28

1. Reasoning with Infinite Sequences

1.1. Finite and Infinite Sequences

Let N = {0,1,2,...} denote the set of natural numbers and w ¢ IN the first transfinite ordinal. We
extend the < relation from IN to IN U {w} with Vn € IN, n < w. Similarly let us extend the addition and
subtraction withVn e N, w+n=w—-n=w+w = w.

For any set A, and any number n € IN U {w}, a sequence of length n is a function o : {0,1,...,n -1} —
A that associates each index i < n to an element ¢(i) € A. The sequence of length 0 is a particular
sequence called the empty word and denoted e. We denote A" the set of all sequences of length n on A
(in particular A“ is the set of infinite sequences on A), and A* = | J,cy A" denotes the set of all finite
sequences. The length of any sequence ¢ is noted ||, with || € N U {w}.

For any sequence ¢, we denote ¢/ the finite subsequence built using letters from o (i) to o(j). If o
is infinite, we denote o' the suffix of o starting at letter o (i).

1.2. Usage in Model Checking

The temporal formulas described in this document, should be interpreted on behaviors (or executions,
or scenarios) of the system to verify. In model checking we want to ensure that a formula (the property
to verify) holds on all possible behaviors of the system.

If we model the system as some sort of giant automaton (e.g., a Kripke structure) where each
state represent a configuration of the system, a behavior of the system can be represented by an
infinite sequence of configurations. Each configuration can be described by an affectation of some
proposition variables that we will call atomic propositions. For instance r = 1, = 0,¢ = 0 describes the
configuration of a traffic light with only the red light turned on.

Let AP be a set of atomic propositions, for instance AP = {r,y, g}. A configuration of the model is a
function p : AP — B (or p € BAP) that associates a truth value (B = {0, 1}) to each atomic proposition.

A behavior of the model is an infinite sequence ¢ of such configurations. In other words: ¢ € (BAP)«.

When a formula ¢ holds on an infinite sequence o, we write o = ¢ (read as ¢ is a model of).

When a formula ¢ holds on an finite sequence o, we write o |- ¢.

2. Temporal Syntax & Semantics

2.1. Boolean Constants

The two Boolean constants are ‘1" and ‘0’. They can also be input as ‘true’ or ‘false’ (case insensitive)
for compatibility with the output of other tools, but Spot will always use ‘1" and ‘0 in its output.

2.1.1. Semantics

o0
cE1

2.2. Atomic Propositions

Atomic propositions in Spot are strings of characters. There are no restrictions on the characters that
appear in the strings, however because some of the characters may also be used to denote operators
you may have to represent the strings differently if they include these characters.

1. Any string of characters represented between double quotes is an atomic proposition.

2. Any sequence of alphanumeric characters (including ‘_") that is not a reserved keyword and that
starts with a characters that is not an uppercase ‘F’, ‘G’, or ‘X’, is also an atomic proposition. In
this case the double quotes are not necessary.

3. Any sequence of alphanumeric character that starts with ‘F’, ‘G, or ‘X’, has a digit in second
position, and anything afterwards, is also an atomic propositions, and the double quotes are not
necessary.

Here is the list of reserved keywords:
e ‘true’, ‘false’ (both are case insensitive)
° /F/, IGII /MI, /RI, IU,, /VI’ /w/, IX,, /Xor/

The only way to use an atomic proposition that has the name of a reserved keyword, or one that
starts with a digit, is to use double quotes.

The reason we deal with leading ‘F’, ‘G, and ‘X’ specifically in rule [2|is that these are unary LTL
operators and we want to be able to write compact formulas like ‘GFa’ instead of the equivalent
‘G(F(a))’ or ‘G F a’. If you want to name an atomic proposition ‘GFa’, you will have to quote it as
‘"GFa"’.

The exception done by rule 3| when these letters are followed by a digit is meant to allow ‘X0,
‘X1’, ’X2’, ... to be used as atomic propositions. With only rule |2} “X0” would be interpreted as ‘X(0)’,
that is, the LTL operator X applied to the constant false, but there is really little reason to use such
a construction in a formula (the same is true for ‘F’ and ‘G’, and also when applied to ‘1’). On the
other hand, having numbered versions of a variable is pretty common, so it makes sense to favor this
interpretation.

If you are typing in formulas by hand, we suggest you name all your atomic propositions in lower
case, to avoid clashes with the uppercase operators.

If you are writing a tool that produces formula that will be feed to Spot and if you cannot control
the atomic propositions that will be used, we suggest that you always output atomic propositions
between double quotes to avoid any unintended misinterpretation.

2.2.1. Examples

e “"a<=b+c" is an atomic proposition. Double quotes can therefore be used to embed constructs
specific to the underlying formalism, and still regard the resulting construction as an atomic
proposition.

e ‘light_on’ is an atomic proposition.

e ‘Fab’ is not an atomic proposition, this is actually equivalent to the formula ‘F(ab)” where the
temporal operator F is applied to the atomic proposition ‘ab’.

e ‘FINISHED’ is not an atomic proposition for the same reason; it actually stands for ‘F(INISHED)’
e ‘F100ZX’ is an atomic proposition by rule

e ‘FX100’ is not an atomic proposition, it is equivalent to the formula ‘F(X100)’, where ‘X100’ is
an atomic proposition by rule

2.2.2. Semantics
For any atomic proposition a, we have
cEa < 0(0)a) =1

In other words a holds if and only if it is true in the first configuration of o.

2.3. Boolean Operators (for Temporal Formulas)

Two temporal formulas f and g can be combined using the following Boolean operators:

preferred other supported UTF8 characters supported
operation syntax syntaxes preferred others
negation L f “f — U+00AC

disjunction flg fllg f\/g f+g v U+2228 U U+222A
conjunction f&g feeg f/\Ng frdl Auvs2227 A Ur2229

implication f->g f=>g f-->g — U+2192 — U+27F6, = U+21D2 U+27F9
exclusion fxorg f g @ U+2295
equivalence f<->g f<=>g f<-->g¢ — U+2194 < U+21D4

Additionally, an atomic proposition a can be negated using the syntax ‘a=0’, which is equivalent
to ‘1 a’. Also ‘a=1" is equivalent to just ‘a’. These two syntaxes help us read formulas written using
Wring’s syntax.

When using UTF-8 input, a ‘=0 that follow a single-letter atomic proposition may be replaced by a
combining overline U+0305 or a combining overbar U+0304. When instructed to emit UTF-8, Spot will
output ‘a” using a combining overline instead of ‘—a’ for any single-letter atomic proposition.

When a formula is built using only Boolean constants (section 2.T)), atomic proposition (section [2.2),
and the above operators, we say that the formula is a Boolean formula.

IThe *-form of the conjunction operator (allowing better compatibility with Wring and VIS) may only used in temporal
formulas. Boolean expressions that occur inside SERE (see Section 2.5) may not use this form because the * symbol is used
as the Kleen star.

2.3.1. Semantics

cE!f —
CEfag —
cEflg =
rEf->7 =
UE fxorg <

o f)

cEf)A(0Eg)
cEf)v(cEY)
cHEf)v(oEg)
CAR RN CAZE IR A(CA IR CAEY)

(
(
(
(
(
((c=f)rlcEg) v ((@# f)alorg)

CE f<>9 —

2.3.2. Trivial Identities (Occur Automatically)

Trivial identities are applied every time an expression is constructed. This means for instance that
there is not way to construct the expression ‘! ! a” in Spot, such an attempt will always yield the
expression ‘a’.

