
The Vaucanson TAF-Kit 1.0

User’s Manual

The Vaucanson Group

July 28th, 2006

Contents

Contents 1

1 Installation 3
1.1 Getting Vaucanson . 3
1.2 Building Vaucanson . 3

2 The Vaucanson toolkit 4
2.1 Boolean automata . 5

2.1.1 First Contacts . 5
2.1.2 A first example . 6
2.1.3 Rational expressions and Boolean automata 10
2.1.4 Available functions . 11

2.2 Transducers . 12
2.2.1 Example . 12
2.2.2 Available functions . 13

2.3 Z-Automata . 14
2.3.1 Counting ‘b’s . 14
2.3.2 Available functions . 15

3 Vaucanson as a library 17

4 Developer Guide 18
4.1 Contributing Code . 18

4.1.1 Directory usage . 18
4.1.2 Coding Style . 19
4.1.3 Use of macros . 19
4.1.4 Variable Names . 20
4.1.5 Commenting Code . 21
4.1.6 Writing Algorithms . 22
4.1.7 Writing Tests . 22
4.1.8 Mailing Lists . 22

4.2 Vaucanson I/O . 23
4.2.1 Introduction . 23
4.2.2 Dot format . 23
4.2.3 XML format . 23
4.2.4 FSM format . 24
4.2.5 Simple format . 24
4.2.6 Using input and output . 24
4.2.7 Examples . 26
4.2.8 Internal scenario . 27
4.2.9 Convenience utilities . 27

1

Introduction

The Vaucanson software platform is dedicated to the computation with finite state automata.
Here, ‘finite state automata’ is to be understood in the broadest sense: weighted automata on a
free monoid — that is, automata that not only accept, or recognize, words but compute for every
word a multiplicity which is taken a priori in an arbitrary semiring — and even weighted automata
on non free monoids. The latter become far too general objects. As for now, are implemented in
Vaucanson only the (weighted) automata on (direct) products of free monoids, machines that
are often called transducers — that is automata that realize (weighted) relations between words1.

When designing Vaucanson, we had three main goals in mind: we wanted

1. a general purpose software,

2. a software that allows a programming style natural to computer scientists who work with
automata and transducers,

3. an open and free software.

This is the reason why we implemented so to say on top of the Vaucanson platform a library
that allows to apply a number of functions on automata, and even to define and edit automata,
without having to bother with subtleties of C++ programming. The drawback of this is obviously
that the user is given a fixed set of functions that apply to already typed automata. This library of
functions does not allow to write new algorithms on automata but permits to combine or compose
without much difficulties nor efforts a rather large set of commands. We call it TAF-Kit, standing
for Typed Automata Function Kit, as these commands take as input, and output, automata whose
type is fixed. TAF-Kit is presented in Chapter 2.

1When the relation is “weighted” the multiplicity has to be taken in a commutative semiring.

2

Chapter 1

Installation

1.1 Getting Vaucanson

The latest stable version of the Vaucanson platform can be downloaded from http://vaucanson.

lrde.epita.fr/. The current development version can be retrieved from its Subversion1 reposi-
tory as follows:

svn checkout https://svn.lrde.epita.fr/svn/vaucanson/trunk vaucanson

1.2 Building Vaucanson

The following commands build and install the platform:

cd vaucanson-1.0

Then:

./configure

...

make

...

sudo make install

...

More detailed information is provided in the files ‘INSTALL’, which is generic to all packages
using the GNU Build System, and ‘README’ which details Vaucanson’s specific build process.

1Subversion can be found at http://subversion.tigris.org/.

3

Chapter 2

The Vaucanson toolkit

This chapter presents a simple interface to Vaucanson: a set of programs tailored to be used
from a traditional shell. Since they exchange typed XML files, there is one program per automaton
type. Each program supports a set of operations which depends on the type of the automaton.

Many users of automata consider only automata whose transitions are labeled by letters taken
in an alphabet, which we call, roughly speaking, classical automata or Boolean automata. The
first program of the TAF-Kit, vcsn-b, allows to compute with classical automata and is described
in Section 2.1.

Section 2.2 describes the program vcsn-tdc which allows to compute with transducers, that
is, automata whose transitions are labeled by pair of words, which are elements of a product of
free monoids, hence the name.

In Section 2.3 we consider the programs of the TAF-Kit that compute with automata over a
free monoid and with multiplicity, or weight taken in the set of integers equipped with the usual
operations of addition and multiplication, that is, the semiring Z.

It is planned that a forthcoming version will include also:

vcsn-zmin for automata over a free monoid with multiplicity in the semiring (Z, min, +)

vcsn-zmax for automata over a free monoid with multiplicity in the semiring (Z, max, +)

vcsn-rw-tdc for transducers viewed as automata over a free monoid with multiplicity in the
semiring of rational sets (or series) over (another) free monoid.

4

2.1 Boolean automata

This section focuses on the program vcsn-b, the TAF-Kit component dedicated to Boolean
automata.

2.1.1 First Contacts

vcsn-b and its peer components of TAF-Kit all share the same simple interface:

vcsn-b function automaton arguments...

The function is the name of the operation to perform on the automaton, specified as an XML
file. Some functions, such as evaluation, will require additional arguments, such as the word to
evaluate. Some other functions, such as ‘exp-to-aut’ do not have an automaton argument.

