
Your first program in Vaucanson

July 18, 2004

Contents

1 Introduction 1

2 How to build an automaton 1
2.1 How to compile a stand-alone program . 2

3 How to use standard algorithms 2

1 Introduction

This document is designed to help beginners writing their first program in Vaucanson. For this
purpose, the library provides some c++ headers that contain shortcuts for the basic usage of the
library.

2 How to build an automaton

The following listing is a valid Vaucanson program:

1 #include <vaucanson/boolean_automaton.hh>
2 using namespace vcsn::boolean_automaton;
3 int main()
4 {
5 alphabet_t alphabet;
6 alphabet.insert(’a’);
7 alphabet.insert(’b’);
8 automaton_t a = new_automaton(alphabet);
9 hstate_t p = a.add_state();
10 hstate_t q = a.add_state();
11 a.set_initial(p);
12 a.set_final(q);
13 a.add_letter_edge(p, q, ’a’);
14 a.add_letter_edge(q, p, ’b’);
15 tools::dot_dump(std::cout, a, "automaton");
16 }

1

. line 1 and 2: To program standard boolean automata (the so-called acceptors), the user
can include this shortcuts’ header. The using namespace command makes all shorcuts
directly available. Otherwise, the user has to prefix vcsn::boolean_automaton:: to
every types and functions.

. line 5: The first thing to do is to declare the alphabet we are working with. The type
alphabet_t is predefined into the header. We obtain an object instance called alphabet .

. line 6 and 7: alphabet is an object instance that provides services. For example, we can in-
sert ’a’ and ’b’ into the alphabet (other services can be consulted in the file vaucanson/algebra/concept/alphabets_base.hh).

. line 8: The function new_automaton defined in the header takes an alphabet and returns
a fresh empty automaton. Here, we store this automaton into the variable a.

. line 9 and 10: As an object instance, a provides services like the ability to create a new
state. This state is characterized by a handler (concretely, a little integer). In Vaucanson,
every handler for state has the hstate_t type.

. line 11 and 12: a can also change the status of its state. For example, the set_initial
method mark a state as initial.

. line 13 and 14: We can define a transition between two states labelled by a letter using the
method add_letter_edge . The other methods that the user can expect from an automa-
ton are located in the file: vaucanson/automata/concept/automata_base.hh .

. line 15: Vaucanson provides different way to interact with the user. For example, we can
use the DOTformat to display the automaton ’a’ with dotty .

2.1 How to compile a stand-alone program

In a shell, if your file is called automaton.cc and if vaucanson is installed on your system, type
the following command:

% g++ automaton.cc -o automaton

Note: if your Vaucanson is not installed or if it is not installed into a standard location, add
-I the_vaucanson_directory/include to your command.

To execute the program and to display the resulting automaton:

% ./automaton | dotty -

3 How to use standard algorithms

The second step is to test the algorithms of Vaucanson. For this purpose, the user can also in-
clude shortcut header. For example, in the following code, the program build an automaton and
compute its associated deterministic automaton.

1 #include <vaucanson/boolean_automaton.hh>
2 #include <vaucanson/standard_algorithms.hh>
3 using namespace vcsn::boolean_automaton;
4 int main()
5 {
6 alphabet_t alphabet;
7 alphabet.insert(’a’);

2

8 alphabet.insert(’b’);
9 automaton_t a = new_automaton(alphabet);
10 hstate_t p = a.add_state();
11 hstate_t q = a.add_state();
12 hstate_t r = a.add_state();
13 a.set_initial(p);
14 a.set_final(r);
15 a.add_letter_edge(q, q, ’a’);
16 a.add_letter_edge(p, q, ’a’);
17 a.add_letter_edge(q, p, ’b’);
18 a.add_letter_edge(q, r, ’b’);
19 a.add_letter_edge(r, q, ’a’);
20 a.add_letter_edge(r, r, ’b’);
21 automaton_t a_det = determinize(a);
22 tools::dot_dump(std::cout, a_det, "det_automaton");
23 }

. line 2: This header is including several headers present in the vaucanson/algorithms
directory.

. line 21: Algorithms are functions not object instance. So, they are called as functions.

3