10=1 1—>f5f f—>151
11=0 0->f=1 f>0=1f
1 f=f f>f=1

The next set of rules apply to operators that are commutative, so these identities are also valid with
the two arguments swapped.

0&f=0 olf=f Oxorf=f 0<>f=1f
1&f=f 11f=1 lxorf=1f 1<>f=f
faf=f flf=f fxorf=0 f<>f=1

The ‘&’ and ‘|’ operators are associative, so they are actually implemented as n-ary operators
(i.e., not binary): this allows us to reorder all arguments in a unique way (e.g. alphabetically). For
instance the two expressions ‘a&c&b&!d’ and ‘c&!d&b&a’ are actually represented as the operator
‘%" applied to the arguments {a,b,c, !d}. Because these two expressions have the same internal
representation, they are actually considered equal for the purpose of the above identities. For instance
‘(a&clbk!d)->(c&!d&b&a)’ will be rewritten to ‘1" automatically.

2.4. Temporal Operators

Given two temporal formulas f, and g, the following temporal operators can be used to construct
another temporal formula.

preferred other supported UTEFS characters supported

operator syntax syntaxes preferred others
Next Xf Of O U+25CB O U+25EF
Eventually Ff <> f O U+25C7 O U+22C4 U+2662
Always Gf af 0 U+25A1 [U+2B1C U+25FB
(Strong) Until fug
Weak Until fwg
(Weak) Release fRY fvg

Strong Release fMg

2.4.1. Semantics

CEXf —= o f

CEFf < JieN, o f

CEGf « VieN, o f
CEfUg < JjeN, {Cvr;j:j;;l“':f
cEfug (cEfUg) v(cEGS)
Vi<j, o Eg
o Ef
cEfRg < (cE=fMg) v (rEGY)

—
cEfMg — Hje]N,{

Appendix|[A]explains how to rewrite the above LTL operators using only X and one operator chosen
among U, W, Mand R. This could be useful to understand the operators R, M, and W if you are only
familiar with X and U.

2.4.2. Trivial Identities (Occur Automatically)

=0 FO=0 G0O=0

X1=1 Fi=1 Gi=1

FFf=Ff GGf=Gf
fui=1 fui=1 fM0O=0 fR1=1
ouf=f owf=f OMf=0 fRO=0
fuo=o0 1Wwf=1 1Mf=f i1Rf=f
fuf=f fuf=f fuf=f frf=f

2.5. SERE Operators

The “SERE” acronym will be translated to different word depending on the source. It can mean
either “Sequential Extended Regular Expression” [10} [Il, “Sugar Extended Regular Expression” [3], or
“Semi-Extended Regular Expression” [11]]. In any case, the intent is the same: regular expressions with
traditional operations (union ‘|”, concatenation “;’, Kleen star ‘[*]") are extended with operators such
as intersection ‘&&’, and fusion “:’.

Any Boolean formula (section is a SERE. SERE can be further combined with the following
operators, where f and g denote arbitrary SERE.

preferred

other supported

UTF8 characters supported

operation syntax syntaxes preferred others
empty word [*0]
union flg fllg f\/g f+g v U+2228 U U+2224
intersection fa&g f/\g N U+2229 A U+2227
NLM intersectiorﬂ f&
concatenation g
fusion f:g
bounded ;-iter. fxiojl flxi:j1 fIxi to j1 fIxi,j]
unbounded ;-iter. flxi..] fxi:] f ¥ to] f*i,]
bounded :-iter. flexio 1 fLexizjl flixi to j1 fLixi,f]
unbounded :-iter. flexio .1 flexiz]l flixi to] flixi,]

The character ‘$’ or the string “inf’ can also be used as value for j in the above operators to denote
an unbounded rangeﬂ For instance ‘a[*i,$]’, ‘a[*i:inf]” and ‘a[*i..]" all represent the same SERE.

2.5.1. Semantics

The following semantics assume that f and g are two SEREs, while a is an atomic proposition.

ol 2N0)
ClEl < Jo|=1
0 lF [*0] < |o|=0
OlFa <
ClEflg <= (ClEf)v
ClEfékg < (CIEf) A
ClEfg — er]N,{
cEf;g <
cEf:g <
either
Ul}:f[*l'..j] — or
or
either
ol fl*i..] < [or
or
either
ol fl:*i..j] < {or
or
either
ol fli*xi..] < <{or
or

or

c(0)(a)=1Alo| =1
(clEY)
(clEY)
either (0 Ik f) A (0%* 1 g)
(@1 A A(cIES)
Jk e N, (U_O..k—l = f) A (Uk" = g)
FkeN, ("F = YA (@ kg
i=0A0c=c¢
i=0nj>0nFkeN, ("1 f)a (o5 |k fIx0..j—1]))
i>0Aj>0nGkeNN, (" 1 f)a(ch Ik flxi—1..j—11))
i=0A0=c¢
i=0nGkeN, (@1 f) A (c" I fI*0..7))
i>0n(GkeN, (@1 f)a(c™ | flxi—1..1))
i=0Anj=0A0cIF1
i=0Aj>0nFkeN, (%F ik f) A (0% Ik fL:x0..j—11))
i>0nj>0nGkeN, (%Ki f)a(ch |k flixi—1..j—11))
i=0AC0IE1
i=0n ke, (@F i f) A (" Ik fL:x0..]))
i>0AGkeN, (@* i f)a(c™ Ik fl:xi—1..1))

2Non-Length-Matching interesction.
3SVA uses ‘$’ while PSL uses “inf’.

Notes:

e The semantics of && and & coincide if both operands are Boolean formulas.

e The SERE f : g will never hold on [*0], regardless of the value of f and g. For instance
a[*x] : b[*] is actually equivalent to a[*] ; {a&& b} ; b[*].

e The [:#i..] and [:*i..j] operators are iterations of the : operator just like The [*i..] and
[*i..j] are iterations of the ; operator. More graphically:

f¥i..j1 = fsfsoosf flexioj] = fofooiof
— —
between i and j copies of f between i and j copies of f

with the convention that
f*x0..0] = [*0] fl:*0..0] =1

e The [:*i..] and [:*i..j] operators are not defined in PSL. While the bounded iteration can be
seen as syntactic sugar on :, the unbounded version really is a new operator.

[:%1..], for which we define the [:+] syntactic sugar below, actually corresponds to the ©
operator introduced by Dax et al. [8]. With this simple addition, it is possible to define a subset
of PSL that expresses exactly the stutter-invariant w-regular languages.

2.5.2. Syntactic Sugar

The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from
left to right when parsing a formula, and some are performed from right to left when writing it for
output. b must be a Boolean formula.

bl->i..j1={{!b}[*0..];b}[xi..j1 bl=i..j]1={{'b}[*0..]1;b}[*i..j1;{!b}[x0..]
b[->i..1 ={{'b}[*0..] ;b}[*i..] bl=i..1={{'b}[*0..1;b}[*..];{'b}[*0..1ifi>0
b[=0..] =1[*0..]

f*x=fIx0..]
fI¥l = f[*0..] fL:x] = f[:%0..] fI=1 = f[=0..] fI=>1 = fl->1..1]
fl*x..1=f[*0..] fl:x..1=f[:%0..] fl=..1=f[=0..] fl->..1=f[->1..]
flx..jl=fI[*0..j1 fl:*..j1=f[:%0..j1 fl=..j1=f[=0..71 f[->..j1=f[->1..]]
fUk] = flxk. . k] fLixk] = fL:xk. k1 fl=k] = f[=k..k] f[->k] = f[->k. .K]
fI+] = f*1..] fl:4] = fl:i*1..]
[xk] = 1[*k. .k] [*] = 1[*0..] [+] = 1[*1..]