TAF-Kit is made to work with Unix pipes, that is to say, chains of commands which feed each
other. Therefore, all the functions produce a result on the standard output, and if an automaton

is ‘-’, then the standard input is used.

A typical line of commands from the TAF-Kit reads as follows:

vcsn-b determinize a1.xml > a1det.xml

and should be understood, or analyzed, as follows.

1. vcsn-b is the call to a shell command that will launch a Vaucanson function. vcsn-b

has 2 arguments, the first one being the function which will be launched, the second being
the automaton that is the input argument of the function.

2. determinize is, as just said, a Vaucanson function. And as it can easily be guessed,
determinize takes an automaton as argument, performs the subset construction on it and
outputs the result on the standard output.

3. ‘a1.xml’ is the description of an automaton — of the automaton of ?? indeed — in an XML
format that is understood1 by Vaucanson. Which means that this file must exist before the
line is executed. The ‘data/automata’ directory provides a number of XML files for examples
of automata, a number of programs that produce the XML files for automata whose definition
depend upon some variables and the TAF-Kit itself allow to define automata and thus to
produce the corresponding XML files (cf. below).

4. > ‘a1det.xml’ puts the result of determinize ‘a1.xml’, that is, the XML file which
describes the determinized automaton of A1 into the file ‘a1det.xml’.

As a more elaborate example, consider the following command

vcsn-b dump-automaton a1 | vcsn-b determinize - | vcsn-b minimize - | vcsn-b info -

States: 3

Transitions: 6

Initial states: 1

Final states: 1

It fetches the automaton a1 from the automaton library, determinizes it, minimizes the result,
and finally displays information about the resulting automaton.

Please, note the typographic conventions: user input is represented # like this , standard
output follows like this, followed by standard error output error: like this, and finally, if
different from 0, the exit status is represented => like this. For instance:

1This format is not exactly part of the Vaucanson platform. It has been developed for providing a mean of
communication between various programs dealing with automata. And then it has been used as a communication
tool between the invocation of Vaucanson function by the TAF-Kit. A lay user of the TAF-Kit should not need
to know how this format is defined but a rough description of it is provided at ?? of the Appendix.

5

vcsn-b dump-automaton a1 | vcsn-z info -

error: Bad semiring

=> 1

Other than that, the interface of the TAF-Kit components is usual, including options such as
‘--version’ and ‘--help’:

vcsn-b --help

Usage: vcsn-b [OPTION...] <command> <args...>

VCSN TAF-Kit -- a toolkit for working with automata

-a, --alphabet=ALPHABET Set the working alphabet for rational expressions

-l, --list-commands List the commands handled by the program

-v, --verbose Be more verbose (print boolean results)

The following alphabets are predefined:

‘ascii’: Use all the ascii table as the alphabet, 1 as epsilon

‘a-z’: Use [a-z] as the alphabet, 1 as epsilon

‘a-zA-Z’: Use [a-zA-Z] as the alphabet, 1 as epsilon

‘ab’: Use ‘ab’ as the alphabet, 1 as epsilon

-?, --help Give this help list

--usage Give a short usage message

-V, --version Print program version

Mandatory or optional arguments to long options are also mandatory or optional

for any corresponding short options.

Report bugs to <vaucanson-bugs@lrde.epita.fr>.

The whole list of supported commands is available via ‘--list-commands’.

2.1.2 A first example

Vaucanson provides a set of common automata. The function list-automata lists them all:

vcsn-b list-automata

The following automata are predefined:

- a1

- b1

- div3base2

- double-3-1

- ladybird-6

Let’s consider the Boolean automaton A1 (Figure 2.1), part of the standard library. It can be
dumped using dump-automaton:

vcsn-b dump-automaton a1

<automaton name="a1" xmlns="http://vaucanson.lrde.epita.fr">

<labelType>

<monoid generators="letters" type="free">

<generator value="a"/>

<generator value="b"/>

</monoid>

<semiring operations="numerical" set="B"/>

6

a b

b

a

b

a

The graphical layout of this automaton was described by hand, using the Vaucanson-G
LATEX package. However, the following figures are generated by TAF-Kit, giving a
very nice layout, yet slightly less artistic.

The automaton is taken from ?, Fig. I.1.1, p. 58.

Figure 2.1: The automaton A1

</labelType>

<content>

<states>

<state name="s0"/>

<state name="s1"/>

<state name="s2"/>

</states>

<transitions>

<transition src="s0" dst="s0" label="a"/>

<transition src="s0" dst="s0" label="b"/>

<transition src="s0" dst="s1" label="a"/>

<transition src="s1" dst="s2" label="b"/>

<transition src="s2" dst="s2" label="a"/>

<transition src="s2" dst="s2" label="b"/>

<initial state="s0"/>

<final state="s2"/>

</transitions>

</content>

</automaton>

Usual shell indirections (‘|’, ‘>’, and ‘<’) can be used to combine TAF-Kit commands. For
instance, this is an easy means to bring a local copy of this file:

vcsn-b dump-automaton a1 >a1.xml

TAF-Kit uses XML to exchange automata, to get graphical rendering of the automaton, you
may either invoke dot-dump and then use a Dot compliant program, or use display that does
both.

