
Your first program in Vaucanson

October 17, 2003

Contents

1 Introduction 1

2 How to build an automaton 1
2.1 How to compile a stand-alone program . 2

3 How to use standard algorithms 2

1 Introduction

This document is designed to help beginners writing their first program in Vaucanson. For this
purpose, the library provides some c++ headers that contain shortcuts for the basic usage of the
library.

2 How to build an automaton

The following listing is a valid Vaucanson program:

1 #include <vaucanson/vaucanson_boolean_automaton.hh>
2 using namespace vcsn::boolean_automaton;
3 int main()
4 {
5 alphabet_t alphabet;
6 alphabet.insert(’a’);
7 alphabet.insert(’b’);
8 automaton_t a = new_automaton(alphabet);
9 hstate_t p = a.add_state();
10 hstate_t q = a.add_state();
11 a.set_initial(p);
12 a.set_final(q);
13 a.add_letter_edge(p, q, ’a’);
14 a.add_letter_edge(q, p, ’b’);
15 tools::dot_dump(std::cout, a, "automaton");
16 }

1

. line 1 and 2: To program standard boolean automata (the so-called acceptors), the user can
include this shortcuts’ header. The using namespace command makes all shorcuts di-
rectly available. Otherwise, the user has to prefix every types and functions by vcsn::boolean_automaton:: .

. line 5: The first thing to do is to declare the alphabet we are working with. The type
alphabet_t is predefined into the header. We obtain an object instance called alphabet .

. line 6 and 7: alphabet is an object instance that provides services. For example, we can in-
sert ’a’ and ’b’ into the alphabet (other services can be consulted in the file vaucanson/algebra/concept/alphabets_base.hh).

. line 8: The function new_automaton defined in the header takes an alphabet and returns
a fresh empty automaton. Here, we store this automaton into the variable a.

. line 9 and 10: As an object instance, a provides services like the ability to create a new
state. This state is characterized by a handler (concretely, a little integer). In Vaucanson,
every handler for state has the hstate_t type.

. line 11 and 12: a can also change the status of its state. For example, the set_initial
method mark a state as initial.

. line 13 and 14: We can define a transition between two states labelled by a letter using the
method add_letter_edge . The other methods that the user can expect from an automa-
ton are located in the file: vaucanson/automata/concept/automata_base.hh .

. line 15: Vaucanson provides different way to interact with the user. For example, we can
use the DOTformat to display the automaton ’a’ with dotty .

2.1 How to compile a stand-alone program

In a shell, if your file is called automaton.cc and if vaucanson is installed on your system, type
the following command:

% g++ automaton.cc -o automaton

Note: if your Vaucanson is not installed or if it is not installed into a standard location, add
-I the_vaucanson_directory/include to your command.

To execute the program and to display the resulting automaton:

% ./automaton | dotty -

3 How to use standard algorithms

The second step is to test the algorithms of Vaucanson. For this purpose, the user can include
also shortcut header. For example, in the following code, the program build an automaton and
compute its associated deterministic automaton.

1 #include <vaucanson/vaucanson_boolean_automaton.hh>
2 #include <vaucanson/standard_algorithms.hh>
3 using namespace vcsn::boolean_automaton;
4 int main()
5 {
6 alphabet_t alphabet;
7 alphabet.insert(’a’);
8 alphabet.insert(’b’);

2

9 automaton_t a = new_automaton(alphabet);
10 hstate_t p = a.add_state();
11 hstate_t q = a.add_state();
12 hstate_t r = a.add_state();
13 a.set_initial(p);
14 a.set_final(r);
15 a.add_letter_edge(q, q, ’a’);
16 a.add_letter_edge(p, q, ’a’);
17 a.add_letter_edge(q, p, ’b’);
18 a.add_letter_edge(q, r, ’b’);
19 a.add_letter_edge(r, q, ’a’);
20 a.add_letter_edge(r, r, ’b’);
21 automaton_t a_det = determinize(a);
22 tools::dot_dump(std::cout, a_det, "det_automaton");
23 }

. line 2: This header is including several headers present in the vaucanson/algorithms
directory.

. line 21: Algorithms are functions not object instance.

3