2.5.3. Trivial Identities (Occur Automatically)

The following identities also hold if j or | are missing (assuming they are then equal to o). f can be
any SERE, while b, by, by are assumed to be Boolean formulas.

0[*0..j] = [*0] Of*i..jl=0ifi >0

[x0] [*<..j] = [*0] [*i..7] [xk..1] = f[xik. .jl1 ifi(k+1) <jk+1
))]]
f[x0] = [*0] flx1l=f
bl:%0..j1=1 bl:*i..jl=0bifi>0
[*0][:%0..j]1 =1 [x0][:*i..j1=0ifi>0
flexio gl Lexk. 01 = flexik. gl ifi(k+1) < jk+1
fl:x0] =1 flexil =fifelr f

The following rules are all valid with the two arguments swapped.

0&f=0 0&& f=0 olf=f 0:f=0 0;f=0
lifelr f .
1&f = 1 = 1 =1 1:f=fif
f {fifewéf &&b=>b | b f=fifelf
Kl&f=f [x] | f=1[%] (x]; f=[«x]lifelf
[x0] if e = f
Ol&f = 0l&& f = f = f =
[(x0]& f=f [x0] && f {o e f [x0] : f=0 x0] 5 f=f
faf=rf fouf=rf FIf=f fif=fLxal fif=fle
by &by = by && by by :by =Dy && by
flxio .l f=flxi+1..j+1] fOxio gl flxk. .01 = flxi+k..j+1]
flexiojl: f=fli*xi+1..j+1] flexio] : flexk. 1 = flexi+ k.. j+1]

2.6. SERE-LTL Binding Operators
The following operators combine a SERE r with a PSL formula f to form another PSL formula.

preferred other supported
operation syntax syntaxes

(universal) suffix implication {r}[1->f {r}|->f {r}(f)
existential suffix implication ~ {r}<>->f
weak closure {r}
negated weak closure 1{r}

For technical reasons, the negated weak closure is actually implemented as an operator, even if it is
syntactically and semantically equal to the combination of ! and {r}.

UTEF-8 input may combine one box or diamond character from section 2.4 with one arrow character
from section [2.3| to replace the operators [1->, <>->, as well as the operators [1=> and <>=> that will
be defined in Additionally, |-> may be replaced by — U+2146, and |=> by = U+2907.

2.6.1. Semantics

The following semantics assume that r is a SERE, while f is a PSL formula.

10

) A (0% f)
cE{r}0->f < Vk=0, (00..k) — (ak“ - f)
cE{ry e (Fk=00" 1)V (vk>03ne (B, (0% <70) A (I 7))
o {r} = (Vk=0,0%% 1) A (Fk >0, ¥ e (BADY, (0%F < 1) > (I 7))

o {r}o>f «— k=0,

The < symbol should be read as “is a prefix of”. So the semantic for ‘c = {r}’ is that either there
is a (non-empty) finite prefix of ¢ that is a model of r, or any prefix of ¢ can be extended into a
finite sequence 7t that is a model of r. An infinite sequence a;a;a;a;a; ... is therefore a model
of the formula ‘{a[+] ; ! a}’ even though it never sees ‘! a’. The same sequence is not a model of
dal+l ;va; (al*x] && (al*] ; 'a; alx]1))} because this SERE does not accept any word.

2.6.2. Syntactic Sugar
The syntax on the left is equivalent to the syntax on the right. These rewritings are performed from

left to right when parsing a formula. Except the one marked with é, the opposite rewritings are also
preformed on output to ease reading.

{r}oo=>f={r; 1}<>->f {r}Q=>f={r; 1}0->f
{r}1 = (o1 (H=fL (s 1y0-f

[1=>and |=> are synonyms in the same way as [1-> and |-> are.
The {r}! operator is a strong closure operator.

2.6.3. Trivial Identities (Occur Automatically)

For any PSL formula f, any SERE 7, and any Boolean formula b, the following rewritings are system-
atically performed (from left to right).

{0}j1—>f=1 {0}<>>f=0 {o} =0 t{o}=1
{1}0->f =f {1}o->f=f {1}=1 {1} =0

{x01}[->f =1 {[x0]1}<>->f =0 {[x0]} =0 H{[x01} =1
{by->f=0b) | f {b}<>->f=b&f {b}=0b {b}=1b
{r}tll—>1=1 {r}<x>>0=0

11

3. Grammar

For simplicity, this grammar gives only one rule for each operator, even if the operator has multiple

synonyms (like ‘|7, “I |, and “\/’).

constant ::=0 | 1 tformula ::= bformula

atomic_prop ::= see section [2.7]
bformula := constant
| atomic_prop
| atomic_prop=0
| atomic_prop=1
| (bformula)
| ! bformula
| bformula & bformula
| bformula | bformula
| bformula -> bformula
| bformula xor bformula
| bformula <-> bformula
sere ::= bformula
| {sere}
| sere | sere
| sere & sere
| sere && sere
| sere ; sere
| sere : sere
| sere[xi. .j]
| sere[+]
| sere[:%i. .j]
| sere[:+]
| sere[=i. .j]
| sere[->i. .j]

3.1. Operator precedence

The following operator precedence describes the current parser of Spot. It has not always been this
way. Especially, all operators were left associative until version 0.9, when we changed the associativity

of ->, <->, U, R, W, and M to get closer to the PSL standard [1] [10].

12

| Ctformula)

| ! tformula

| tformula & tformula

| tformula | tformula

| tformula => tformula
| tformula xor tformula
| tformula <-> tformula
| X tformula

| F tformula

| G tformula

| tformula U tformula

| tformula W tformula

| tformula R tformula

| tformula M tformula

| {sere} [1->tformula

| {sere} [1=>tformula

| {sere} <>=> tformula

| {sere} <>=> tformula

| {sere}

| {sere} !

assocC.

operators

priority

right
left
left
right
left
left
left

right

[1->, [1=>, <>->, <>=>

lowest

highest

Beware that not all tools agree on the associativity of these operators. For instance Spin, 1t12ba (same
parser as spin), Wring, psl2ba, Modella, and NuSMYV all have U and R as left-associative, while Goal
(hence Biichi store), LTL2AUT, and LTL2Biichi (from JavaPathFinder) have U and R as right-associative.
Vis and LBTT have these two operators as non-associative (parentheses required). Similarly the tools
do not aggree on the associativity of -> and <->: some tools handle both operators as left-associative,
or both right-associative, other have only -> as right-associative.

