# Questions taken from Stackoverflow¶

This page lists questions about automata and other rational/regular expressions that were asked on Stackoverflow, and where Vcsn seems to be an appropriate tool to compute the answer.

In :
import os
# This trick ensures that we always use the same random seed,
# hence running this documentation always gives the same result.
os.environ['VCSN_SEED'] = '1'


## Build a Regular Expression and Finite Automata¶

The set of all strings beginning with 101 and ending with 01010.

First, let's define our "context": we work with "labels are letters" (lal), on the alphabet $\{0, 1\}$. We don't use weights, or rather, we use the traditional Boolean weights: $\mathbb{B}$.

In :
import vcsn
c = vcsn.context('lal_char(01), b')
c

Out:
$\{0, 1\}\to\mathbb{B}$

Then, we build our expression using an unusual operator: $\mathsf{E} \& \mathsf{F}$ denotes the conjunction of expressions $\mathsf{E}$ and $\mathsf{F}$. In this case (unweighted/Boolean automata), it denotes exactly the intersection of languages.

In :
e = c.expression('(101*)&(*01010)')
e

Out:
$1 \, 0 \, 1 \, \left(0 + 1\right)^{*} \& \left(0 + 1\right)^{*} \, 0 \, 1 \, 0 \, 1 \, 0$

We want to normalize this extended expression (it has conjunction and complement operators) into a basic expression. To this end, we first convert it to an automaton.

In :
a = e.automaton()
a

Out:

and then we convert this automaton into a basic expression:

In :
a.expression()

Out:
$1 \, \left(0 \, 1 + 0 \, 1 \, \left(0 + 1\right)^{*} \, 0 \, 1\right) \, 0 \, 1 \, 0$

Or, in ASCII:

In :
print(a.expression())

1(01+01(0+1)*01)010


## Regular expression to match text that doesn't contain a word?¶

I'd like to know if it's possible to match lines that don't contain a specific word (e.g. hede) using a regular expression?

First, let's define that alphabet we work on: from $a$ to $z$ for instance.

In :
import vcsn
c = vcsn.context('lal_char(a-z), b')
c

Out:
$\{a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}\to\mathbb{B}$

Then we define our expression, which is extended (it uses the complement operator), so to normalize it, we first convert it into automaton (with _expression_.automaton), from which we extract a basic expression (with _automaton_.expresion).

In :
e = c.expression('(hede){c}')
e

Out:
$\left(h \, e \, d \, e\right)^{c}$
In :
a = e.automaton()
a

Out:
In :
a.expression()

Out:
$\varepsilon + h \, \left(\varepsilon + e \, \left(\varepsilon + d\right)\right) + \left([\hat{}h] + h \, \left([\hat{}e] + e \, \left([\hat{}d] + d \, \left([\hat{}e] + e \, [\hat{}]\right)\right)\right)\right) \, {[\hat{}]}^{*}$

Or, in ASCII (+ is usually denoted |; \e denotes the empty word; and [^] denotes any character, usually written .):

In :
print(a.expression())

\e+h(\e+e(\e+d))+([^h]+h([^e]+e([^d]+d([^e]+e[^]))))[^]*


## Convert finite state machine to regular expression¶

Is there a tool (or an algorithm) to convert a finite state machine into a regular expression?

Vcsn is tool for rational expressions and automata. See http://vcsn.lrde.epita.fr.

In :
import vcsn


Build a random automaton $a$ of 4 states, labeled by letters to choose in ${a, b, c}$. Then "lift" it into an automaton $b$ labeled by expressions.

In :
a = vcsn.context('lal(abc), b').random_automaton(4, num_final=2)
b = a.lift()
b

Out:

Eliminate state 2, then 3, etc. The order does not matter for correction (any order gives a correct result), but the quality of the result does depend on this order.

In :
b = b.eliminate_state(2)
b

Out:
In :
b = b.eliminate_state(3); b

Out:
In :
b = b.eliminate_state(1); b

Out:

In :
b = b.eliminate_state(0); b

Out:

Alternatively, you can use the method automaton.expression to ask for the result.

In :
a.expression()

Out:
$\left(b + c + c \, \left(b + c + b \, b \, \left(a + b\right)\right)^{*} \, b\right)^{*} \, \left(\varepsilon + c \, \left(b + c + b \, b \, \left(a + b\right)\right)^{*} \, b \, b\right)$

You may see this algorithm run "interactively" using %demo.

In :
a = vcsn.context('lal(abc), b').random_automaton(10)
b = a.lift()
%demo b eliminate_state


## Constructing a Regular Expression from a Finite Automata¶

I'm trying to construct a regular expression from a Finite Automaton but found my self completely stuck with this one.

In :
import vcsn

In :
%%automaton a
$-> q3 q1 -> q2 a q1 -> q3 b q2 -> q2 a, b q3 -> q4 a q3 -> q3 b q4 -> q4 a q4 -> q1 b q3 ->$
q4 -> $ In : a.expression()  Out:$\left(b + a \, {a}^{*} \, b \, b\right)^{*} \, \left(\varepsilon + a \, {a}^{*}\right)$## How to find the right quotient of a language given two languages?¶ (This is the question with typos in$L_1$and$L_2$fixed.) If$L_1= \{a^n b^m \mid n \geqslant 1, m \geqslant 0 \} \cup \{ba\}$and$L_2= \{b^m \mid m \geqslant 1 \}$. I am not getting how the DFA for$L_1/L_2$is constructed in the second figure using the DFA for$L_1$, please tell me the approach. First, let's define our "context": we work with "labels are letters" (lal), on the alphabet$\{a, b\}$. We don't use weights, or rather, we use the traditional Boolean weights:$\mathbb{B}$. In : import vcsn c = vcsn.context('lal(ab), b') c  Out:$\{a, b\}\to\mathbb{B}$Then define the first automaton, Figure 4.1. In : %%automaton a1$  -> q0
q1 -> $q0 -> q1 a q0 -> q3 b q1 -> q1 a q1 -> q2 b q2 ->$
q2 -> q2 b
q2 -> q5 a
q3 -> q4 a
q3 -> q5 b
q4 -> $q4 -> q5 a, b q5 -> q5 a, b  In : a1.is_deterministic() and a1.is_complete()  Out: True Automaton$\mathcal{A}_2$represents the language$L_2\$:

In :
a2 = c.expression('b{+}').automaton()
a2

Out:

We may now compute the quotient, which is indeed the automaton of Figure 4.2. It is better looking once trimmed.

In :
a1 / a2

Out:
In :
(a1 / a2).trim()

Out: