Vaucanswig: a dynamic wrapper around Vaucanson

Author: Raphael Poss
Contact: raph@Qlrde.epita.fr
Version: $1d$

Date: January 2005

Vaucanswig is a set of SWIG definitions which allow to use Vaucanson in a high-level, dynamic,
language such as Python, Perl, PHP or Ruby.

Contents

Introduction
Usage
What is provided?

Glossary

What is in a category?

Algebra

Algebra usage

Automata

Algorithms
Adding new algorithms

Example

Limitations
Python support
Licence

Contact

Introduction

Vaucanson is a C++ library that uses static genericity.

SWIG is an interface generator for C and C++ libraries, that allow their use from a variety of
languages: CHICKEN, C#, Scheme, Java, O’Caml, Perl, Pike, PHP, Python, Ruby, Lisp and TCL.

Unfortunately, running SWIG directly on the Vaucanson library does not work: most of Vaucanson
features are expressed using C++ meta-code, which means that basically there is no real code in
Vaucanson for SWIG to work on.

Vaucanswig comes in between SWIG and Vaucanson: it describes to SWIG some explicit Vaucanson
types and algorithms implementations so that SWIG can generate the inter-language interface.

mailto:raph@lrde.epita.fr
http://www.swig.org
http://www.lrde.epita.fr/vaucanson
http://www.lrde.epita.fr/vaucanson
http://www.swig.org

Usage

For any SWIG-supported language, using Vaucanswig requires the following steps:

1. generation of the language interface from SWIG input sources (.i files) provided by Vau-

canswig,

2. compilation of the interface into extensions to the language library (e.g. dynamically load-
able shared package module for Python).

3. loading the extension into the target language.

Vaucanswig provides no material nor tools to achieve these two steps, except for the Python language

target (see below).

extensions from SWIG input files for other languages.

What is provided?

Glossary

Refer to the SWIG documentation for information about generating language

In the next sections, the name “category” will refer to the set of features related to a particular algebraic
configuration in Vaucanson.

The following categories are predefined in Vaucanswig:

Category Semiring val- | Monoid val- | Series Series val- | Expression val-
ues ues ues ues

usual bool string B<<A*>> polynom exp

numerical int string Z<<A*>> polynom exp

tropical_min int string Z(min,+)<<A*>>polynom exp

tropical_max int string Z(max,+)<<A*>polynom exp

These are the standard contexts defined in Vaucanson. They are defined in Vaucanswig in the file

expand. sh.

What is in a category?

For a given category D, Vaucanswig defines the following modules:

vaucanswig_D_context: Algebra and algebraic context.

vaucanswig_D_automaton: Automata types (standard and generalized).

vaucanswig_D_alg_...: Algorithm wrappers.

vaucanswig_D_algorithms: General wrapper for all algorithms.

Each of these modules becomes an extension package/module/namespace in the target language.

Algebra

For a given category D, the module vaucanswig_D_context contains the following classes:

D_alphabet_t:

(constructor): string -> D_alphabet_t

Alphabet element with constructor from a string of generator letters:

D_monoid_t: Monoid structural element with the following members:

e standard Vaucanson constructors and operators,

e method to construct a word element from a simple string:
make: string -> D_monoid_elt_t

e method to generate the identity value:

identity: -> D_monoid_elt_t
D_monoid_elt_t: Word (monoid element) with standard Vaucanson constructors and operators.
D_semiring_t: Semiring structural element with the following members:

e standard Vaucanson constructors and operators,
e method to construct a weight element from a number:
make: int -> D_semiring_elt_t
e methods to generate the identity and zero values:
identity: -> D_semiring_ elt_t
zero: -> D_semiring_elt_t
D_semiring_elt_t: Weight (semiring element) with standard Vaucanson constructors and operators.

D_series_set_t: Series structural element with the following members:

e standard Vaucanson constructors and operators,
e methods to construct a series element from a number or string:

make: int -> D_series_set_elt_t
make: string -> D_series_set_elt_t

e methods to generate the identity and zero values as polynoms or expressions:

identity: -> D_series_set_elt_t
zero: -> D_series_set_elt_t
exp_identity: -> D_exp_t
exp_zero: —> D_exp_t

D_series_set_elt_t, D_exp_t: Polynom and expressions (series elements with polynom and expres-
sion implementations) with standard Vaucanson constructors and operators.

D_automata_set_t: Structural element for automata. Include standard Vaucanson constructors.
D_context: Convenience class with utility methods. It provides the following members:

e constructors:

(constructor): D_automata_set_t -> D_context
(copy constructor): D_context -> D_context

e accessors for structural elements:

automata_set: -> D_automata_set_t
series: -> D_series_set_t
monoid: -> D_monoid_t

semiring: -> D_semiring_t
alphabet: -> D_alphabet_t

e shortcut constructors for elements:

semiring_elt: int -> D_semiring elt_t
word: string -> D_monoid_elt_t
series: int -> D_series_set_elt_t
series: word -> D_series_set_elt_t
series: D_exp_t —-> D_series_set_elt_t
exp: D_series_set_elt_t -> D_exp_t
exp: string -> D_expt_t

In addition to these classes, the module vaucanswig_D_context contains the following function:

make_context: D_alphabet_t -> D_context

Algebra usage

All classes are equipped with a describe method for textual representation of values. Example use
(Python):