13

4. Properties

When Spot builds a formula (represented by an AST with shared subtrees) it computes a set of
properties for each node. These properties can be queried from any spot: :formula instance using
the following methods:

is_boolean() Whether the formula uses only Boolean operators.

is_sugar_free_boolean() Whether the formula uses only &, |, and ! operators. (Especially, no
-> or <-> are allowed.)

is_in nenoform() Whether the formula is in negative normal form. See section

is X_free() Whether the formula avoids the X operator.

is_1tl_formula() Whether the formula uses only LTL operators. (Boolean operators
are also allowed.)

is_psl_formula() Whether the formula uses only PSL operators. (Boolean and LTL
operators are also allowed.)

is_sere_formula() Whether the formula uses only SERE operators. (Boolean operators
are also allowed, provided no SERE operator is negated.)

is_finite() Whether a SERE describes a finite language (no unbounded stars),
or an LTL formula uses no temporal operator but X.

is_eventual () Whether the formula is a pure eventuality.

is_universal() Whether the formula is purely universal.

is_syntactic_safety() Whether the formula is a syntactic safety property.

is_syntactic_guarantee() Whether the formula is a syntactic guarantee property.

is_syntactic_obligation() = Whether the formula is a syntactic obligation property.
is_syntactic_recurrence() Whether the formula is a syntactic recurrence property.
is_syntactic_persistence() Whether the formula is a syntactic persistence property.

is_marked() Whether the formula contains a special “marked” version of the
<>-> or !{r} operators.’

accepts_eword() Whether the formula accepts [*0]. (This can only be true for a SERE
formula.)

has_1bt_atomic_props() Whether the atomic propositions of the formula are all of the form

“pnn” where nn is a string of digits. This is required when converting
formula into LBT’s format.*

4.1. Pure Eventualities and Purely Universal Formulas

These two syntactic classes of formulas were introduced by Etessami and Holzmann [12] to simplify
LTL formulas. We shall present the associated simplification rules in Section for now we only
define these two classes.

Pure eventual formulas describe properties that are left-append closed, i.e., any accepted (infinite)
sequence can be prefixed by a finite sequence and remain accepted. From an LTL standpoint, if ¢ is a
left-append closed formula, then F ¢ = ¢.

Purely universal formulas describe properties that are suffix-closed, i.e., if you remove any finite
prefix of an accepted (infinite) sequence, it remains accepted. From an LTL standpoint if ¢ is a
suffix-closed formula, then G ¢ = ¢.

3These “marked” operators are used when translating recurring <>-> or ! {r} operators. They are rendered as <>+> and !+{r}
and obey the same simplification rules and properties as their unmarked counterpart (except for the is_marked () property).
4http://www.tcs.hut.fi/Software/maria/tools/1bt/

14

http://www.tcs.hut.fi/Software/maria/tools/lbt/

— General Biichi Automata

Deterministic Reac&ivity Weak Biichi

Biichi /\ GFp; vFGg; Automata Figure 4.1.: The temporal
Automata / hierarchy of Manna and
\\ . Weak Pnueli [13] with their associ-
Recurrence Persistence .. ated classes of automata [5].
GFp FGp L D?teljmmlstlc The formulas associated to
Biichi each class are more than
Automata canonical examples: they
Terminal Obligation show the normal forms un-
co-Biichi AG P% v Fg; Terminal der which any LTL formula
Automata L Blichi of the class can be rewritten,
N / Automata assuming that p, p;, q,q; de-
N\ note subformulas involving
Safety Guarantee only Boolean operators, X,
Gp Fp and past temporal operators
(Spot does not support the

latter).

Let ¢ denote any arbitrary formula and ¢ (resp. ¢y;) denote any instance of a pure eventuality
(resp. a purely universal) formula. We have the following grammar rules:

¢p=0|1|X¢e |Fo|Goe | pe& @e | (9e | 9E) | ' ou
| ¢U@E |1U@ | e RQE | QEW@E | EM@E | 9 M1

pu==0[1[Xou |Foul|Ge|ou&eou|(pul eu)|! ¢e
louU@u | pRou |OR@ | ouWeu | WO | puMey

4.2. Syntactic Hierarchy Classes

The hierarchy of linear temporal properties was introduced by Manna and Pnueli [13] and is illustrated
on Fig. In the case of the LTL subset of the hierarchy, a first syntactic characterization of the classes
was presented by Chang et al. [6], but other presentations have been done including negation [5] and
weak until [14].

The following grammar rules extend the aforementioned work slightly by dealing with PSL opera-
tors. These are the rules used by Spot to decide upon construction to which class a formula belongs
(see the methods is_syntactic_safety(), is_syntactic_guarantee(), is_syntactic_obligation(),
is_syntactic_recurrence(), and is_syntactic_persistence() listed on page .

The symbols ¢g, ¢s, ¢o, ¢p, ¢r denote any formula belonging respectively to the Guarantee,
Safety, Obligation, Persistence, or Recurrence classes. Additionally ¢p denotes a finite LTL formula
(the unnamed class at the intersection of Safety and Guarantee formulas, at the bottom of Fig. 4.1). v
denotes any variable, r any SERE, rr any bounded SERE (no loops), and r; any unbounded SERE.

15

pp=01[v| ' op | @p&op | (95 | B) | 5 <> ¢p | ppxor ¢p | 95 -> @5 | X ¢p
| {re} | H{rr}
¢ =95 | ' ¢s | pc&ec | (¢c | 9c) | ¢s—>¢c | X9c [Fec | ocUpc | ocMec
| H{r} [{r}<>=>9c | {rr} 1->9¢
¢s =9 | ' 9c | ps&@s | (s | @s) | 96 —> ¢s [X@s |Gos | sR@s | psW @s
| {r} [{re}<>=>0s [{r} [1->9s
9o =9 | ¢s| 9o | 9o&po | (9o | ¢0) | o <> o | 9o xor 90 | 90 > ¢o
| X9o [90U | oR9s | psW o | 9cMgo
| {r} [H{r} [{rey<>=—>90 [{ri}<>=>@c | {re} >0 | {r1} [1->¢s
pp=9o | ' ¢r | pp&@p | (pp | @p) | 9p <> @p | pp x0T @p | p —> @p
| Xop [Fop | 9pUep | 9pR@s | 9sWop | gpMep
| {r}<>=>¢p [{re} 1->¢p | {ri}[1->¢s
pr:=¢0 | ' ¢p | pr&E PR | (PR | PR) | PR <> @R | PR XOT PR | PR —> PR
| X¢r | GPr | RU PG | QRR @R | PR W PR | 9 M @R
| {r}=>¢r | {rr}<>=>@r | {r1}<>->¢¢

It should be noted that a formula can belong to a class of the temporal hierarchy even if it does
not syntactically appears so. For instance the formula (G(q | FGp)&G(r | FG!p)) | Gg | Gr is not
syntactically safe, yet it is a safety formula equivalent to Ggq | Gr. Such a formula is usually said
pathologically safe.

16

5. Rewritings

5.1. Unabbreviations

The ‘unabbreviate ()’ function can apply the following rewriting rules when passed a string denoting
the list of rules to apply. For instance passing the string "~ei" will rewrite all occurrences of xor, <->

and ->.

/w7

1

“_
e

a1y
e

e

g
“G” without “R”
“GR” without “W”
“GRW”

oy

“R” without “W”
R

“W” without “R”
R

“_
e

without

Gf=O0Rf

GfEfWO

Gf=1F!'f
fMg=gU(g&f)

fRg=gW(f&Q)
fRE=gU((f&g)IGg)
fug=gR(gIf)
fug=fu(glGf)

Among all the possible rewritings (see Appendix |A) the default rules for R, W and M, those were
chosen because they are easier to translate in a tableau construction [9} Fig. 11].

Besides the ‘unabbreviate ()’ function, there is also a class ‘unabbreviator() that implements the
same functionality, but maintains a cache of abbreviated subformulas. This is preferable if you plan
to abbreviate many formulas sharing identical subformulas.

5.2. LTL simplifier

7

The LTL rewritings described in the next three sections are all implemented in the “t1_simplifier
class defined in spot/tl/simplify.hh. This class implements several caches in order to quickly
rewrite formulas that have already been rewritten previously. For this reason, it is suggested that
you reuse your instance of ‘t1_simplifier’ as much as possible. If you write an algorithm that will
simplify LTL formulas, we suggest you accept an optional ‘t1_simplifier’ argument, so that you can
benefit from an existing instance.

The ‘t1_simplifier’ takes an optional ‘t1_simplifier_options’ argument, making it possible to
tune the various rewritings that can be performed by this class. These options cannot be changed
afterwards (because changing these options would invalidate the results stored in the caches).

5.3. Negative normal form

This is implemented by the ‘t1_simplifier: :negative_normal_form’ method.

A formula in negative normal form can only have negation operators (!) in front of atomic proper-
ties, and does not use any of the xor, -> and <-> operators. The following rewriting arrange any PSL
formula into negative normal form.

17

'Xf=x'f H(fug)=("/Hr(g) "feg)=(0f1(rg)
'Ff=G!f HfR =(1)U('g) Hfrg)=0fe(ts)
tef=F'f Hfwg)=(f)mM(g) '({rit->f) ={r}o->1f
({r}) = {r} Hfug) = fHu(g) t{rio=>f) ={r}0->'f

Recall that the negated weak closure ! {r} is actually implemented as a specific operator, so it is not
actually prefixed by the ! operator.

frorg=((1flag)l(faty) fxorg)=(fle(tg) | (feg) t(feg)=(1f)1(tg)
ferg=((1NHe(g) I (feg) Mf<>g)=(flag)l(farty) H(flg=0fe(tg)
f>g=0f)eg Wf>g)=fe'g

Note that the above rules include the “unabbreviation” of operators “<->”, “~>”, and “xor”, corre-
spondings to the rules "ei™ of function ‘unabbreviate() as described in Section Therefore it is
never necessary to apply these abbreviations before or after ‘t1_simplifier: :negative_normal_form’.

If the option ‘nenoform_stop_on_boolean’ is set, the above recursive rewritings are not applied to
Boolean subformulas. For instance calling ‘t1_simplifier: :negative_normal_form’on ! FG(axor b)
will produce GF(((! a) & (! b)) | (a&b)) if ‘nenoform_stop_on_boolean’ is unset, while it will produce
GF(!(axorb)) if nenoform_stop_on_boolean’ is set.

5.4. Simplifications

The “t1_simplifier::simplify’ method performs several kinds of simplifications, depending on
which “t1_simplifier_options’ was set.
The goals in most of these simplification are to:

e remove useless terms and operator.

e move the X operators to the front of the formula (e.g., XG f is better than the equivalent GX f).
This is because LTL translators will usually want to rewrite LTL formulas in a kind of disjunctive

form: \/ (Bi A X¢;) where ;s are Boolean formulas and ;s are LTL formulas. Moving X to the
i
front therefore simplifies the translation.

e move the F operators to the front of the formula (e.g., F(f | g) is better than the equivalent
(Ff) | (Fg)), but not before X (XF f is better than FX f). Because F f incurs some indeterminism,
it is best to factorize these terms to limit the sources of indeterminism.

Rewritings defined with = are applied only when t1_simplifier_options::favor_event_univ’
is true: they try to lift subformulas that are both eventual and universal higher in the syntax tree.

Conversely, rules defined with = are applied only when favor_event_univ’ is false: they try to
lower subformulas that are both eventual and universal.

5.4.1. Basic Simplifications

These simplifications are enabled with t1_simplifier_options::reduce_basics’. A couple of them

may enlarge the size of the formula: they are denoted using Z instead of =, and they can be disabled
by setting the t1_simplifier_options::reduce_size_strictly’ option to true.

18

Basic Simplifications for Temporal Operators

The following are simplification rules for unary operators (applied from left to right, as usual):

XFGf=FGf FXf=XFf
XGFf=GFf F(fug)=Fg
F(fug) =F(f&g)
=FG(f&g)
FG(f&Gg) =FG(f&g)

FG(f&Xg

GXf=XGf
G(fRg) =Gg
G(fwg)=G(f1g)

GF(f 1Xg)=GF(flg)
GF(fIFg)=GF(f1g)

GUfi | ool fu | GF(g1) | oo | GF(gm)) =G(fi | ... | fu) | GF(g1 | ... | gm)

Here are the basic rewriting rules for binary operators (excluding | and & which are considered in

Spot as n-ary operators). b denotes any Boolean formula.

LUf=Ff
fM1=Ff
(Xf)U(xg)=X(fUg)
(Xf)M(Xg) =X(fMg)
(XA)Ub=bIX(buf)
(Xf)MbZb&X(bU f)
fuGf)=af
fUFEf)=Ff
fu(gla(f))=fug
fM(g&F(f)) = fMg
fugef)=gnf
fu@glf)=guf

fWO=Gf
ORf=Gf
Xf)w(xg) =X(fwg)
(Xf)R(Xg) =X(fRQ)
(Xf)Wb=b | X(fRD)
(Xf)RbZ b&aX(fwb)
fw@f)=af
fR(Ff)=Ff
fW(gIG(f) =fug
fR($EF(f)) = fMg
fu(gsf)=gRf
fREGIf)=gWf

19

Here are the basic rewriting rules for n-ary operators (& and |):

(FGf)&(FGg) =FG(f&g) (GFf) 1 (GFg) =GF(f |g)
(Xfle(xg) =X(f&g) X1 (Xg=X(f1g)
(Xf)&(FGE) = X(f&FGg) (Xf) | (GFE) = X(f | GFg)
Gfle(Gg) =G(f&g) (FfII(Fg) =F(f1g)
(AUR)&(fsUf) =(fr&f3)Ufa (AUR) I (AUf3)=ATU(f2] f3)
(AUR)&(fsWf)=(fikfs)Uf (AUL) I (AWf3) =fiv(fal f3)
(iWf)&(f3Wfh)=(fikfz)Wf (i)l (AWf3)=fW(f2l f3)
(fiRf2)&(fiRf3) = fiR(f2&f3) (firf2) | (AR 2)=(f1l B)RS2
(ARA)&(fiMfs) = fiM(f2& f3) (ARA) I (fsMf)=(fil f5)Rf3
(AMf)&(fiMfz) = AM(f2& f3) (AMf) I (Mf)=(fil f3)Mf3
(Fg&(fug)=fug G (fug)=fwg
(Fge(fug)=fug G (fug)=fwg
(Ffl&(frRg) = fMg (Gg) I (fRg) =fRgQ
(Ffl&(fug) =fMg (Gg) I (fMg)=fRg
fe(Xf)wg)=gRf fI(Xf)Rg) =gWf
fe(Xf)ug) =gMf fI{Xf)Mg)=gUf
f&(g1X(QRSf)) =gRf fl(g&X(gwWf)) =gWf
fe(glIX(gMf)) =gMf f1(g&X(gUuf)) =gUf

The above rules are applied even if more terms are presents in the operator’s arguments. For instance
FG(a) &G(b) & FG(c) & X(d) will be rewritten as X(d &FG(a&c)) & G(D).
The following more complicated rules are generalizations of f&XGf=Gfand f | XFf =F f:

fex(G(fags..) aha...)

G(f)eX(G(g&..) &hk..)
fIXESf)IR]...)=F

(F) I X(h1...)

The latter rule for f | X(F(f) | h...) is only applied if all F-formulas can be removed from the argument
of X with the rewriting. For instancea | b | ¢ | X(F(a | b) | F(c) | Gd) will be rewrittento F(a | b | ¢) | XGd
butb | c|X(F(alb)|F(c) | Gd) will only become b | ¢ | X(F(a | b | ¢c) | Gd).

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(fi) | ... |F(fu) IGF(Q) =F(f1 | ... | fu | GE(g))

Basic Simplifications for SERE Operators

The following rules, mostly taken from Cimatti et al. [7] are not complete yet. We only show those that are imple-

mented.