vcsn-b dot-dump a1.xml >a1.dot

7

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

a b

1

a

2

b

1

a b

Determinization of A1

To determinize a Boolean automaton, call the determinize function:

vcsn-b dump-automaton a1 | vcsn-b determinize - >a1det.xml

To get information about an automaton, call the info function:

vcsn-b info a1det.xml

States: 4

Transitions: 8

Initial states: 1

Final states: 2

Or use dotty to visualize it:

vcsn-b dot-dump a1det.xml >a1det.dot

8

A { 4 states, 8 transitions, #I = 1, #T = 2 }

0

1

b

1

a

a

2

b

1

b

3

a b

1

a

Minimizing

The minimal automaton can be computed the same way:

vcsn-b minimize a1det.xml >a1detmin.xml

vcsn-b dot-dump a1det.xml >a1detmin.dot

A { 4 states, 8 transitions, #I = 1, #T = 2 }

0

1

b

1

a

a

2

b

1

b

3

a b

1

a

9

The commands can be composed with pipes from the shell, using ‘-’ to denote the standard
input.

vcsn_b determinize a1.xml | vcsn_b minimize - > a1_min.xml

Evaluation

To evaluate whether a word is accepted:

vcsn-b eval a1.xml ’abab’

1

vcsn-b eval a1.xml ’bbba’

0

where 1 (resp. 0) means that the word is accepted (resp. not accepted) by the automaton.

2.1.3 Rational expressions and Boolean automata

Vaucanson provides functions to manipulate rational expressions associated to Boolean au-
tomata. For instance, computing the language recognized by a Boolean automaton can be done
using aut-to-exp:

vcsn-b aut-to-exp a1.xml

(a+b)*.a.b.(a+b)*

vcsn-b aut-to-exp a1det.xml

b*.a.a*.b.(a.a*.b+b)*.(a.a*+1)

Vaucanson provides several algorithms that build an automaton that recognizes a given
language. The following sequence computes the minimal automaton of ‘(a+b)*ab(a+b)*’.

vcsn-b --alphabet=ab standard "(a+b)*a.b.(a+b)*" | vcsn-b minimize - >l1.xml

vcsn-b dot-dump l1.xml >l1.dot

A { 3 states, 6 transitions, #I = 1, #T = 1 }

0

1

b

1

a b

2

1

a

a b

10

2.1.4 Available functions

The whole list of supported commands is available via ‘--list-commands’:

vcsn-b --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- are-isomorphic aut1 aut2: Return whether ‘aut1’ and ‘aut2’ are isomorphic.

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-deterministic aut: Return whether ‘aut’ is deterministic.

- is-empty aut: Return whether trimed ‘aut’ is empty.

- is-realtime aut: Return whether ‘aut’ is realtime.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

- power aut n: Give the power of ‘aut’ by ‘n’.

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- sum aut1 aut2: Give the sum of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Boolean automaton specific algorithms:

- complement aut: Complement ‘aut’.

- determinize aut: Give the determinized automaton of ‘aut’.

- minimize aut: Give the minimized of ‘aut’ (Hopcroft algorithm).

- minimize-moore aut: Give the minimized of ‘aut’ (Moore algorithm).

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘stardard’.

- expand exp: Expand ‘exp’.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

11

0 |0 1 |1
1 |0

1 |1

0 |0

0 |1

The transducer computing the quotient by 3 of a binary number.

Figure 2.2: Rational-weight transducer T1

2.2 Transducers

While the Vaucanson library supports two views of transducers, currently TAF-Kit only pro-
vides one view:

vcsn-tdc considering a transducer as a weighted automaton of a product of free monoid,

In a forthcoming release, TAF-Kit will provide:

vcsn-rw-tdc considering a transducer as a machine that takes a word as input and produce
another word as (two-tape automata).

Both views are equivalent and Vaucanson provides algorithms to pass from a view to the
other one.

2.2.1 Example

To experiment with transducers, we will use T1, described in Figure 2.2, and part of the automaton
library (??).

Domain

The transducer T only accepts binary numbers divisible by 3.

vcsn-tdc dump-automaton t1 | vcsn-tdc --alphabet1=ab domain - >div-by-3.xml

Now the file ‘divisible-by-3.xml’ contains the description of a Boolean automaton that
accepts only the numbers divisible by 3:

vcsn-b dot-dump div-by-3.xml >div-by-3.dot

12

A { 3 states, 4 transitions, #I = 1, #T = 2 }

0

1

1

1 1a

1

2

1b

2.2.2 Available functions

The following functions are available for both vcsn-rw-tdc and vcsn-tdc programs. To invoke
them, run ‘program algorithm-name [arguments]’.

vcsn-tdc --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on transducers:

- are-isomorphic aut1 aut2: Test if ‘aut1’ and ‘aut2’ are isomorphic.

- is-empty aut: Test if ‘aut’ realizes the empty relation.

- is-sub-normalized aut: Test if ‘aut’ is sub-normalized.

* Generic algorithm for transducers:

- eps-removal aut: epsilon-removal algorithm.

- domain aut: Give the automaton that accepts all inputs accepted by ‘aut’.

- eval aut exp: Give the evaluation of ‘exp’ against ‘aut’.

- eval-aut aut: Evaluate the language described by the Boolean automaton

‘aut2’ on the transducer ‘aut1’.

- image aut: Give an automaton that accepts all output produced by ‘aut’.

- trim aut: Trim transducer ‘aut’.

* Algorithms for transducers:

- sub-normalize aut: Give the sub-normalized transducer of ‘aut’.

- composition-cover aut: Outsplitting.

- composition-co-cover aut: Insplitting.

- compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two (sub-)normalized

transducers.

- u-compose aut1 aut2: Compose ‘aut1’ and ‘aut2’, two Boolean transducers,

preserve the number of path.

- to-rt aut: Give the equivalent realtime transducer of ‘aut’.

- intersection aut: Transform a Boolean automaton in a fmp transducer by

creating, for each word, a pair containing twice this word.

13

b

b

a

b

a

Considered without weight, B1 accepts words with a ‘b’. With weights, it counts the
number of ‘b’s. Taken from ?, Fig. III.2.2, p. 434.

Figure 2.3: The automaton B1

2.3 Z-Automata

This part shows the use of the program vcsn-z, but all comments should also stand for the
programs vcsn-z-min-plus and vcsn-z-max-plus.

Again, we will toy with some of the automata provided by vcsn-z, see ??.

2.3.1 Counting ‘b’s

Let’s consider B1 (Figure 2.3), an N-automaton, i.e. an automaton whose label’s weights are in
N. This time the evaluation of the word w by the automaton B1 will produce a number, rather
than simply accept or reject w. For instance let’s evaluate ‘abab’ and ‘bbab’:

vcsn-z dump-automaton b1 | vcsn-z eval - ’abbb’

3

vcsn-z dump-automaton b1 | vcsn-z eval - ’abab’

2

Indeed, B1 counts the number of ‘b’s.

Power

Now let’s consider the Bn1 , where

Bn1 =

n∏

i=1

B1, n > 0

This is implemented by the power function:

vcsn-z dump-automaton b1 | vcsn-z power - 4 >b4.xml

vcsn-z power b1.xml 4 > b4.xml

The file ‘b4.xml’ now contains the automaton B4
1 . Let’s check that the evaluation of the words

‘abab’ and ‘bbab’ by B4
1 gives the fourth power of their evaluation by B1:

vcsn-z eval b4.xml ’abbb’

81

vcsn-z eval b4.xml ’abab’

16

14

Quotient

Successive products of an automaton create a lot of new states and transitions.

vcsn-z dump-automaton b1 | vcsn-z info -

States: 2

Transitions: 5

Initial states: 1

Final states: 1

vcsn-z info b4.xml

States: 16

Transitions: 97

Initial states: 1

Final states: 1

One way of reducing the size of our automaton is to use the quotient algorithm.

vcsn-z quotient b4.xml | vcsn-z info -

States: 5

Transitions: 15

Initial states: 1

Final states: 1

2.3.2 Available functions

In this section you will find a brief definition of all functions for manipulating weighted automata.
The following functions are available for both. They are called using vcsn-z, vcsn-z-max-plus,
and vcsn-z-min-plus run as ‘program algorithm-name [arguments]’.

vcsn-z --list-commands

List of available commands:

* Input/output work:

- define-automaton file: Define an automaton from scratch.

- display aut: Display ‘aut’.

- dot-dump aut: Dump dot output of ‘aut’.

- dump-automaton file: Dump a predefined automaton.

- edit-automaton file: Edit an existing automaton.

- identity aut: Return ‘aut’.

- info aut: Print useful infos about ‘aut’.

- list-automata: List predefined automata.

* Tests and evaluation on automata:

- are-isomorphic aut1 aut2: Return whether ‘aut1’ and ‘aut2’ are isomorphic.

- eval aut word: Evaluate ‘word’ on ‘aut’.

- is-ambiguous aut: Return whether ‘aut’ is ambiguous.

- is-complete aut: Return whether ‘aut’ is complete.

- is-empty aut: Return whether trimed ‘aut’ is empty.

- is-realtime aut: Return whether ‘aut’ is realtime.

* Generic algorithms for automata:

- accessible aut: Give the maximal accessible subautomaton of ‘aut’.

- eps-removal aut: Give ‘aut’ closed over epsilon transitions.

- co-accessible aut: Give the maximal coaccessible subautomaton of ‘aut’.

- complete aut: Give the complete version of ‘aut’.

- concatenate aut1 aut2: Concatenate ‘aut1’ and ‘aut2’.

- power aut n: Give the power of ‘aut’ by ‘n’.

15

- product aut1 aut2: Give the product of ‘aut1’ by ‘aut2’.

- quotient aut: Give the quotient of ‘aut’.

- realtime aut: Give the realtime version of ‘aut’.

- sum aut1 aut2: Give the sum of ‘aut1’ and ‘aut2’.

- transpose aut: Transpose the automaton ‘aut’.

- trim aut: Trim the automaton ‘aut’.

* Conversion between automata and expressions:

- aut-to-exp aut: Give the automaton associated to ‘aut’.

- derived-term exp: Use derivative to compute the automaton of ‘exp’.

- exp-to-aut exp: Alias of ‘stardard’.

- expand exp: Expand ‘exp’.

- standard exp: Give the standard automaton of ‘exp’.

- thompson exp: Give the Thompson automaton of ‘exp’.