>>> from vaucanswig_usual_context import *
>>> ¢ = make_context(usual_alphabet_t("abc"))

>>> c.exp("atb+c") .describe()
’usual _exp_t@0x81a2e60 = ((atb)+c)’

>>> (c.exp("a")*c.exp("atb+c")) .star() .describe()
’usual_exp_t@0x81a20f8 = (a.((at+b)+c))*’

>>> from vaucanswig_tropical_min_context import *
>>> ¢ = make_context (tropical_min_alphabet_t("abc"))

>>> c.series().identity() .describe()
’tropical_min_serie_t@0x81ad8b8 = 0’
>>> c.series().zero() .describe()
’tropical_min_serie_t@0x81a6de8 = +o00’

Automata

For a given category D, the module vaucanswig_D_automaton contains the following classes:

D_auto_t: The standard automaton type for this category.

gen_D_auto_t: The generalized (with expression labels) automaton type for this category.
These class provides the following constructors:

(constructor): D_context -> D_auto_t
(constructor): D_context -> gen_D_auto_t

(copy constructor): D_auto_t -> D_auto_t

(copy constructor): gen_D_auto_t -> gen_D_auto_t
(constructor): D_auto_t -> gen_D_auto_t

For convenience purposes, a gen_D_auto_t instance can be constructed from a D_auto_t (general-
ization). The opposite is not possible, of course.

In addition to the standard Vaucanson methods, these classes have been augmented with the fol-
lowing operators:

describe(): Give a short description for the object.
save(filename): Save data to a file.

load(filename): Load data from a file. The automaton must be already defined (empty) and its
structural element must be compatible with the file data.

dot_run(tmpf, cmd): Dump the automaton to file named tmpf, then run command cmd on file tmpf.
The file is in dot format compatible with Graphviz.

Example use:

>>> from vaucanswig_usual_automaton import *
>>> a = usual_auto_t(c)

>>> a.add_state()

0

>>> a.add_state()

1

>>> a.add_state()

2

>>> a.del_state(1)

>>> for i in a.states():

print i
0
2
>>> a.dot_run("tmp", "dot_view")

>>> a.save("foo")

>>> a2 = usual_auto_t(c)
>>> a2.load("foo");

>>> a2.states().size()

Algorithms

As a general rule of thumb, if some algorithm foo is defined in the source file vaucanson/algorithms/bar.hh
then:

e the module vaucanswig_D_alg_bar contains a function foo,

e the module vaucanswig_D_algorithms contains D.foo.

Adding new algorithms

The Vaucanswig generator automatically build Vaucanswig modules from definitions found in the Vau-
canson source files.
You can add a new algorithm to vaucanswig simply by adding declarations of the form:

// INTERFACE:

to the Vaucanson headers.

http://www.research.att.com/sw/tools/graphviz/

Example

Let’s consider the Vaucanson header foo.hh in include/vaucanson/algorithms, which contains the
following code:

// INTERFACE: Exp fool(const Exp& other) { return vcsn::fool(other); }
template<typename S, typename T>
Element<S, T> fool(const Element<S, T>& exp);

// INTERFACE: Exp fool(const Exp& otherl, const Exp& other2) { return vcsn::foo2(otherl, other?2
template<typename S, typename T>
Element<S, T> fool(const Element<S, T>& exp);

Then, after running expand. sh (the Vaucanswig generator) for category D, the module vaucanswig_D_alg_foo
becomes available:

fool: D_exp_t -> D_exp_t
foo2: (D_exp_t, D_exp_t) -> D_exp_t

In addition, the special algorithm class D, defined in vaucanswig_D_algorithms, also contains 'fool’
and 'foo2’.

Limitations

When writing // INTERFACE: comments, the following notes must be taken into consideration:

The comment must stand on a single line. Indeed, expand.sh does not currently support multi-line
interface declarations.

The following special macro names are available:

Exp: The expression type for the category.
Serie: The polynom/serie type for the category.
Automaton, GenAutomaton: The automaton types for the category.

HList: A list of state or edge handlers (integers). This type is std: :1list<int> in C++
and a standard sequence of numbers in the target language.

When accessing automata, a special behavior stands. Instead of writing:

// INTERFACE: void foo(Automaton& a) { return vcsn::foo(a); }
// INTERFACE: void foo(GenAutomaton& a) { return vcsn::foo(a); }

one should write instead:

// INTERFACE: void foo(Automaton& a) { return vcsn::foo(*a); }
// INTERFACE: void foo(GenAutomaton& a) { return vcsn::foo(*a); }

Indeed, Automaton and GenAutomaton do not expand to Vaucanson automata types, but to a
wrapper type. The real automaton can be reached by means of operator®().

Python support

For convenience purposes, Python interfaces for Vaucanswig are included in the distribution. They are
automatically compiled and installed with Vaucanson if enabled. To enable these modules, run the
configure script like this:

configure --enable-vaucanswig

Licence

Vaucanswig is part of Vaucanson, and is distributed under the GNU Lesser General Public Licence. See
the file COPYING for details.

Contact

For any comments, requests or suggestions, please write mail to vaucanson@lrde.epita.fr.

	Contents
	Introduction
	Usage
	What is provided?
	Glossary
	What is in a category?
	Algebra
	Algebra usage

	Automata
	Algorithms

	Adding new algorithms
	Example
	Limitations

	Python support
	Licence
	Contact