The following simplification rules are used for the n-ary operators &&, &, and |. The patterns are of
course commutative. b or b; denote any Boolean formula while # or r; denote any SERE.

20

b&&r[*i”ﬂz{b&&r ifi<1<] b&r;{bl{b:r} if e = 7;

0 else b:r if e £ 1
b&a&{ry:...:r,} =b&&r 1 && .. &&ry
b&&r; if 3, el
b&&{r1;...;ru=<b&&(ri|...1ry) ifVielr
0 else
{by;r1}&&{by; o} ={b1&& by} ; {r1 && 2} {r1; b1} &&{ry; b} = {r1&&rp} ; {b1 &by}
{by: 1} &&{by : 1} ={b1&& by} : {r1 && 1} {r1: 01} &&{ry : b} ={r 1 &&ry} : {b1 && by}

{bl ; 1’1}& {bz ; 1’2} = {bl && bz} ; {1’1 &}’2}
{by :r1}&{by i1} = {01 &&bo} : {r1&r} ifelferinelfer

Starred subformulas are rewritten in Star Normal Form [4] with:
r[*] = r°[*]
where r° is recursively defined as follows:

rP=rifelfr

[x0]° =0 (r1;m)° =r{lryifelrriandel=r
rlxi..j1°=r°ifi=0orel=r (r1&r)° =r{ Iryifelrry and € IE 1rp
(r 1 1) = T’f | 75 (r1 &&1p)° =11 && 1o

Note: the original SNF definition [4] does not include ‘%" and ‘&&" operators, and it guarantees
that Vr, e ¢ r° because r° is stripping all the stars and empty words that occur in r. For instance
{al*]1 ; b[x] ; {101 | ¢}}°[*] = {a | b | c} [¥]. Our extended definition still respects this property in
presence of ‘&’ operators, but unfortunately not when the ‘&%’ operator is used.

We extend the above definition to bounded repetitions with:

rlxi..jl =r"[%0..j1 if elrlx..jl,elfr”, andj>1
rlxi..jl=r"[x1..j1 if elrl*i..jl,elrr” andj>1
ri*i..jl=r if elFrandj=1

where r° is recursively defined as follows:

ro=rifelfr

[x0]” =0 (rism)” =r;n
rxi..j1% = " [*max(1,i)..jl1ifi=0o0relr (r&r)” =r{Iryifeleryand el=r
(rilr)=rlr (r1&&)" =11 &&r)

The differences between and ° are in the handling of 7 [i. .j] and in the handling of r1 ; r7.

Basic Simplifications SERE-LTL Binding Operators

The following rewritings are applied to the operators [1-> and <>->. They assume that b, denote a
Boolean formula.

As noted at the beginning for section rewritings denoted with £ can be disabled by setting
the t1_simplifier_options::reduce_size_strictly’ option to true.

21

{[«1}0->f=aGf
{b[x1}[1->f=fw!b
{b[+1}0->f=fw!'b

{rx0. .1} (1->f = {rl*1. . j1}[1->f

{rxi. . 1Y0->f = {r}0->X{r}0->X(... O->X(r[*1..j—i+1])))ifi>1and e £ 7
{r; $1}0->f ={r}[1->Gf
{r;b¥1}0->F = {r}O0->(F&X(fW D)) if e o 7
(x5 r}00->f = 6({r} [1->f)
{(bI¥] ;¥ 0->F = () R{r}O->f) ife e r
{r1;) 0->F = {r}0->X{r}0->f)ife e rpand e £ 1y
{r1 1} O->f = {r} 0->({r2} 1->f)

{1} 0->f = ({n}0->f) e ({r2} [1->)
{[¥1}<>—>f =Ff
{b¥]1}<>->f = fMb
{b[+1}<>—>f = fMb
{r[x0..j1}<>=>f = {rl*1. .jl}<>->f

{rixi..jl1}<>=>f = {r}>->X({r}<>->X(... <>=>X(r [1. J—i+1])))ifiz1land et r
{r; (¥1}<>—>f = {r}<>->Ff

{r; bI¥1}<>=>F = {rh<>=>(f | X(FMb)) if e £ 7
{[*¥] 5 r}o>—>f = F({r}<>->f)
(b[*] ; r}<>=>f = bU({r}<>->f) if e - r
{r1; r}<o>=->f = {r}>->X({ra}<>->f) if e |t rp and € £ 1y
{r1: yo=>f = {ri}o->({ra}<>->f)
{r 1 n}o->f = ({n}o=>f) | ({rayo->f)

Here are the basic rewritings for the weak closure and its negation:

{r[*1} = {r} Hrixl} = {r}
{1y ={r} ifelr Wr;1} = H{r} ifelr
{r;1}=1 ifelr W1} =0 ifelkr
{ri; 1} ={r1} ifelerinelen Hryrmt = {1} ifelerinelr
{runt={n}t1{n} ifekrnackEn Hrprnt={rnt&!{n} fekrarclkEn
{b;r} Zb&x{r} Hb;ry = (1b) 1 X1 {r}
{b[*i..j];r}%b&x(b...&x{b[*O..j—i] ;1) !{b[*i..j];r}% (YD) 1 X((rD)... 1 X{b[*0..j—1] ;
i occurences of b i occurences of !b
{bl*i..1} Zb&X(b&X(...b)) H{b*i. . j1Y = (1 b) 1 X((1b) | X(... (1 b))
i occurences of b i occurences of !'b
{r1 1r2} = {r1} | {ra} 1y 112} = {1} & H{ra}

22

5.4.2. Simplifications for Eventual and Universal Formulas

The class of pure eventuality and purely universal formulas are described in section
In the following rewritings, we use the following notation to distinguish the class of subformulas:

f, fi, 8, & any PSL formula
e, e; a pure eventuality
u, u; a purely universal formula
a pure eventuality that is also purely universal

q, q9i
Fe=e fUe=e eMg=e&g ulMuZ%(Ful)&uz
Fu) g =F(ulq) fu(gle)=(fug)le fM(gzu)=(fug)eu qUXf=X(qUf)
fu(geq) = (fug)eq (feq)Mg=(fug)aq
Gu=u uwg=ulg fRu=u 31We2%(Ge1)|ez
Gle)zq=Glexq) fu(gle)=(fwg)le fR(g&u)=(fRg)&u gRXf=X(qRf)
Xq=4 qexf=x(q&f) gIXf=x(q1f)
X(q&f) =qexf X(q1f)=qIxf

G(fi&...&fn&Xer&...&Xey) =G(f1&... & fuker&... &ep)
G(fi&... & fn&F(g1&...&gp&Xe1&... &Xey)) =G(f1&... & fn&F(g1&...&8p)&e1&...&ey)
F(fil..ol fulXug Lo 1 Xup) =F(A L. fulug Lo L up)
F(filoool fulG(gr 1. 1 gp I Xug |oou | Xupy) floo&fulGlgrl...1gp) lug ...l up)

Al f)lal. gy
fl&...&fn)&ql&...&qp

(
(
(
(
Al fulgil...lgp (
(
(fi&...&fn)&q1&...&qp
(
(
(
(
(
(
(

(
F(fl&--~&fn&q1&-~-&qp
(

)
)
)
)
)
)
Gh&. . .&fn&qi&...&qp)
) =G(F(fi&...&fn)&qr1&...&qp)
)
)
)
)
)
)

fi&...&fu)&Gle1&...&ep)
f1&.. . &fn&g1&...&9m)
Al fu) Fr ..ol uy)
il fulgi ool gm)
fik.. & fy)&Gler &... &ep)
ol fu) TFa ..ol uy)

