
Proposal: an xml representation for automataThe Vauanson Group <vauanson�lrde.epita.fr>November 15, 2004AbstratThis paper presents the xml formalism that was introdued at the iaa 2004 onfereneto represent automata. This formalism was reated to ful�ll the need that was expressed atiaa 2003 to have a standard for exhanging automata between various appliations.This format allows the user to desribe many kinds of automata, inluding weighted au-tomata and transduers. In order to ahieve maximal generiity, a �le is mainly divided intotwo parts: one to express the ontent of an automaton, and another one to speify the kindof automata the �le refers to. Furthermore, extra data may be attahed to an automaton,suh as layout information. Using this formalism it is also possible to put multiple automatain a unique �le.An implementation of this formalism was reated as an experimental feature in the Vau-anson software platform, whih is a framework dediated to automata manipulations.IntrodutionVarious omputer programs manipulate automata. Among them exist �nalized produts, experi-mental software, programs designed to manipulate automata as a �nal purpose or as intermediaryomputational tools. Some of them need to store their automata in order to reuse them in alatter exeution, while other just need to dump some debugging informations. It is noteworthythat omplementary programs designed to manipulate automata need to have a ommon repre-sentation. As an example, a program designed to edit automata must produe an output that isompatible with other programs designed to render automata.Therefore, there is a strong need to have a standard language designed to represent automata.Although a domain spei� language, it must be powerful enough to represents the numerous kindsof automata that were invented. This need was primarily expressed at the iaa 2003 onferene.In order to ful�ll this need, the Vauanson developers designed and began to implementan xml formalism to desribe automata. Vauanson is a generi software platform designedto manipulate automata (inluding weighted automata) and transduers. A proposition of theirformalism was introdued at the iaa 2004 onferene. This paper douments this formalism andis a written version of the presentation that was made.This artile is divided in two parts: �rst the basi and mandatory features that are needed todesribe an automaton are presented. Then, a seond part introdue some extra features of theformalism, suh as layout information and session �les.1 Basi featuresAs deided at iaa 2003, xml have been hosen. It brings developers an easier design proess andsimpli�es the implementation task a lot, sine many libraries already exist to parse xml. Froman end-user point of view, xml is a well known format and should be grokked more easily thanany ustom format. One may argue that xml is extremely verbose and that, with big automata,huge �les may be produed. However, working on ompressed xml �le is a ommon pratie andshould be an easy way of solving this issue. But still there is an overhead due to the time neededto deompress the �le. 1

vaucanson@lrde.epita.fr


At top level, the <automaton> tag is used to enlose the de�nition of any automaton. Thenthe desription is divided into two parts: ontent and type. An example is given in �gure 1. Theontent setion refers to the automaton's states, transitions, and related information, whereas thetype setion refers to the kind of automaton that is desribed: Boolean or weighted automaton,transduer and so on.
<automaton><type> ... </type><ontent> ... </ontent></automaton>Figure 1: Base struture of an automaton.First, the information that is expeted to be found in the ontent setion will be presented.For this purpose, the Boolean automaton of �gure 1 will be used. Then the fous will be made onthe type setion.1.1 ContentIn order to desribe the ontent of an automaton, the user must provide information about fourkinds of objets: states, transitions, initial states and �nal states. An example is shown in �gure2.1.1.1 StatesThe delarations of the states for the automaton of �gure 1 is shown in �gure 3. It is performedinside a <states> tag using <state> tags. Eah state should be assigned an unique name usingthe name attribute. This name may be any string, and will be used latter to refer to transitions'sextremities.1.1.2 TransitionsThe delarations of the transitions for the automaton of �gure 1 is shown in �gure 4. In a similarway as states, it is done using <transitions> and <transition> tags. The sr and dstattributes should refer to valid state names inside the states setion. Of ourse, these attributesindiate whih are the soure and destination of eah transition.The label attribute is the label of the transition, in a textual representation. This repre-sentation may vary with the kind of automaton whih is desribed. As an example, a �lassial�Boolean letter automaton will have only one-letter labels whereas a transduer may have labelsof the form "a|b". Transitions upon an empty word (i.e. epsilon transitions) may be representedusing an empty string, the symbol "1", or by not speifying the label attribute.