16

Chapter 3

Vaucanson as a library

To be written.

17

Chapter 4

Developer Guide

The chapter is work in progress. It is not meant for user of the Vaucanson library, but to
developer and contributor who wish to include code in Vaucanson.

4.1 Contributing Code

4.1.1 Directory usage

The Vaucanson package is organized as follows:
Directory Usage
doc Documentation.
doc/css CSS style for Doxygen.
doc/makefiles Sample Makefile to reduce compilation

time in Vaucanson.
doc/manual User’s (and developer’s) manual.
doc/share LRDE share repository.
doc/xml XML proposal.
include/vaucanson Library start point: defines classical entry

points such as “boolean automaton.hh”.
include/vaucanson/algebra/concept Algebra concepts, “Structure” part of an

Element.
include/vaucanson/algebra/implementation Implementations of algebraic Structures.

Some specialized structures too.
include/vaucanson/algorithms Algorithms.
include/vaucanson/algorithms/internal Internal functions of algorithms.
include/vaucanson/automata/concept Structure of an automaton.
include/vaucanson/automata/implementation Its implementation.
include/vaucanson/config Package configuration and system files.
include/vaucanson/contexts Context headers.
include/vaucanson/design pattern Element design pattern implementation.
include/vaucanson/misc Internal headers of the whole library.
include/vaucanson/tools Tools such as dumper, bencher.
include/vaucanson/xml XML implementation.

18

Directory Usage
argp Argp library for TAF-Kit.
build-aux Where Autotools things go.
data Misc data, like Vaucanson’s XSD, Emacs files.
data/b Generated Boolean automata.
data/z Generated Automata over Z.
debian Debian packaging.
src/benchs Benches.
src/demos Demos.
src/tests Test suite.
taf-kit Typed Automata Function Kit, binaries to use Vaucanson.
taf-kit/tests Test suite using the TAF-Kit.
vaucanswig Vaucanswig, a SWIG interface for Vaucanson.
vcs Version Control System configuration (VCS Home Page).

4.1.2 Coding Style

Until this is written, please refer to Tiger’s Coding Style.
Emacs users should use the indentation style of ‘data/vaucanson.el’.

Includes

Please, never use backward relative paths anywhere. There are very difficult to follow (because
several such strings can designate the same spot), they make renaming and moving virtually
impossible etc.

Relative paths to sub-directories are welcome, although in many situations they are not the
best bet.

In Makefiles, please using absolute paths starting from ‘
�
(top srcdir)’. Unfortunately,

because Automake cannot grok includes with Make macros (except... ‘
�
(top srcdir)’), we can’t

shorten these.
For header inclusion, stacking zillions of ‘-I’ is not the best solution because

� you have to work to find what file is really included

� you are likely to find unexpected name collisions if two separate directories happens to have
(legitimately) two different files share the same name

� etc.

So rather, stick to hierarchies of include files, and use qualified ‘#include’s. For instance, use
‘-I

�
(top srcdir)/include -I

�
(top srcdir)/src/tests/include’ and ‘#include <vaucanson/...>’

falls into the first one (‘
�
(top srcdir)/include’ has all its content in ‘vaucanson’), and ‘#include

<tests/...>’ falls into the latter since ‘
�
(top srcdir)/src/tests/include’ has all its content

in ‘vaucanson’).

4.1.3 Use of macros

C preprocessor (cpp) is evil, but code duplication is even worse. Macros can be useful, as in the
following example:

define PARSER SET PROPERTY(prop) \
i f (parser−>canSetFeature (XMLUni : : prop , true)) \

parser−>s e tFeature (XMLUni : : prop , true) ;

5 PARSER SET PROPERTY(fgDOMValidation) ;
PARSER SET PROPERTY(fgDOMNamespaces) ;
PARSER SET PROPERTY(fgDOMDatatypeNormalization) ;

19

PARSER SET PROPERTY(fgXercesSchema) ;
PARSER SET PROPERTY(fgXercesUseCachedGrammarInParse) ;

10 PARSER SET PROPERTY(fgXercesCacheGrammarFromParse) ;

undef PARSER SET PROPERTY

but please, respect the following conventions.

� Use upper case names, unless they are part of the interface such as for all transitions

and so forth.

� Make them live short lives, as above: undefine them as soon as they are no longer needed.

� Respect the nesting structure: if ‘foo.hh’ defines a macro, undefine it there too, not in the
included ‘foo.hxx’.

� Indent cpp directives. The initial dash should always be in the first column, but indent
the spaces (one per indentation) between it and the directive. The above code snippet was
included in an outer #if.

� Each header file (‘.hh’, ‘.hxx’, . . .) should start with a classic cpp guard of the form

#ifndef FILE HH
define FILE HH

. . .
#endif // ! FILE HH

GCC has some optimizations on file parsing when this scheme is seen.

� We often rely on grep and tags to search things. Please don’t clutter names with cpp

evilness.