GF(f1&...&fn&q1&...&qp

G(f1&...&fnker&...&en&G(emtn)&. .. &G(ep)
G(f1&...& fn&G(g1)&. .. &G(gm

F(fi leool fulun Lo Lt | F(ttn) 1o | F(up)
F(fil...l fu lF(g1) | ... 1G(gm)
G(f1)&...&G(fu) &G(e1) &... &G(ep

F(f1) | ... | F(fa) | F(u1) | ... | F(uyp

Finally the following rule is applied only when no other terms are present in the OR arguments:

F(fA) | ... IF(f) lq1 1ol gp =F(fil o L fu lqa] .. qp)
5.4.3. Simplifications Based on Implications
The following rewriting rules are performed only when we can prove that some subformula f implies

another subformula g. Showing such implication can be done in two ways:

23

Syntactic Implication Checks were initially proposed by Somenzi and Bloem [15]. This detection is
enabled by the “t1_simplifier_options::synt_impl” option. This is a cheap way to detect
implications, but it may miss some. The rules we implement are described in Appendix

Language Containment Checks were initially proposed by Tauriainen [16]. This detection is enabled
by the “t1_simplifier_options::containment_checks” option.

In the following rewritings rules, f = g means that ¢ was proved to be implied by f using either

of the above two methods. Additionally, implications denoted by f 5 g are only checked if the
“tl_simplifier_options::containment_checks_stronger” option is set (otherwise the rewriting
rule is not applied). We write f = giff f = gand f = f.

As in the previous section, formulas e and u represent respectively pure eventualities and purely
universal formulas.

Finally |f|, denote the length of f were all Boolean subformulas are counted as one.

iff=1g then flg=1
iff=1g then f&g=0

if (f = 8) A (Iflp < Iglp) then fle=f
iff=g then flg=g

if (f = 8) (Iglp < [f]p) then feg=g
iff=g then feg=f
iff=g then f<>g=g9->f
iff=g then f>g=1
f(tfl=g then frorg=g-—>!f
iff=1g then fxorg=(19)->f
if (f = &) ~ (Iflp < [8lp) then fug=f
iff=g then fug=g
if(ng)$,g then fug=g
if(tf)=g then fUg=Fg
ifg=e then eUg=Fg
iff=g then fU(gUh)=gUh
iff=g then fU(gWh)=gWh
ifg=f then fU(gUh)=fUh
if f=nh then fU(gR(hUk)) =gR(hUKk)
if f=h then fU(gR (hWk)) =gR(hWk)
iff=h then fU(gM(hUk)) =gM(hUk)
iff=h then fU(gM(hwWk)) =gM(hWk)
if f=h then (fug)Uh=gUh
iff=h then (fug)Uh=gUh
ifg=nh then (fug)Uh=(fug) | h
f(tfl=g then fug=1

if (f = g) A (Il < Igls) then fug=f
iff=g then fug=g
if(fWg)i:g then fug=g
iff=g then fw(gwh)=gWh

24

ifg=f then
ifg=f then
if f=h then
iff=h then
ifg=h then
ifg=h then
if (f = g) A (|flo < gly) then
ifg=f then
ifg=1tf then
fu=g then
ifg=f then
ifg=f then
iff=g then
ifh=f then
ifh=f then
ifg=h then
ifg=h then
if (f = g) A (|flo < gls) then
ifg=f then
ifg=1f then
ifg=f then
if f=g then
iff=g then
ifh=f then
ifh=f then
ifg=h then

fU(gUR) = fWh
fu(gWh)=Fuh
(Fug)Wh=gWh
fWgWh=gWh

(
(fWwg)Wh=(fwg)lh
(fug)Wh=(fug)lh

frRg=f
fRg=g
fRg=Gg
URg=Gg
fR(ERh) =gRA
fR(gMH) =gMh
fR(gRM)=fRh
(fRE)Rh=gRA
fMQ)Rh=gRhE

(
(fRg)Rh=(f&g)Rh
(fMg)Rh=(f&g)Rh

fug=f

fug=g

fMg=0
fM(guh) =gHuh
fM(guh) = fuh
fM(gRh) = fuh
(fMg)Mh=gMh
(fREMh=gMUh

(fMg)Mh = (fag)Mh

Many of the above rules were collected from the literature [15) [16] 2] and sometimes generalized to

support operators such as M and W.

25

A. Defining LTL with only one of U, W, R, or M

//////////

/////

to understand the semantics of section if you are only familiar with some of the operators.

Equivalences using U:

Ff=1Uf
Gf=!'F!f=1(1U!f)
fug=(fug)lGf=(fug) I t(1U!f)
=fu(glGf)=fu(gl!(1U!f))
fMg=gu(f&g)
fRE=gW(f&g)=(gU(f&g)) | (1U!Q)
=gU((f&g)l!(1uty))

Equivalences using W:

Ff=16!'f=1("f)wo)

Gf=0Rf=fWoO
fug=(fug&(Fg)=(fwg)&!((*g)Wo)
fMg=(gW(f&g))&F(fag)=(gW(f&g))&!((!(f&g))WO)
fRg=gW(f&Q)

Equivalences using R:

FfE !G!fz !(OR!f)
Gf=O0Rf
fug=(((xg)Rf)&FQ) 1 g=((Xg)Rf)&(1(0OR!Q))) g
fwg=gR(f1g)
=(Xg)Rf) g
fMg=(fRg&Ff=(fRg&!(OR!)
=fR(g&FQ) = fR(g& ' (OR! f))

Equivalences using M:

Ff=/fM1
Gf=!F!f=1(('f)M1)
fug=gM(f1g)
=(xgMf)lg
fug=(fug)lGf=(XgMf)Igl((tfHM1)
fRg=(fMg)I1Gg=(fMg)l1((tg)M1)

26

These equivalences make it possible to build artificially complex formulas. For instance by applying
the above rules to successively rewrite U - M — R — U we get

fug=(xguf)lg
(xg)Rf)&1(OR!Xg)) g
(fuxgeaf) 1r(autrf)a((1Xg)U(0& ! Xg)) (LU 1Xg))) I g

trivially false

(fuxg&f)) 111U f))&(1UXQ)) I g

Spot is able to simplify most of the above equivalences, but it starts to have trouble when the X
operator is involved. For instance (fWg) & F g = f U g is one of the rewriting rules from But the
formula (f WXg) & FXg, which looks like it should be reduced similarly to f UXg, will be rewritten
instead to (f WXg) &XF g, because XFg = FXg is another rule that gets applied first during the
bottom-up rewriting.

27

B. Syntactic Implications

Syntactic implications are used for the rewriting of Section The rules presented bellow extend
those first presented by Somenzi and Bloem [15].

A few words about implication first. For two PSL formulas f and g, we say that f — g if
Vo, (0 = f) = (0 = g). For two SERE f and g, we say that f = QifVr, (ml= f) = (7 IE Q).

The recursive rules for syntactic implication are rules are described in table in which = denotes
the syntactic implication, f, f1, f2, §, g1 and g» denote any PSL formula in negative normal form, and
fu and gg denote a purely universal formula and a pure eventuality.

The form on the left of the table syntactically implies the form on the top of the table if the condition
in the corresponding cell holds.

Note that a given formula may match several forms, and require multiple recursive tests. To limit
the number of recursive calls, some rules have been removed when they are already implied by other
rules.

