
Generating and extending Vaucanswig sources

Author: Raphael Poss
Contact: raph@lrde.epita.fr
Date: January 2005
Version: Id

The file build-process.txt describes how to use Vaucanswig to create a wrapper for Vaucanson
in a scripting language. (read it first)

This document instead describes how Vaucanswig itself is generated, currently using the infamous
expand.sh script.

Contents

The list of Vaucanswig modules

The list of algorithm families (ALGS in step 2 above)

The cross-product of contexts and generic code (step 5 above)

The transparency property

What is not automatic

Things not easy to change yet

The list of Vaucanswig modules

Once generated, Vaucanswig is a set of SWIG modules. This list of modules is algorithmically generated.
The overall process to build the list of module names is as follows:

1. put “core” in the MODULES list.

2. create an auxiliary list ALGS of algorithm families.

(detailed below, gives alg_sum, alg_complete, ...)

3. create an auxiliary list KINDS of algebra contexts

(contains boolean, z, z_max_plus, ...)

4. extend ALGS with “context”, “algorithms” and “automaton”.

5. make the cross product of KINDS and ALGS putting a “ ” between the two parts of each
generated name.

6. add the results of this cross product to the MODULES list.

1

mailto:raph@lrde.epita.fr
http://www.lrde.epita.fr/vaucanson

The list of algorithm families (ALGS in step 2 above)

In Vaucanswig, an “algorithm family” is the set of algorithms declared in a single Vaucanson header
file. Most families declare only one algorithm, but usually with several forms (using overloading). In
Vaucanswig, each algorithm family is related to a SWIG source file: src/vaucanswig_alg_NAME.i
where NAME is the name of the algorithm family.

Each family source file contains the following items:

• a link to its C++ header.

• the definition of a bunch of SWIG macros which are able to instanciate the algorithm declarations
for the type set given as parameters.

• the definition of a bunch of SWIG macros which are able to instanciate algorithm wrappers for
the set of types given as parameters.

To create the list of algorithm families and associated SWIG sources, the geneeration script proceeds
as follows:

1. Find all files in the Vaucanson includes that declare algorithms using the “// INTERFACE:”
construct.

2. For each such include file, proceed as follows:

a. Prepend the base name of the file with “alg_” to make a “family name”.
b. Create src/vaucanswig_(family_name).i containing the relevant SWIG

code
c. Put the generated family name (with prefix) in the ALGS list.

The cross-product of contexts and generic code (step 5 above)

This is where you find all the magic. :)
This is the step where real code (i.e. non-template) is produced.
The goal of this step is to build the list of SWIG modules names and the source file for each SWIG

module. The basic idea is simple. It relies on the following two facts:

1. each algorithm family defined above defines macros that take types as parameters and pro-
duce non-template declarations and definitions.

2. each algebra context defines a set of types, that fit as parameters in the macros for algorithm
families.

Now the rest is quite simple. Since we have two lists KINDS (contexts) and ALGS (algorithm families),
proceed as follows:

for each K of KINDS, do:
for each A of ALGS, do:

Step 5.1
instanciate macros...
... from src/vaucanswig_alg_${A}.i
... using ${K}
... into src/vaucanswig_${K}_${A}.i

Step 5.2

2

add "${K}_${A}" to the MODULES list.

the following step is not fundamental, but required for later
compilation:

Step 5.3 (still in the K loop)
add "${K}_context" to src/${K}_automaton.deps

for each algorithm family F, do:

Step 5.4
add "${K}_automaton" to src/${K}_${F}.deps

Step 5.5
add "${K}_${F}" to src/${K}_algorithms.deps

The result of steps 5.3, 5.4 and 5.5 above can later be used to create dynamic link dependencies
between object code for modules (see build-process.txt). It creates the following dependency graph:

core -> K1_context -> K1_automaton -> K1_F1 -> K1_algorithms
-> K1_F2 ->
-> K1_F3 ->

-> K2_context -> K2_automaton -> K2_F1 -> K2_algorithms
-> K2_F2 ->
-> K2_F3 ->

(and so on)

The transparency property

At every level, a property can be recognized. If an algorithm foo() is declared (C++) in bar.h, then:

• “bar” is the “algorithm family” of foo()

• for each selected context K, exactly one SWIG module exists and is called called “K_bar”.

• the goal is that at the end of the compilation, in the target scripting language you can write:

K_bar.foo()
(or equivalent)

What is not automatic

Some work is required from the part of the developer:

• keeping “// INTERFACE:” tags in Vaucanson headers.

• deciding a list of contexts to instanciate in Vaucanswig.

• running the generator for Vaucanswig generic code whenever the Vaucanson library is updated.

• distributing the generated generic sources and building rules afterwards.

3

Things not easy to change yet

In this section, K stands for any algebra context.
The set of K -dependent types available in wrapper code in the “// INTERFACE:” tags is not yet

easily configurable, because it involves a huge piece of hand-written dedicated code.
For the moment, the following types are available for each context K:

Name of type Description
Automaton the automaton type labeled by series
GenAutomaton the corresponding type labeled by expressions
Series the type of series in K
Exp the type of expressions in K
HList a type for lists of unsigned integer (to be used as automaton

handlers where required)

Adding more of these is not difficult, but very tedious. It involves adding a new argument in various
argument list in various SWIG macros in the code. These will be documented later.

But still, it remains very difficult to bind in Vaucanswig any algorithm that operates on more than
one algebra context at the same time. “Very difficult” here means that some major work is required to
change Vaucanswig to support this case.

4

	Contents
	The list of Vaucanswig modules
	The list of algorithm families (ALGS in step 2 above)
	The cross-product of contexts and generic code (step 5 above)
	The transparency property
	What is not automatic
	Things not easy to change yet