For instance, this is bad style:

#define VCSN choose semiring (Canarg , Nonarg , Typeret . . .) \
template <class Se l f> \
template <class T> \
Typeret \

5 SemiringBase<Se l f > : : Canarg ## choose ## Nonarg ## s t a r a b l e (\
SELECTOR(T)) const \
{ \

return op ## Canarg ## choose ## Nonarg ## s t a r a b l e (this−>s e l f () , \
SELECT(T)) ; \

10 } ;
VCSN choose semiring (can , non , bool)
VCSN choose semiring (, , Element<Se l f , T>)
VCSN choose semiring (, non , Element<Se l f , T>)

4.1.4 Variable Names

Using long variable names clutters the code, so please, don’t name your variables and arguments
like automaton1 or alphabet. Structure members and functions should be descriptive though.

In order to keep the variable names reasonable in size, and understandable, there are variable
name conventions: some families of identifiers are reserved for some types of entities. The con-
ventions are listed below; developers must follow it, and users are encouraged to do it too. In the
following list, ‘∗’ stands for “nothing, or a number”.

al∗, alpha∗, A∗ alphabets

20

a∗, aut∗ automata (automaton t, etc.)

t∗, tr∗ transitions

p∗, q∗, r∗, s∗ states (hstate t)

Some variables should be consistently used to refer to some “fixed” values.

monoid identity The neutral for the monoid, the empty word.

m o n o i d e l t t mono id ident i ty = a . s e r i e s () . monoid () . empty ;

null series The null series, the 0, the identity for the sum.

s e r i e s s e t e l t t n u l l s e r i e s = a . s e r i e s () . z e r o ;

semiring elt zero The zero for the weights.

s e m i r i n g e l t t s e m i r i n g e l t z e r o = a . s e r i e s () . s emi r ing () . wzero ;

4.1.5 Commenting Code

Use Doxygen. Besides the usual interface description, the Doxygen documentation must include:
� references to the definitions of the algorithm, e.g., a reference to the “Éléments de la théorie

des automates”, or even an URL to a mailing-list archive.

� detailed description of the assumptions, or, if you wish, pre- and post-conditions.

� the name of the developer

� use the @pre and @post tags liberally.

Don’t try to outsmart your tool, even though it does not use the words “param” and “arg”
as we do, stick to its semantics (let alone to generate correct documentation without warnings).
This is correct:

/ ���
� Delete memory a s s o c i a t e d with a stream upon i t s d e s t r u c t i o n .
�

� @arg \c T Type o f the po inted element .
5 �

� @param ev IO event .
� @param i o Related stream .
� @param idx Index in the i n t e r n a l e x t e n s i b l e array o f a po in te r to d e l e t e .
�

10 � @see iomanip
� @author Thomas C l a v e i r o l e <thomas . c l a v e i r o l e @ l r d e . e p i t a . f r>
� /

template <class T>
void

15 pword de lete (std : : i o s b a s e : : event ev , s td : : i o s b a s e &io , int idx) ;

while this is not:

/ ��� . . .
� @param T Type o f the po inted element .
�

� @arg ev IO event .
5 � @arg i o Related stream .

� @arg idx Index in the i n t e r n a l e x t e n s i b l e array o f a po in te r to d e l e t e .
� . . . � /

21

4.1.6 Writing Algorithms

There is a number of requirement to be met before including an algorithms into the library:

Document the algorithm See Section 4.1.5.

Comment the code Especially if the code is a bit tricky, or smart, or avoids nasty pitfalls, it
must be commented.

Bind the algorithm to TAF-Kit

Include tests See Section 4.1.7 for more details. Tests based on TAF-Kit are appreciated. Note
that tests require test cases: to exercise an algorithm, not any automaton will do, try to find
relevant samples. Again, ETA is a nice source of inspiration.

Complete the documentation The pre- and post-conditions should also be described here.

When submitting a patch, make it complete (i.e., including the aforementioned items), and
provide a ChangeLog. See Le Guide du LRDE , section “La maintenance de projets” and especially
“Écrire un ChangeLog” for more details.

Because Vaucanson uses Trac, ChangeLog entries should explicit refer to tickets (e.g., “Fixing
issue #38: implement is ambiguous”), and possible previous revisions (e.g., “Fix a bug introduced
in [1224]”).

4.1.7 Writing Tests

4.1.8 Mailing Lists

Vaucanson comes with a set of mailing lists:

vaucanson@lrde.epita.fr General discussions, feature request etc.

vaucanson-bugs@lrde.epita.fr To report errors in code, documentation, web pages, etc.

vaucanson-patches@lrde.epita.fr To submitted patches on code, documentation, and so forth.

vaucanson-private@lrde.epita.fr To contact privately the Vaucanson team.

Please, bear in mind that there are these lists have many readers, therefore this is a WORM
medium: Write Once, Read Many. As a consequence:

� Be complete.
One should not strive to understand what you are referring to, so always include proper
references: URLs, Ticket numbers and summary, etc.

� Be concise.
Write short, spell checked, understandable sentences. Reread yourself, remove useless words,
be proud of what you wrote. Show respect to the reader. Spare us useless messages.

� Be structured.
Quick and dirty replies with accumulated layers of replies at the bottom of the message is
not acceptable. The right ordering is not the one that is the quickest to write, but the easiest
to read.

� Be attentive.
Lists are not write-only: consider the feedback that is given with respect.

As an example of what’s not to be done, avoid answering to yourself to point out you made a
spell mistake: we can see that, and that’s a waste of time to read another message for that. Also,
there is no hurry, it would probably be better to wait a bit to have a complete, well thought out,
message, rather than a thread of 4 messages completing, contradicting, each other. Finally, if you
still need to fix your message, supersede it, or even cancel it.