For instance it one would legitimately expect the rule “F f = Fg if f = ¢” to appear in the table.
However in that case F g is pure eventuality, so we can reach the same conclusion by chaining two
rules: “Ff= Fg if f= Fg "andthen”f=Fgif f=g".

R

8E
The rules from table should be completed by the following cases, where f, and g, denote
Boolean formulas:

we have if

f=1 always
0=g always
fo =8 BDD(fy) A BDD(g;) = BDD(fp)

28

‘uoryedT[duwI d1)orJUAS 10§ SINI SAISINDAY :"[°q d|qel
S=Y A
ol
Se i 3l
=Y v
o1
seoy | Yy
W= [v . W= [A . $
sy A —/ .y /o
18<= [f4a
s=Y A W= v W= v =1V =1 v Sz Yl
s=1/ =1/ =1 =1 W1
=1 v W= v =1V
sey sy || yuy
H%AHNK H%;\HM‘\ N%\/Hﬁ.\.
W=7 v
S=Yv W= v W= v =Y v
S=1 By 81/ =1 S=1/ ynly
= e 1y = = =
WW=1v We=1f v
We=1fv We=1fv S=Yv
S=1¢ W=y v =1V Yy
=1 =1 s=1
N%A”W\ N%A”(.
=/ 18« [ix
S=n/f S=nJ nJ
8 = T = T8 = [
Iy S = s Il ey | wey 3= /
=/ =/ =/ =/
[(@838 | W8 [8 [8§a | Wu® | wuls [Wuls [Wald [8x ag 3 [=

29

Bibliography

[1] Property Specification Language Reference Manual v1.1. Accellera, June 2004. http://www.eda.org/
viv/.

[2] Tomas Babiak, Mojmir Kretinsky, Vojtéch Rehak, and Jan Strejéek. LTL to Biichi automata
translation: Fast and more deterministic. In Proceedings of the 18th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’12), volume 7214 of Lecture
Notes in Computer Science, pages 95-109. Springer, 2012.

[3] Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and Yoav Rodeh.
The temporal logic Sugar. In Gérard Berry, Hubert Comon, and Alain Finkel, editors, Proceedings
of the 13th international conferance on Computer Aided Verification (CAV’01), volume 2102 of Lecture
Notes in Computer Science, pages 363-367. Springer, July 2001. ISBN 978-3-540-42345-4.

[4] Anne Briiggemann-Klein. Regular expressions into finite automata. Theoretical Computer Science,
120:87-98, 1996.

[5] Ivana Cernéd and Radek Pelédnek. Relating hierarchy of temporal properties to model checking.
In Branislav Rovan and Peter Vojtaa, editors, Proceedings of the 28th International Symposium on
Mathematical Foundations of Computer Science (MFCS’03), volume 2747 of Lecture Notes in Computer
Science, pages 318-327, Bratislava, Slovak Republic, August 2003. Springer-Verlag.

[6] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property
classes. In Proceedings of the 19th International Colloquium on Automata, Languages and Programming
(ICALP’92), pages 474-486, London, UK, 1992. Springer-Verlag.

[7] Alessandro Cimatti, Marco Roveri, and Stefano Tonetta. Symbolic compilation of PSL. IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, 27(10):1737-1750, 2008.
https://es.fbk.eu/people/tonetta/tests/tcad07/.

[8] Christian Dax, Felix Klaedtke, and Stefan Leue. Specification languages for stutter-invariant
regular properties. In Proceedings of the 7th International Symposium on Automated Technology for
Verification and Analysis (ATVA'09), volume 5799 of Lecture Notes in Computer Science, pages 244-254.
Springer-Verlag, 2009.

[9] Alexandre Duret-Lutz. LTL translation improvements in Spot. In Proceedings of the 5th Interna-
tional Workshop on Verification and Evaluation of Computer and Communication Systems (VEC0S'11),
Electronic Workshops in Computing, Tunis, Tunisia, September 2011. British Computer Society.
URL http://ewic.bcs.org/category/15853.

[10] Cindy Eisner and Dana Fisman. A Practical Introduction to PSL. Series on Integrated Circuits and
Systems. Springer, 2006.

[11] Cindy Eisner and Dana Fisman. Structural contradictions. In Hana Chockler and Alan Hu,
editors, Proceedings of the 4th International Haifa Verification Conference (HVC’2008), volume 5394 of
Lecture Notes in Computer Science, pages 164-178. Springer, October 2009. ISBN 978-3-642-01701-8.

[12] Kousha Etessami and Gerard J. Holzmann. Optimizing Biichi automata. In C. Palamidessi,
editor, Proceedings of the 11th International Conference on Concurrency Theory (Concur’00), volume
1877 of Lecture Notes in Computer Science, pages 153-167, Pennsylvania, USA, 2000. Springer-
Verlag. Beware of a typo in the version from the proceedings: f Ug is purely eventual if both

30

http://www.eda.org/vfv/
http://www.eda.org/vfv/
https://es.fbk.eu/people/tonetta/tests/tcad07/
http://ewic.bcs.org/category/15853

[13]

[14]

[15]

[16]

operands are purely eventual. The revision of the paper available at http://www.bell-labs!
com/project/TMP/|is fixed. We fixed the bug in Spot in 2005, thanks to LBTT. See also http:
//arxiv.org/abs/1011.4214v2 for a discussion about this problem.

Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing (PODC’90), pages 377-410, New
York, NY, USA, 1990. ACM.

Klaus Schneider. Improving automata generation for linear temporal logic by considering the
automaton hierarchy. In Proceedings of the 8th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, volume 2250 of Lecture Notes in Artificial Intelligence, pages
39-54, Havana, Cuba, 2001. Springer-Verlag.

Fabio Somenzi and Roderick Bloem. Efficient Biichi automata for LTL formulee. In Proceedings
of the 12th International Conference on Computer Aided Verification (CAV’00), volume 1855 of Lecture
Notes in Computer Science, pages 247-263, Chicago, Illinois, USA, 2000. Springer-Verlag.

Heikki Tauriainen. On translating linear temporal logic into alternating and nondeterministic
automata. Research Report A83, Helsinki University of Technology, Laboratory for Theoretical
Computer Science, Espoo, Finland, December 2003. Reprint of Licentiate’s thesis.

31

http://www.bell-labs.com/project/TMP/
http://www.bell-labs.com/project/TMP/
http://arxiv.org/abs/1011.4214v2
http://arxiv.org/abs/1011.4214v2

	Reasoning with Infinite Sequences
	Finite and Infinite Sequences
	Usage in Model Checking

	Temporal Syntax & Semantics
	Boolean Constants
	Semantics

	Atomic Propositions
	Examples
	Semantics

	Boolean Operators (for Temporal Formulas)
	Semantics
	Trivial Identities (Occur Automatically)

	Temporal Operators
	Semantics
	Trivial Identities (Occur Automatically)

	SERE Operators
	Semantics
	Syntactic Sugar
	Trivial Identities (Occur Automatically)

	SERE-LTL Binding Operators
	Semantics
	Syntactic Sugar
	Trivial Identities (Occur Automatically)

	Grammar
	Operator precedence

	Properties
	Pure Eventualities and Purely Universal Formulas
	Syntactic Hierarchy Classes

	Rewritings
	Unabbreviations
	LTL simplifier
	Negative normal form
	Simplifications
	Basic Simplifications
	Simplifications for Eventual and Universal Formulas
	Simplifications Based on Implications

	Defining LTL with only one of U, W, R, or M
	Syntactic Implications
	Bibliography

