Contents
Faster builds

Fast machine, plenty of memory
Non-optimised build
Parallel make
ccache
distcc
Improve the build system
Making a release
Template arguments naming convention

Macros to handle with care

Using gdb or valgrind on TAF-Kit

Faster builds

Vaucanson takes a long time to build, but the time can be reduced dramatically with a few simple
measures.
Fast machine, plenty of memory
Use a fast machine with plenty of memory. 2GB seems to be a minimum for an optimised build; any
less causes severe swapping.
Non-optimised build
Use:
./configure ... CCFLAGS="-g -ggdb -Wall" CXXFLAGS="-g -ggdb -Wall"

N.B. The variables go at the end of the line.

Parallel make
Use:
export MAKEFLAGS="-j ‘grep “processor /proc/cpuinfo | wc -1¢"

This allows make to run up to one process per CPU core.
FIXME: It would be polite to use -1 to stop make from starting new processes if the machine load
goes above a certain level, e.g. 2.0 * no_of CPUs.

ccache

Use ccache with a cache size of at least 4Gb (at the time of writing on a 32-bit Debian system vaucanson
uses about 3.5Gb):

ccache -M 4G

distcc
The following instructions are for LRDE users, but may be adapted to other places.

1. Wake up as much machines as you want with 1rde-wakeonlan. Use lrde-wakeonlan . to
wake up all hosts.

2. Configure with:
./configure CC=gcc-4.2 CXX=g++-4.2

You need to specify the GCC version number to make sure all machines use the same
compiler.

3. Update the .distcc/hosts files with the list of build hosts available. It should look some-
thing like:

berville-en-caux.lrde.epita.fr/2,1zo
marvejols.lrde.epita.fr/2,1zo
whiteagonycreek.lrde.epita.fr/2,1zo
--randomize

The script “adl/usr/bin/update-distcc-hosts can create this file automatically for you.

4. Run make -jN CC=’distcc gcc-4.2° CXX=’distcc g++-4.2° where N is the number of
available hosts. Beware that preprocessing and linking are still done locally, so you may not
want to use more than -j8 on a single core CPU.

Improve the build system

FIXME: Remove this section once the build system can’t easily be improved further!
The build system has recently (at the time of writing) been improved to build the libraries much
faster, but there’s further room for speed-ups. For example: make the tests use ~-DVCSN_USE_LIB.

Making a release

Don’t do these steps from memory.

e Make sure the last run of the autobuilder was successful.

e Check trac to make sure there are no important pending tickets.

e Update doc/share/ with cd doc; make share-up.

e Make sure doc/NEWS.txt is up-to-date. (Mention important known bugs!)
e Make sure doc/README. txt is up-to-date.

e Make sure doc/FAQ. txt is up-to-date.

e Make sure AUTHORS is up-to-date.

Make sure your system has up-to-date tools (Autotools, Swig, Doxygen, ...) before continuing.

e Bump the version number in configure.ac.
e Run bootstrap.

e Write the ChangeLog entry for all the above changes (But don’t commit it before
distcheck.)

e Run make distcheck.

e Commit all changes on success. Commit suicide otherwise.
e Tag the repository for the release.

e Append a a to the version number in configure.ac and commit this new change so
that the next run of the autobuilder won’t create a release.

e Copy the files created by distcheck to /1rde/dload/vaucanson/ don’t forget to chmod
a+rX all files and directories, and to update the latest link.

e Create the release page on the LRDE wiki.
e Update the Vaucanson page to point to it.
e Update the Vaucanson download page to point to the release.

e Send an announcement to vaucanson@lrde.epita.fr. The text of the announcement
should explain what Vaucanson is (so we can forward the mail to another mailing list)
and should include the list of major improvements since the last version (i.e., the top
of NEWS). Do not assume that people will follow links to get details.

o If the release is a beta release, or an intermediate release before a major release, make
it clear in the announcement and on the wiki.

e Install any new major release on vcsn.enst.fr.

e Complete and detail this list with what was missing (whatever will help the next guy
doing the release).

Template arguments naming convention

Template arguments:

e A : Automaton structure.
e AT : Automaton implementation.
e S : Series.
e SI : Series implementation.
e W:a Word.
In the case where multiple possibilities could be used, suffix the template argument with the appro-

priate numbering. For example, to enable the use of two different automaton implementations for each
argument of an algorithm:

template <typename A, typename AIl, typename AI2>
Element<A, AI1>
algorithm(const Element<A, AI1>& al, const Element<A, AI2>& a2>);

Macros to handle with care

The VCSN_GRAPH_IMPL macro must only appear in three locations:

e include/vaucanson/context
e include/vaucanson/automata/generic_contexts
e include/vaucanson/misc/usual_macros.hh (be careful when defining new macros using
it)
Any other use is irrelevant and may be very harmful. Moreover this macro must never be used in a
file with guards.

mailto:vaucanson@lrde.epita.fr

Using gdb or valgrind on TAF-Kit

The executables that are built in taf-kit/src/ are libtool scripts that call the true executables
(usually hidden under taf-kit/src/.1libs/). You cannot run gdb directly on these scripts, you should
always ask 1ibtool to do it for you:

% cd taf-kit/src

% export VCSN_DATA_PATH=$PWD/../../data
% libtool --mode=execute gdb ./vcsn-int-b
(gdb) run determinize x.xml

It’s often more convenient to run the scripts from taf-kit/tests because they export VCSN_DATA_PATH
and run the corresponding executable from taf-kit/src for you. In that case you have to use the
PREVCSN environment variable to specify these 1ibtool options:

% cd taf-kit/tests
% PREVCSN=’1libtool --mode=execute gdb’ ./vcsn-int-b
(gdb) run determinize x.xml

The same commands can of course be used to run other tools like Valgrind. Here is how to run
TAF-Kit under Valgrind and attach a debugger on the first error:

% cd taf-kit/tests
% PREVCSN=’1libtool --mode=execute valgrind --db-attach’ ./vcsn-int-b

A note for Darwin users: because your system comes with another tool called 1ibtool, GNU libtool
is usually installed as glibtool. Alternatively, you may want to use the copy of libtool output by
configure at the root of Vaucanson’s build tree.

	Contents
	Faster builds
	Fast machine, plenty of memory
	Non-optimised build
	Parallel make
	ccache
	distcc
	Improve the build system

	Making a release
	Template arguments naming convention
	Macros to handle with care
	Using gdb or valgrind on TAF-Kit