22

4.2 Vaucanson I/O

January 2005
Here is some information about input and output of automata in Vaucanson.

4.2.1 Introduction

As usual, the structure of the data representing an automaton in a flat file is called the file format.
There are several input and output formats for Vaucanson automata. Obviously:

� input formats are those that can be read from, i.e. from which an automaton can be loaded.

� output formats are those that can be written to, i.e. to which an automaton can be dumped.

Given these definitions, here is the meat:

� Vaucanson supports Graphviz (dot) as an output format. Most kinds of automata can be
dumped as dot-files. Through the library this format is simply called dot.

� Vaucanson supports XML as an input and output format. Most kinds of automata can be
read and written to and from XML streams, which Vaucanson does by using the Xerces-C++
library. Through the library this format is simply called xml.

� Vaucanson supports the FSM toolkit I/O format as an input and output format. This allows
for basic FSM interaction. Only certain kinds of weighted automata can be meaningfully
input and output with this format. Through the library this format is simply called fsm.

� Vaucanson supports a simple informative textual format as an input and output format.
Most kinds of automata can be read and written to and from this format. Through the
library this format is simply called simple.

4.2.2 Dot format

This format provides an easy way to produce a graphical representation of an automaton.
Output using this format can be given as input to the Graphviz dot command, which can

in turn produce graphical representations in Encapsulated PostScript, PNG, JPEG, and many
others.

It uses Graphviz’ “directed graph” subformat.
If you want to see what it looks like go to the data/b subdirectory, build the examples and

run them with the “dot” argument.
For Graphviz users:
Each graph generated by Vaucanson can be named with a string that also prefixes each state

name. If done so, several automata can be grouped in a single graph by simply concatenating the
Vaucanson outputs.

4.2.3 XML format

This format is intended to be an all-purpose strongly typed input and output format for automata.
Using it requires:

� that the Xerces-C++ library is installed and ready to use by the C++ compiler that is used
to compile Vaucanson.

� configuring Vaucanson to use XML.

� computer resources and time.

What you gain:

23

� support for the Greater and Better I/O format. See documentation in the doc/xml subdi-
rectory for further information.

If you want to see what it looks like go to the data/b subdirectory, build the examples and
run them with the xml argument.

4.2.4 FSM format

This format is intended to provide a basic level of compatibility with the FSM tool kit. (FIXME:
references needed)

Like FSM, support for this format in Vaucanson is limited to deterministic automata. It
probably does not work with transducers, either.

It is not meant to be used that much apart from performance comparison with FSM. Some
code exists to simulate FSM, in src/demos/utilities/fsm.

If you want to see what it looks like go to the data/b, build the examples and run them with
the fsm argument.

4.2.5 Simple format

Initially intended to be a quick and dirty debugging input and output format, this format actually
proves to be a useful, compact and efficient textual representation of automata.

Advantages over XML:

� does not require additional 3rd party software,

� simple and efficient (designed to be read and written to streams with very low memory
footprint and minimum complexity),

� less bytes in file,

� not strongely typed (can be dumped from one automaton type and loaded to another).

Drawbacks from XML:

� not strongely typed (one cannot know what automaton type to build by only looking at the
raw data).

� currently does not (probably) support transducers.

If you want to see what it looks like go to the data/b, build the examples and run them with
the simple argument.

4.2.6 Using input and output

The library provides an infrastructure for generic I/O, which (hopefully) will help supporting more
formats in the future.

The basis for this infrastructure is the way a developer C++ using the library will use it:

#include <vaucanson/ t o o l s / i o . hh>

/ � to save an automaton � /
output stream << automaton saver (automaton , converter , format)

5

/ � to load an automaton � /
input stream >> automaton loader (automaton , converter , format , merge s ta t e s)

Where:

24

automaton is the automaton undergoing input or output. Note that the object must already be
constructed, even to be read into.

converter is a helper class that is able to convert automaton transitions to character strings and
possibly vice-versa.

format is a helper class that is able to convert the automaton to (and possibly from) a character
string, using the converter as an argument.

merge states is an optional argument that should be omitted in most cases. For advanced users,
it allows loading a single automaton from several different streams that share the same state
set.

About converters

The converter argument is mandatory. There are several converter types already available in
Vaucanson. See below.

An I/O converter is a function object with one or both of the following:

� an operation that takes an automaton, a transition label and converts the transition label
to a character string (std::string). This is called the output conversion.

� an operation that takes an automaton, a character string and converts the character string
to a transition label. This is called the input conversion.

Vaucanson already provides these converters:

vcsn::io::string out, bundled with io.hh. Provides the output conversion only. Uses the
C++ operator << to create a textual representation of transition labels. Should work with
all label types.

vcsn::io::usual converter exp, defined in tools/usual io.hh. Provides both input and out-
put conversions. Uses the C++ operator << to create a textual representation of transition
labels, but requires also that algebra::parse can read back that representation into a variable
of the same type. It is mostly used for generalized automata where transitions are labeled
by rational expressions, hence the name.

vcsn::io::usual converter poly<ExpType>, defined in tools/usual io.hh. Provides both in-
put and output conversions. Converts transition labels to and from ExpType before (after)
doing I/O. The implementation is meant to be used when labels are polynoms, and using
the generalized (expression) type as ExpType.