2



<automaton><type> ... </type><ontent><states> ... </states><transitions> ... </transitions><initials> ... </initials><finals> ... </finals></ontent></automaton> Figure 2: The ontent tag.
<states><state name="0" /><state name="1" /><state name="2" /></states> Figure 3: States delaration.
<transitions><transition sr="0" label="a" dst="0" /><transition sr="0" label="b" dst="1" /><transition sr="1" label="a" dst="2" /><transition sr="1" label="b" dst="0" /><transition sr="2" label="a" dst="1" /><transition sr="2" label="b" dst="2" /></transitions>Figure 4: Transitions delaration.3



<initials><initial state="0"/></initials><finals><final state="0"/></finals>Figure 5: Initials and �nal states delaration.1.1.3 Initial and �nal statesInitial and �nal states are delared both in a very similar fashion. As for states and transitions theuser must reate appropriate setions using the <initials> and <finals> tags. Inside thosesetions, he may delare initial and �nal states using the <initial> and <final> tags. Anexample for the automaton of �gure 1 is given in �gure 5.Eah <initial> or <final> tag must be aompanied of a name attribute ontaining a validand delared state name. This will be the state the tag refers to.Using speial tags to indiate the initial or �nal status of a state allow the user to give extrainformation about this status, and is more onsistent than just putting some extra attributes to the<state> tag. As an example, when working with weighted automata or transduers, it is morenatural to think of initial states as state whih are the destination a speial kind of transition, withno soure, but whih may have an arbitrarily omplex label. Furthermore, having four setionsfor states, transitions, initial and �nal states makes the xml formalism loser to the mathematialde�nition of an automaton.1.1.4 Complex example
<states><state name="A" /><state name="B" /></states><transitions><transition sr="A" dst="B" /><transition sr="B" label="2 b+3 a" dst="A" /></transitions><initials><initial label="2" state="A"/></initials><finals><final label="4 a" state="B"/></finals>Figure 6: Advaned usage of ontents.Figure 6 shows a more omplex example for di�erent tags that may our inside the ontentsetion. The �rst thing to be notied is the name of the states, whih are not integers. Then, an4



empty transition is delared just by not speifying any label attribute, and another transitionhas a rational expression as label. Finally, sine the example is a weighted automata, initial and�nal states my have weights, and even be labeled with rational expressions.As this example shows, the format for the ontent setion remains rather simple, even fornon-trivial strutures. It has a strong expressiveness and allows the user to speify di�erent kindsof automata.1.2 TypeSine the formalism proposed here may be used to desribe various types of automata, there is aneed to desribe the ontext within whih the ontent information is relevant. In other words, anautomaton is not just a ontent, but also has a type. The aim of the type setion is therefore tospeify the algebrai ontext of the desribed automaton.First the formalism will be indiated for �usual� Boolean automata, and then some moreomplex examples will be given.1.2.1 Speifying the monoid.When speifying a Boolean automaton, the only relevant information that annot be guessed bythe omputer is the monoid the automaton is delared on. Therefore, the type setion for suh anautomaton just ontain a <monoid> tag, as shown in �gure 7.<type><monoid><generator value="a"/><generator value="b"/></monoid></type>Figure 7: A basi type setion for Boolean automata over {a, b}.There should always be a monoid setion inside a type setion. When no attributes are spe-i�ed, a monoid is onsidered to be a free monoid. Thus, <generator> tags may be used insidethe monoid setion to speify the monoid generators whih, in ase of free monoids, are letters.The textual representation of those letters is indiated using the value attribute.1.2.2 Using speial semirings.When working on weighted automata, a semiring information should be added to the monoid one.An example of type delaration for suh an automaton is given in �gure 8.<type><monoid><generator value="a" /><generator value="b" /></monoid><semiring set="Z" operations="numerial" /></type>Figure 8: A type setion for weighted automata.Sine a semiring mathematially onsists of a set equipped with two speial operations, the xmlde�nition of a semiring onsist of delaring a set and some operations. The set is delared using5