Notes about XML and converters When the XML I/O format was implemented, the initial
converter system was not used. Instead a specific converter system was re-designed specifically for
this format.

(FIXME: explain why!)
(FIXME: why hasn’t the generic converter for XML been ported back to fsm and simple

formats?)
Because of this, when using XML I/O the “converter” argument is completely ignored by the

format processor. Usually you can see vcsn::io::string output mentioned.
(FIXME: this is terrible! it must be patched to use an empty vcsn::io::xml converter placeholder

or something like it).

25

About formats

The format argument is mandatory. It specifies an instance of the object in charge of the actual
input or output.

A format object is a function object that provides one or both the following operations:

� an operation that takes an output stream, the caller automaton saver object, and the
converter object. This is called the output operation.

� an operation that takes an input stream and the caller automaton loader object. This
is called the input operation. Note that this operation does not uses the converter ob-
ject, because it should call back the automaton loader object to actually perform string to
transition label conversions.

Format objects may require arguments to be constructed, such as the title of the automaton
in the output.

Format objects for a format should be defined in a tools/xxx format.hh file.
Vaucanson provides the following format objects:

vscn::io::dot(const std::string& digraph title), in tools/dot format.hh. Provides an
output operation for the Graphviz dot subformat. The title provided when buildint the dot

object in Vaucanson becomes the title of the graph in the output data and a prefix for state
names. Therefore the title must contain only alphanumeric characters or the underscore (),
and no spaces.

vcsn::io::simple(), in tools/simple format.hh. Provides both input and output operations
for a simple text format.

vcsn::xml::XML(const std::string& xml title), in xml/XML.hh. Provides both input and out-
put operations for the Vaucanson XML I/O format.

(FIXME: why not tools/xml format.hh with proper includes of headers in xml/?)
(FIXME: really the FSM format should have a format object too.)

4.2.7 Examples

Create a simple dot output for an automaton a1:

s t d : : o f s t ream fout (” output . dot”) ;
f out << automaton saver (a1 , vcsn : : i o : : s t r i n g o u t p u t () , vcsn : : i o : : dot (”a1 ”)) ;
f out . c l o s e ()

Output automaton a1 to XML, read it back into another automaton a2 (possibly of another
type):

s t d : : o f s t ream fout (” f i l e . xml”) ;
f out << automaton saver (a1 , NULL, vcsn : : xml : :XML()) ;
f out . c l o s e ()

5 s t d : : i f s t r e a m f i n (” f i l e . xml”) ;
f i n >> automaton loader (a2 , NULL, vcsn : : xml : :XML()) ;
f i n . c l o s e ()

Do the same, but this time using the simple format. The automata are generalized, i.e. labeled
by expressions:

s t d : : o f s t ream fout (” f i l e . txt ”) ;
f out << automaton saver (a1 , vcsn : : i o : : u s u a l c o n v e r t e r e x p () , vcsn : : i o : : s imple ()) ;
f out . c l o s e ()

26

5 s t d : : i f s t r e a m f i n (” f i l e . txt ”) ;
f i n >> automaton loader (a2 , vcsn : : i o : : u s u a l c o n v e r t e r e x p () , vcsn : : i o : : s imple ()) ;
f i n . c l o s e ()

4.2.8 Internal scenario

What happens in Vaucanson when you write:

f i n >> automaton loader (a1 , c1 , f 1)

?

1. function automaton loader creates an object AL1 of type automaton loader that memo-
rizes its arguments.

2. automaton loader() returns AL1.

3. operator>>(fin, AL1) is called.

4. operator>> says to format object f1: “hi, please use fin to load something with AL1”.

5. f1 scans input stream fin. Things may happen then:

� f1 finds a state numbered N. Then it says to AL1: “hey, make a new state into the
output automaton, keep its handler s1 for yourself and remember it is associated to N”.
(callback AL1.add state)

� f1 finds a transition from state numbered N to state P, labeled with character string S.
Then it says to AL1: “hey, create a transition with N, P, and S.” (callback AL1.add transition).
Then:

– AL1 remembers handler for state N (s1)

– AL1 remembers handler for state P (s2)

– AL1 says to converter c1: “hey, make me a transition label from S”

– AL1 creates transition from s1 to s2 using converted label into output automaton.

6. When f1 is finished, it returns control to operator>> and then calling code.

Of course since everything is statically compiled using templates there is no performance
drawback due to the intensive use of callbacks.

4.2.9 Convenience utilities

For most formats the (relatively) tedious following piece of code:

output stream << automaton saver (a , CONVERTER() , FORMAT(. . .))

is also available as:

FORMAT dump(output stream , a , . . .)

If available, this convenience utility is defined in tools/XXX dump.hh.
Conversely, the following piece of code:

input stream >> automaton loader (a , CONVERTER() , FORMAT(. . .))

is usually also available as:

FORMAT load(input stream , a , . . .)

If available, this convenience utility is defined in tools/XXX load.hh.
(FIXME: move fsm load away from fsm dump.hh!)
As of today (2006-03-17) the FSM format is only available using the fsm load() and fsm dump()

interface.

27