the set attribute of a <semiring> tag, whereas the operations are made using an operationsattribute.Valid sets are: B, Z, R,. . . Valid operations are: boolean, numerial, tropialMax, tropialMin,. . . Thedefault values for these attributes are B and boolean.1.2.3 TransduersAs there are two ways of formalizing transduers, there are two way of delaring a transduer inthe type setion of an xml automaton.<type><monoid type="produt"><monoid><generator value="a" /><generator value="b" /></monoid><monoid><generator value="x" /><generator value="y" /></monoid></monoid><type>Figure 9: Transduers using produts of free monoids.Produt of free monoids A �rst solution, presented in �gure 9, is to onsider a transduer asa Boolean automaton over a produt of free monoids. This ould be easily ahieved using a typeattribute for the <monoid> tag. When this attribute is set to produt the monoid is onsidered tobe a produt of free monoids, and therefore other monoid delarations are expeted to be enlosedinside the monoid setion. Note that there may be an arbitrary number of free monoids inside theprodut, and therefore multi-band transduers may be delared.Rational series as semiring A Boolean series may be used to denote a language. A Booleanseries equipped with union and onatenation also onstitute a semiring. Therefore, using Booleanseries as weights on a letter automaton is a valid approah to de�ne a transduer.Suh a de�nition is possible using the proposed xml formalism. An example is given in�gure 10. The set attribute of the <semiring> tag may be assigned a ratseries value, thusindiating the referred semiring is a rational series. The properties of the series are enlosed inthe <semiring> tag, using �lassial� <monoid> and <semiring> tags.As those examples shows, it is possible to represents omplex kinds of automata using the pro-posed xml formalism. Classial automata, weighted automata and multiple kinds of transduersare supported. There is however default values that are provided for simple types, to avoid theuser typing omplex xml ode for simple objets. As an example, de�ning a boolean automatonjust means de�ning its alphabet, thereby using the <monoid> tag.Equipped with those features it is possible to desribe the strit minimum that is required towork with an automaton. It allows an user to load an automaton in order to run various algorithms,tests and manipulations on it. However, one ould expet more from an xml representation for6



<type><monoid><generator value="a" /><generator value="b" /></monoid><semiring set="ratseries"><monoid><generator value="x" /><generator value="y" /></monoid><semiring set="B" operations="boolean" /></semiring></type>Figure 10: Transduers as weighted automata.automata: it would be helpful to de�ne multiple automata in one �le, or to have layout informationin order to display automata.2 Other featuresBasially the proposed formalism provides two extra features: the ability to desribe an automa-ton's geometry, and to make session �les. These features are presented in this setion.2.1 GeometryWhen required to display an automaton, a layout must be used. There exist some speializedappliations that ompute suh a layout (e.g. Graphviz ) or sometimes an end user would like tohoose a ustom layout. More than just a layout, it is often useful to speify information suh asedges style, states olor, and so on.<automaton><geometry StateFillColor="blue" />...<states><state name="s0"><geometry x="10" y="10" /></state>...</states><transitions><geometry EdgeLineStyle="dashed" />...</transitions>...</automaton> Figure 11: Geometry.This an be ahieved using the <geometry> tag, as shown in �gure 11. This tag may be plaedanywhere in the doument and ontrol the way its surrounding blo should be displayed. Various7



attributes are available to hange di�erent aspets of the automaton. Layout information may bespei�ed using the x and y attributes, but there exists other attributes suh as StateFillColoror EdgeLineStyle. The attribute names have been hosen to be those of Vauanson-G, a LATEXpakage dediated to automata representation.2.2 SessionsIt is often desirable to store more than one automaton in a �le. One may want to run the samealgorithm with various entry and save eah results, or to store the intermediary automata thatare omputed by an algorithm at di�erent iterations.<session><automaton>...</automaton><automaton>...</automaton><automaton>...</automaton></session> Figure 12: xml sessions.This is the purpose of the <session> tag, that may be used as a top-level tag to enlosevarious <automaton> tags. The so-de�ned �le is alled a session and ontains multiple automata.An example is given in �gure 12.Therefore this formalism also ontains extra features that provide more than a basi informationsuitable only for automata omputations. Graphial appliations designed to represent or edit theontent of an automaton have a su�ient expressiveness using this formalism, thanks to the<geometry> tag. It is also possible to store sessions in one unique �le, for programs that need todo so, using a <session> tag.ConlusionThis paper propose an xml formalism to represent automata. This formalism has been designed tobe both simple and powerful. Simple, beause the notations are intuitive and simple automata maybe desribed easily. Powerful, beause it is possible to desribe quite omplex kinds of automata.In order to ahieve this, an xml automaton �le is omposed of two parts: one that desribe thetype of automaton that is de�ned, and one that desribe the ontent of the automaton. It is alsopossible to de�ne multiple automata in one unique �le, and to store geometry information (suhas layout data) using the formalism.During the design of the formalism, an experimental implementation was developed for theVauanson platform, both to provide an experimental playground and to hek the onsistenyof this formalism.Finally, this xml format allow an user to desribe any weighted automaton, inluding �stan-dard� Boolean automata. Transduers (inluding weighted and multi-band transduers) may alsobe desribed, using two di�erent algebrai views. Furthermore, the format is easily extensible8



and other features may be added in a later time. The Vauanson developers hope to see thisformalism spread among other appliations that manipulate automata in the future.

9


	Basic features
	Content
	States
	Transitions
	Initial and final states
	Complex example

	Type
	Specifying the monoid.
	Using special semirings.
	Transducers


	Other features
	Geometry
	Sessions


